首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We sought to create new cellulose-binding RNA aptamers for use as modular components in the engineering of complex functional nucleic acids. We designed our in vitro selection strategy to incorporate self-sustained sequence replication (3SR), which is an isothermal nucleic acid amplification protocol that allows for the rapid amplification of RNAs with little manipulation. The best performing aptamer representative was chosen for reselection and further optimization. The aptamer exhibits robust binding of cellulose in both the powdered and paper form, but did not show any significant binding of closely related polysaccharides. The minimal cellulose-binding RNA aptamer also can be grafted onto other RNAs to permit the isolation of RNAs from complex biochemical mixtures via cellulose affinity chromatography. This was demonstrated by fusing the aptamer to a glmS ribozyme sequence, and selectively eluting ribozyme cleavage products from cellulose using glucosamine 6-phosphate to activate glmS ribozyme function.  相似文献   

2.
A recently discovered class of gene regulatory RNAs, coined riboswitches, are commonly found in noncoding segments of bacterial and some eukaryotic mRNAs. Gene up- or down-regulation is triggered by binding of a small organic metabolite, which typically induces an RNA conformational change. Unique among these noncoding RNAs is the glmS catalytic riboswitch, or ribozyme, found in the 5'-untranslated region of the glmS gene in Gram-positive bacteria. It is activated by glucosamine-6-phosphate (GlcN6P), leading to site-specific backbone cleavage of the mRNA and subsequent repression of the glmS gene, responsible for cellular GlcN6P production. Recent biochemical and structural evidence suggests that the GlcN6P ligand acts as a coenzyme and participates in the cleavage reaction without inducing a conformational change. To better understand the role of GlcN6P in solution structural dynamics and function, we have separated the glmS riboswitch core from Bacillus subtilis into a trans-cleaving ribozyme and an externally cleaved substrate. We find that trans cleavage is rapidly activated by nearly 5000-fold to a rate of 4.4 min(-1) upon addition of 10 mM GlcN6P, comparable to the cis-acting ribozyme. Fluorescence resonance energy transfer suggests that this ribozyme-substrate complex does not undergo a global conformational change upon ligand binding in solution. In addition, footprinting at nucleotide resolution using terbium(III) and RNase V1 indicates no significant changes in secondary and tertiary structure upon ligand binding. These findings suggest that the glmS ribozyme is fully folded in solution prior to binding its activating ligand, supporting recent observations in the crystalline state.  相似文献   

3.
The glmS ribozyme is a catalytic RNA that self-cleaves at its 5'-end in the presence of glucosamine 6-phosphate (GlcN6P). We present structures of the glmS ribozyme from Thermoanaerobacter tengcongensis that are bound with the cofactor GlcN6P or the inhibitor glucose 6-phosphate (Glc6P) at 1.7 A and 2.2 A resolution, respectively. The two structures are indistinguishable in the conformations of the small molecules and of the RNA. GlcN6P binding becomes apparent crystallographically when the pH is raised to 8.5, where the ribozyme conformation is identical with that observed previously at pH 5.5. A key structural feature of this ribozyme is a short duplex (P2.2) that is formed between sequences just 3' of the cleavage site and within the core domain, and which introduces a pseudoknot into the active site. Mutagenesis indicates that P2.2 is required for activity in cis-acting and trans-acting forms of the ribozyme. P2.2 formation in a trans-acting ribozyme was exploited to demonstrate that N1 of the guanine at position 1 contributes to GlcN6P binding by interacting with the phosphate of the cofactor. At neutral pH, RNAs with adenine, 2-aminopurine, dimethyladenine or purine substitutions at position 1 cleave faster with glucosamine than with GlcN6P. This altered cofactor preference provides biochemical support for the orientation of the cofactor within the active site. Our results establish two features of the glmS ribozyme that are important for its activity: a sequence within the core domain that selects and positions the cleavage-site sequence, and a nucleobase at position 1 that helps position GlcN6P.  相似文献   

4.
5.
Many nucleic acid enzymes and aptamers have modular architectures that allow them to retain their functions when combined with other nucleotide sequences. This modular function facilitates the engineering of RNAs and DNAs that have more complex functions. We sought to create new DNA aptamers that bind cellulose to provide a module for immobilizing DNAs. Cellulose has been used in a variety of applications ranging from coatings and films to pharmaceutical preparations, and therefore DNA aptamers that bind cellulose might enable new applications. We used in vitro selection to isolate aptamers from a pool of random-sequence DNAs and subjected two distinct clones to additional rounds of mutagenesis and selection. One aptamer (CELAPT 14) was chosen for sequence minimization and more detailed biochemical analysis. CELAPT 14 aptamer variants exhibit robust binding both to cellulose powder and paper. Also, an allosteric aptamer construct was engineered that exhibits ATP-mediated cellulose binding during paper chromatography.  相似文献   

6.
The glmS ribozyme is a riboswitch class that occurs in certain Gram-positive bacteria, where it resides within mRNAs encoding glucosamine 6-phosphate synthase. Members of this self-cleaving ribozyme class rapidly catalyze RNA transesterification upon binding GlcN6P, and genetic evidence suggests that this cleavage event is important for down-regulating GlmS protein expression. In this report, we present a refined secondary structure model of the glmS ribozyme and determine the importance of a conserved pseudoknot structure for optimal ribozyme function. Analyses of deletion constructs demonstrate that the pseudoknot, together with other structural elements, permits the ribozyme to achieve maximum rate constants for RNA cleavage at physiologically relevant Mg2+ concentrations. In addition, we show that substantial rate enhancements are supported by an exchange-inert cobalt (III) complex and by molar concentrations of monovalent ions. Our findings indicate that the glmS ribozyme forms a complex structure to employ catalytic strategies that do not require the direct participation of divalent metal ions.  相似文献   

7.
The N terminal region of hepatitis delta antigen (HDAg), referred to here as NdAg, has a nucleic acid chaperone activity that modulates the ribozyme activity of hepatitis delta virus (HDV) RNA and stimulates hammerhead ribozyme catalysis. We characterized the nucleic acid binding properties of NdAg, identified the structural and sequence domains important for nucleic acid binding, and studied the correlation between the nucleic acid binding ability and the nucleic acid chaperone activity. NdAg does not recognize the catalytic core of HDV ribozyme specifically. Instead, NdAg interacts with a variety of nucleic acids and has higher affinities to longer nucleic acids. The studies with RNA homopolymers reveal that the binding site size of NdAg is around nine nucleotides long. The extreme N terminal portion of NdAg, the following coiled-coil domain and the basic amino acid clusters in these regions are important for nucleic acid binding. The nucleic acid–NdAg complex is stabilized largely by electrostatic interactions. The formation of RNA–protein complex appears to be a prerequisite for facilitating hammerhead ribozyme catalysis of NdAg and its derivatives. Mutations that reduce the RNA binding activity or high ionic strength that destabilizes the RNA–protein complex, reduce the nucleic acid chaperone activity of NdAg.  相似文献   

8.
9.
Self-cleaving glmS ribozymes selectively bind glucosamine-6-phosphate (GlcN6P) and use this metabolite as a cofactor to promote self-cleavage by internal phosphoester transfer. Representatives of the glmS ribozyme class are found in Gram-positive bacteria where they reside in the 5' untranslated regions (UTRs) of glmS messenger RNAs that code for the essential enzyme L-glutamine:D-fructose-6-phosphate aminotransferase. By using comparative sequence analyses, we have expanded the number of glmS ribozyme representatives from 160 to 463. All but two glmS ribozymes are present in glmS mRNAs and most exhibit striking uniformity in sequence and structure, which are features that make representatives attractive targets for antibacterial drug development. However, our discovery of rare variants broadens the consensus sequence and structure model. For example, in the Deinococcus-Thermus phylum, several structural variants exist that carry additional stems within the catalytic core and changes to the architecture of core-supporting substructures. These findings reveal that glmS ribozymes have a broader phylogenetic distribution than previously known and suggest that additional rare structural variants may remain to be discovered.  相似文献   

10.
The hairpin ribozyme can catalyze the cleavage of RNA substrates by employing its conformational flexibility. To form a catalytic complex, the two domains A and B of the hairpin-ribozyme complex must interact with one another in a folding step called docking. We have constructed hairpin ribozyme variants harboring an aptamer sequence that can be allosterically induced by flavin mononucleotide (FMN). Domains A and B are separated by distinct bridge sequences that communicate the formation of the FMN-aptamer complex to domains A and B, facilitating their docking. In the presence of a short oligonucleotide that is complementary to the aptamer, catalytic activity of the ribozyme is completely abolished, due to the formation of an extended conformer that cannot perform catalysis. However, in the presence of the small molecule effector FMN, the inhibitory effect of the oligonucleotide is competitively neutralized and the ribozyme is activated 150-fold. We thus have established a new principle for the regulation of ribozyme catalysis in which two regulatory factors (an oligonucleotide and a small molecule) that switch the ribozyme's activity in opposite directions compete for the same binding site in the aptamer domain.  相似文献   

11.
12.
This work is an in vitro study of the efficiency of catalytic antisense RNAs whose catalytic domain is the wild-type sequence of the hairpin ribozyme, derived from the minus strand of the tobacco ringspot virus satellite RNA. The sequence in the target RNA recognized by the antisense molecule was the stem-loop structure of the human immunodeficiency virus-1 (HIV-1) TAR region. This region was able to form a complex with its antisense RNA with a binding rate of 2 x 10(4) M(-1)s(-1). Any deletion of the antisense RNA comprising nucleotides of the stem-loop resulted in a decrease in binding rate. Sequences 3' of the stem in the sense RNA also contributed to binding. This stem-loop TAR-antisense segment, covalently linked to a hairpin ribozyme, enhanced its catalytic activity. The highest cleavage rate was obtained when the stem-loop structure was present in both ribozyme and substrate RNAs and they were complementary. Similarly, an extension at the 5'-end of the hairpin ribozyme increased the cleavage rate when its complementary sequence was present in the substrate. Inclusion of the stem-loop at the 3'-end and the extension at the 5'-end of the hairpin ribozyme abolished the positive effect of both antisense units independently. These results may help in the design of hairpin ribozymes for gene silencing.  相似文献   

13.
Aptamers interacting with RNA hairpins through loop-loop (so-called kissing) interactions have been described as an alternative to antisense oligomers for the recognition of RNA hairpins. R06, an RNA aptamer, was previously shown to form a kissing complex with the TAR (trans-activating responsive) hairpin of HIV-1 RNA (Ducongé and Toulmé (1999) RNA 5, 1605). We derived a chimeric locked nucleic acid (LNA)/DNA aptamer from R06 that retains the binding properties of the originally selected R06 aptamer. We demonstrated that this LNA/DNA aptamer competes with a peptide of the retroviral protein Tat for binding to TAR, even though the binding sites of the two ligands do not overlap each other. This suggests that upon binding, the aptamer TAR adopts a conformation that is no longer appropriate for Tat association. In contrast, a LNA/DNA antisense oligomer, which exhibits the same binding constant and displays the same base-pairing potential as the chimeric aptamer, does not compete with Tat. Moreover, we showed that the LNA/DNA aptamer is a more specific TAR binder than the LNA/DNA antisense sequence. These results demonstrate the benefit of reading the three-dimensional shape of an RNA target rather than its primary sequence for the design of highly specific oligonucleotides.  相似文献   

14.
Self-cleaving ribozymes associated with the glmS genes of many Gram-positive bacteria are activated by binding to glucosamine-6-phosphate (GlcN6P). Representatives of the glmS ribozyme class function as metabolite-sensing riboswitches whose self-cleavage activities down-regulate the expression of GlmS enzymes that synthesizes GlcN6P. As with other riboswitches, natural glmS ribozyme isolates are highly specific for their target metabolite. Other small molecules closely related to GlcN6P, such as glucose-6-phosphate, cannot activate self-cleavage. We applied in vitro selection methods in an attempt to identify variants of a Bacillus cereus glmS ribozyme that expand the range of compounds that induce self-cleavage. In addition, we sought to increase the number of variant ribozymes of this class to further examine the proposed secondary structure model. Although numerous variant ribozymes were obtained that efficiently self-cleave, none exhibited changes in target specificity. These findings are consistent with the hypothesis that GlcN6P is used by the ribozyme as a coenzyme for RNA cleavage, rather than an allosteric effector.  相似文献   

15.
'Locked nucleic acids' (LNAs) are sugar modified nucleic acids containing the 2'-O-4'C-methylene-β-D-ribofuranoses. The substitution of RNAs with LNAs leads to an enhanced thermostability. Aptamers are nucleic acids, which are selected for specific target binding from a large library pool by the 'SELEX' method. Introduction of modified nucleic acids into aptamers can improve their stability. The stem region of a ricin A chain RNA aptamer was substituted by locked nucleic acids. Different constructs of the LNA-substituted aptamers were examined for their thermostability, binding activity, folding and RNase sensitivity as compared to the natural RNA counterpart. The LNA-modified aptamers were active in target binding, while the loop regions and the adjacent stem nucleotides remained unsubstituted. The thermostability and RNase resistance of LNA substituted aptamers were enhanced as compared to the native RNA aptamer. This study supports the approach to substitute the aptamer stem region by LNAs and to leave the loop region unmodified, which is responsible for ligand binding. Thus, LNAs possess an encouraging potential for the development of new stabilized nucleic acids and will promote future diagnostic and therapeutic applications.  相似文献   

16.
Hammerhead ribozymes are self-cleaving RNA molecules capable of regulating gene expression in living cells. Their cleavage performance is strongly influenced by intra-molecular loop–loop interactions, a feature not readily accessible through modern prediction algorithms. Ribozyme engineering and efficient implementation of ribozyme-based genetic switches requires detailed knowledge of individual self-cleavage performances. By rational design, we devised fluorescent aptamer-ribozyme RNA architectures that allow for the real-time measurement of ribozyme self-cleavage activity in vitro. The engineered nucleic acid molecules implement a split Spinach aptamer sequence that is made accessible for strand displacement upon ribozyme self-cleavage, thereby complementing the fluorescent Spinach aptamer. This fully RNA-based ribozyme performance assay correlates ribozyme cleavage activity with Spinach fluorescence to provide a rapid and straightforward technology for the validation of loop–loop interactions in hammerhead ribozymes.  相似文献   

17.
We have previously shown that a protein derived from the p7 nucleocapsid (NC) protein of HIV type-1 increases kcat/Km and kcat for cleavage of a cognate substrate by a hammerhead ribozyme. Here we show directly that the increase in kcat/Km arises from catalysis of the annealing of the RNA substrate to the ribozyme and the increase in kcat arises from catalysis of dissociation of the RNA products from the ribozyme. A peptide polymer derived from the consensus sequence of the C-terminal domain of the hnRNP A1 protein (A1 CTD) provides similar enhancements. Although these effects apparently arise from non-specific interactions, not all non-specific binding interactions led to these enhancements. NC and A1 CTD exert their effects by accelerating attainment of the thermodynamically most stable species throughout the ribozyme catalytic cycle. In addition, NC protein is shown to resolve a misfolded ribozyme-RNA complex that is otherwise long lived. These in vitro results suggest that non-specific RNA binding proteins such as NC and hnRNP proteins may have a biological role as RNA chaperones that prevent misfolding of RNAs and resolve RNAs that have misfolded, thereby ensuring that RNA is accessible for its biological functions.  相似文献   

18.
Sephadex-binding RNA ligands (aptamers) were obtained through in vitro selection. They could be classified into two groups based on their consensus sequences and the aptamers from both groups showed strong binding to Sephadex G-100. One of the highest affinity aptamers, D8, was chosen for further characterization. Aptamer D8 bound to dextran B512, the soluble base material of Sephadex, but not to isomaltose, isomaltotriose and isomaltotetraose, suggesting that its optimal binding site might consist of more than four glucose residues linked via alpha-1,6 linkages. The aptamer was very specific to the Sephadex matrix and did not bind appreciably to other supporting matrices, such as Sepharose, Sephacryl, cellulose or pustulan. Using Sephadex G-100, the aptamer could be purified from a complex mixture of cellular RNA, giving an enrichment of at least 60 000-fold, compared with a non-specific control RNA. These RNA aptamers can be used as affinity tags for RNAs or RNA subunits of ribonucleoproteins to allow rapid purification from complex mixtures of RNA using only Sephadex.  相似文献   

19.
Allosteric RNAs operate as molecular switches that alter folding and function in response to ligand binding. A common type of natural allosteric RNAs is the riboswitch; designer RNAs with similar properties can be created by RNA engineering. We describe a computational approach for designing allosteric ribozymes triggered by binding oligonucleotides. Four universal types of RNA switches possessing AND, OR, YES and NOT Boolean logic functions were created in modular form, which allows ligand specificity to be changed without altering the catalytic core of the ribozyme. All computationally designed allosteric ribozymes were synthesized and experimentally tested in vitro. Engineered ribozymes exhibit >1,000-fold activation, demonstrate precise ligand specificity and function in molecular circuits in which the self-cleavage product of one RNA triggers the action of a second. This engineering approach provides a rapid and inexpensive way to create allosteric RNAs for constructing complex molecular circuits, nucleic acid detection systems and gene control elements.  相似文献   

20.
The potential utility of catalytic RNAs and DNAs (ribozymes and deoxyribozymes, respectively) as reagents in molecular biology as well as therapeutic agents for a variety of human diseases, has long been recognized. Although naturally occurring RNA-cleaving ribozymes are typically not subject to feedback control, rational methodologies for the creation of allosteric ribozymes, by functional combination of ribozyme and ligand-responsive aptamer RNA elements, have existed for some years. Here, we report the in vitro selection of RNA aptamers specific for binding one but not the other of two light-induced isomers of a dihydropyrene photo-switch compound, and the utilization of such an aptamer for the construction of the UG-dihydropyrene ribozyme, an allosteric hammerhead ribozyme whose catalysis is controllable by irradiation with visible versus ultraviolet light. In the presence of micromolar concentrations of the photo-switch compound, the ribozyme behaves as a two-state switch, exhibiting a >900-fold difference in catalytic rates between the two irradiation regimes. We anticipate that the UG-dihydropyrene, and other ribozymes like it, may find significant application in the developmental biology of model organisms such as Drosophila melanogaster and Caenorhabditis elegans, as well as in the biomedical sciences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号