首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Intersubunit transfer of fatty acyl groups during fatty acid reduction   总被引:2,自引:0,他引:2  
Fatty acid reduction in Photobacterium phosphoreum is catalyzed in a coupled reaction by two enzymes: acyl-protein synthetase, which activates fatty acids (+ATP), and a reductase, which reduces activated fatty acids (+NADPH) to aldehyde. Although the synthetase and reductase can be acylated with fatty acid (+ATP) and acyl-CoA, respectively, evidence for acyl transfer between these proteins has not yet been obtained. Experimental conditions have now been developed to increase significantly (5-30-fold) the level of protein acylation so that 0.4-0.8 mol of fatty acyl groups are incorporated per mole of the synthetase or reductase subunit. The acylated reductase polypeptide migrated faster on sodium dodecyl sulfate-polyacrylamide gel electrophoresis than the unlabeled polypeptide, with a direct 1 to 1 correspondence between the moles of acyl group incorporated and the moles of polypeptide migrating at this new position. The presence of 2-mercaptoethanol or NADPH, but not NADP, substantially decreased labeling of the reductase enzyme, and kinetic studies demonstrated that the rate of covalent incorporation of the acyl group was 3-5 times slower than its subsequent reduction with NADPH to aldehyde. When mixtures of the synthetase and reductase polypeptides were incubated with [3H] tetradecanoic acid (+ATP) or [3H]tetradecanoyl-CoA, both polypeptides were acylated to high levels, with the labeling again being decreased by 2-mercaptoethanol or NADPH. These results have demonstrated that acylation of the reductase represents an intermediate and rate-limiting step in fatty acid reduction. Moreover, the activated acyl groups are transferred in a reversible reaction between the synthetase and reductase proteins in the enzyme mechanism.  相似文献   

2.
The embryos of the sea urchin Strongylocentrotus intermedius possess the ability to incorporate into their DNAs 2'-deoxynucleosides together with all their bases, i.e., adenine, guanine, cytosine and thymine. This incorporation is inhibited by 3'-amino-2',3'-dideoxynucleosides with the same bases. 5'-Amino-5'-deoxynucleosides and 5'-amino-2',5'-dideoxynucleosides moderately inhibit the incorporation of [3H]2'-deoxynucleosides into the DNAs by competing with the latter, presumably at the phosphorylation stage. The most potent inhibiting effect is exerted by 2'-amino-2'-deoxynucleosides and 2'-asido-2'-deoxynucleosides; the mechanism of this inhibition is still obscure, however.  相似文献   

3.
We have found that a lipase from Pseudomonas fluorescens (PFL) accelerated regioselective acylation of 2'-deoxynucleosides with the use of acid anhydrides as acyl donor in dry polar solvents. Different regioselective deacylation of 3',5'-di-O-acyl-2'-deoxynucleosides was found to take place when a lipase (PFL) or a protease from Bacillus subtilis (Subtilisin) was used.  相似文献   

4.
The triphenylmethyl (Tr) group undergoes a transfer (transetherification or disproportionation) between the molecules of 5′-O-Tr-2′-deoxynucleosides in a process mediated by anhydrous sulfates of Cu+2, Fe+2, or Ni+2 to yield mixtures of 3′,5′-bis-O-Tr and 3′-O-Tr products. If phenylmethanol is present in a reaction medium, detritylation results with concomitant formation of phenylmethyl triphenylmethyl ether. The behavior of t-butyldimethylsilyl (TBDMS) group in 5′-O-TBDMS-2′-deoxynucleosides is exactly the same. Such type of transetherifications was not observed before for the O-Tr and O-TBDMS groups.  相似文献   

5.
The stability of the parallel-stranded (ps) DNA duplexes is increased when the dA-residues are replaced by the 7-substituted 7-deaza-2'-deoxyadenosine derivatives 3a,b or the dG-residues by the 8-aza-7-deazapurine 2'-deoxynucleosides 6 and 7a,b. Also the N-7-glycosylated adenine 5 forms stable base pairs in ps-DNA while it destabilizes oligonucleotide duplexes with antiparallel chain orientation. The presence of a 2-amino group as in compound 4b is critical for the DNA-structure, leading to a much greater destabilization of the ps-hybrids than of aps-DNA.  相似文献   

6.
Thymidine phosphorylase (EC 2.4.2.4) catalyses the reversible phosphorolysis of pyrimidine 2'-deoxynucleosides, forming 2-deoxyribose-1-phosphate and pyrimidine. 5-Chloro-6-(2-imino-pyrrolidin-1-yl)methyl-uracil hydrochloride (TPI, 1) and its 5-bromo analogue (2), 6-(2-amino-imidazol-1-yl)methyl-5-bromo-uracil (3) and its 5-chloro analogue (4) act as tight-binding stoichiometric inhibitors of recombinant E. coli thymidine phosphorylase, and thus can be used as the first active-site titrants for it using either thymidine or 5-nitro-2'-deoxyuridine as substrate.  相似文献   

7.
Most of the esterase properties of human serum albumin (HSA) are the result of multiple irreversible chemical modifications rather than turnover. The HSA-catalyzed hydrolysis of 4-nitrophenyl myristate (NphOMy) is consistent with the minimum three-step mechanism involving the acyl-enzyme intermediate HSA-OMy: Under all the experimental conditions, values of K(s) (= k(-1)/k(+1)), k(+2), and k(+2)/K(s) determined under conditions where [HSA] ≥ 5 × [NphOMy] and [NphOMy] ≥ 5 × [HSA] match very well each other. The deacylation process is rate limiting in catalysis (i.e., k(+3) < k(+2)) and k(-2)~k(-3)~0 s(-1). The pH dependence of k(+2)/K(s), k(+2), and K(s) reflects the acidic pK(a)-shift of one ionizing group from 8.9 ± 0.2 in NphOMy-free HSA to 6.8 ± 0.3 in the HSA:NphOMy adduct. The HSA-catalyzed hydrolysis of NphOMy is inhibited competitively by diazepam, indicating that Tyr411 is the active-site nucleophile.  相似文献   

8.
Purine 2'-deoxynucleosides bearing an ethynyl or a cyano group at C-4' of the sugar moiety were synthesized from the corresponding 2'-deoxynucleosides. These compounds exhibited very potent anti-HIV activity, and remained active against drug resistant HIV strains.  相似文献   

9.
10.
The Grignard reagents of 2-(2-bromoethyl)-1,3-dioxane and 2-(2-bromoethyl)-1,3-dioxolane readily reacted with the 2-thiopyridyl ester of N-triphenylmethyl-L-leucine to give the ketone adducts 2-[3-oxo-4(S)-(triphenylmethyl) amino-6-methylheptyl]-1,3-dioxane (8a) and 2-[3-oxo-4(S)-(triphenylmethyl) amino-6-methylheptyl]-1,3-dioxolane (8b) in near quantitative yield. When 1 equiv. of the Grignard reagent of 2-(2-bromoethyl)-1,3 dioxane was used, the desired ketone adduct 8a was formed slowly but quantitatively. In contrast, when 2 equiv. of the Grignard reagent were used, the formation of ketone 8a was instantaneous. The triphenylmethyl protecting group was easily removed from 8a using dilute acid to give the amino ketone 2-[3-oxo-4(S)-amino-6-methylheptyl]-1,3-dioxane oxalate salt (9). This material served as a useful intermediate in the synthesis of the ketomethylene analogues of the peptides, Z-Pro-Leu-Gly-OH and Leu-Gly-Val-Phe-OCH3.  相似文献   

11.
Conditions affecting transformation of a group H streptococcus   总被引:1,自引:1,他引:0  
Schlissel, Harvey J. (The University of Kansas, Lawrence), and C. P. Sword. Conditions affecting transformation of a group H streptococcus. J. Bacteriol. 92:1357-1363. 1966.-A defined transforming medium (DTM) containing buffer and 5 to 10 mug per ml of deoxyribonucleic acid was developed to study the physical and chemical requirements for optimal transformation in streptococcal strain SBE. Optimal transformation in DTM occurred at pH 7.5 and 7.0 in 0.07 m sodium phosphate buffer and 0.05 m tris(hydroxymethyl)aminomethane buffer, respectively. In the presence of either a monovalent or a divalent cation, transformation was stimulated maximally by Mn(+2) (10(-3)m) and K(+) (0.05 m). Other cations tested (Na(+), Mg(+2), Ca(+2)) were less stimulatory. A mixture of K(+) and Mn(+2) stimulated transformation to a level higher than either cation alone. Kinetic studies showed that the stimulating effect of cations was greatest during the early part of the transformation reaction and decreased with time. Transformation was inhibited by Cu(+2) (10(-5)m) and Mn(+2) (10(-2)m). Ethylenediaminetetraacetic acid (EDTA) inhibited transformation at 10(-5)m. The inhibition by EDTA could be overcome by Mn(+2) during the early part of the transformation reaction.  相似文献   

12.
Oligonucleotides containing a free sulphydryl group at their 5'-termini have been synthesised and further derivatised with thiol specific probes. The nucleotide sequence required is prepared using standard solid phase phosphoramidite techniques and an extra round of synthesis is then performed using the S-triphenylmethyl O-methoxymorpholinophosphite derivatives of 2-mercaptoethanol, 3-mercaptopropan (1) ol or 6-mercaptohexan (1) ol. After cleavage from the resin and removal of the phosphate and base protecting groups, this yields an oligonucleotide containing an S-triphenylmethyl group attached to the 5'-phosphate group via a two, three or six carbon chain. The triphenylmethyl group can be readily removed with silver nitrate to give the free thiol. With the three and six carbon chain oligonucleotides, this thiol can be used, at pH 8, for the attachment of thiol specific probes as illustrated by the reaction with fluorescent conjugates of iodoacetates and maleiimides. However, oligonucleotides containing a thiol attached to the 5'-phosphate group via a two carbon chain are unstable at pH 8 decomposing to the free 5'-phosphate and so are unsuitable for further derivatisation.  相似文献   

13.
The formation of a disaccharide nucleoside (11) by O3'-glycosylation of 5'-O-protected 2'-deoxyadenosine or its N6-benzoylated derivative has been observed to be accompanied by anomerisation to the corresponding alpha-anomeric product (12). The latter reaction can be explained by instability of the N-glycosidic bond of purine 2'-deoxynucleosides in the presence of Lewis acids. An independent study on the anomerisation of partly blocked 2'-deoxyadenosine has been carried out. Additionally, transglycosylation has been utilized in the synthesis of 3'-O-beta-D-ribofuranosyl-2'deoxyadenosines and its alpha-anomer.  相似文献   

14.
Endothelial dysfunction and underperfusion of exercising muscle contribute to exercise intolerance, hyperventilation, and breathlessness in atrial fibrillation (AF). Cardioversion (CV) improves endothelial function and exercise performance. We examined whether CV is equally beneficial in diabetes and hypertension, diseases that cause endothelial dysfunction and are often associated with AF. Cardiopulmonary exercise and pulmonary and endothelial (brachial artery flow-mediated dilation) function were tested before and after CV in patients with AF alone (n = 18, group 1) or AF with hypertension (n = 19, group 2) or diabetes (n = 19, group 3). Compared with group 1, peak exercise workload, O2 consumption (Vo2), O2 pulse, aerobic efficiency (Delta Vo2/Delta WR), and ratio of brachial diameter changes to flow changes (Delta D/Delta F) were reduced in group 2 and, to a greater extent, in group 3; exercise ventilation efficiency (Ve/Vco2 slope) and dead space-to-tidal volume ratio (Vd/Vt) were similar among groups. CV had less effect on peak workload (+7% vs. +18%), peak Vo2 (+12% vs. +17%), O2 pulse (+33% vs. +50%), Delta Vo2/Delta WR (+7% vs. +12%), Ve/Vco2 slope (-6% vs. -12%), Delta D/Delta F (+7% vs. +10%), and breathlessness (Borg scale) in group 2 than in group 1 and was ineffective in group 3. The antioxidant vitamin C, tested in eight additional patients in each cohort, improved flow-mediated dilation in groups 1 and 2 before, but not after, CV and was ineffective in group 3, suggesting that the oxidative injury is least in lone AF, greater in hypertension with AF, and greater still in diabetes with AF. Comorbidities that impair endothelial activity worsen endothelial dysfunction and exercise intolerance in AF. The advantages of CV appear to be inversely related to the extent of the underlying oxidative injury.  相似文献   

15.
Polycyclic aromatic hydrocarbon (PAH)-DNA adducts pervert the execution or fidelity of enzymatic DNA transactions and cause mutations and cancer. Here, we examine the effects of intercalating PAH-DNA adducts on the religation reaction of vaccinia DNA topoisomerase, a prototypal type IB topoisomerase (TopIB), and the 3' end-resection reaction of Escherichia coli exonuclease III (ExoIII), a DNA repair enzyme. Vaccinia TopIB forms a covalent DNA-(3'-phosphotyrosyl)-enzyme intermediate at a target site 5'-C(+5)C(+4)C(+3)T(+2)T(+1)p / N(-1) in duplex DNA. The rate of the forward cleavage reaction is suppressed to varying degrees by benzo[a]pyrene (BP) or benzo[c]phenanthrene (BPh) adducts at purine bases within the 3'-G(+5)G(+4)G(+3)A(+2)A(+1)T(-1)A(-2) sequence of the nonscissile strand. We report that BP adducts at the +1 and -2 N6-deoxyadenosine (dA) positions flanking the scissile phosphodiester slow the rate of DNA religation to a greater degree than they do the cleavage rate. By increasing the cleavage equilibrium constant > or = 10-fold, the BPdA adducts, which are intercalated via the major groove, act as TopIB poisons. With respect to ExoIII, we find that (i) single BPdA adducts act as durable roadblocks to ExoIII digestion, which is halted at sites 1 and 2 nucleotides prior to the modified base; (ii) single BPhdA adducts, which also intercalate via the major groove, elicit a transient pause prior to the lesion, which is eventually resected; and (iii) BPh adducts at N2-deoxyguanosine, which intercalate via the minor groove, are durable impediments to ExoIII digestion. These results highlight the sensitivity of repair outcomes to the structure of the PAH ring system and whether intercalation occurs via the major or minor groove.  相似文献   

16.
4'-C-Azidomethylthymidine 3'-(H-phosphonate) monomer (10) was synthesized in high yield and three such monomers were incorporated by the H-phosphonate coupling into a 15-mer oligodeoxyribonucleotide. The unmodified 2'-deoxynucleosides could be coupled by either the H-phosphonate or phosphoramidite chemistry, indicating that the Staudinger reaction between the azido group and the phosphoramidite reagent severely hampered the coupling only when it took place intramolecularly. After chain assembly, three alkynyl group bearing ligands, viz., propargyl 2,3,4,6-tetra-O-acetyl-alpha-D-mannopyranoside (2), N-{4-[N-(trifluoroacetyl)aminomethyl]benzyl}-4-pentynamide (3) and N (1), N (3), N (2')-tris(trifluoroacetyl)-N (6')-(4-pentynoyl)neamine (4), were conjugated to the azido groups of the oligonucleotide by click chemistry both on a solid support and in solution. The products were deprotected by conventional ammonolysis and purified by HPLC chromatography. Melting temperature studies revealed that the mannose conjugated oligonucleotides formed more stable duplexes with 2'-O-methyl RNA than with DNA strand. With 2'-O-methyl RNA, a slight destabilization compared to an unmodified sequence was observed at low ionic strength, while at high salt content, the manno-conjugation was stabilizing.  相似文献   

17.
Hanson L  May L  Tuma P  Keeven J  Mehl P  Ferenz M  Ambudkar SV  Golin J 《Biochemistry》2005,44(28):9703-9713
The yeast ABC (ATP-binding cassette protein) multidrug transporter Pdr5p transports a broad spectrum of xenobiotic compounds, including antifungal and antitumor agents. Previously, we demonstrated that substrate size is an important factor in substrate-transporter interaction and that Pdr5p has at least three substrate-binding sites. In this study, we use a combination of whole cell transport assays and photoaffinity labeling of Pdr5p with [(125)I]iodoarylazidoprazosin in purified plasma membrane vesicles to study the behavior of two series of novel substrates: trityl (triphenylmethyl) and carbazole derivatives. The results indicate that site 2, defined initially by tritylimidazole efflux, requires at least a single hydrogen bond acceptor group (electron pair donor). In contrast, complete inhibition of rhodamine 6G efflux and [(125)I]iodoarylazidoprazosin binding at site 1 requires substrates with three electronegative groups. Carbazole and trityl substrates with two groups show saturating, incomplete inhibition at this site. This type of inhibition is frequently observed in bacterial multidrug-binding proteins that use a pocket with multiple binding sites. The presence of multiple sites with different requirements for substrate-Pdr5p interaction may explain the broad specificity of xenobiotic compounds transported by this protein.  相似文献   

18.
Removal of lead from aqueous solutions by Penicillium biomass   总被引:4,自引:0,他引:4  
The removal of lead ions from aqueous solutions by adsorption on nonliving Penicillium chrysogenum biomass was studied. Biosorption of the Pb(+2) ion was strongly affected by pH. Within a pH range of 4 to 5, the saturated sorption uptake of Pb(+2) was 116 mg/g dry biomass, higher than that of activated charcoal and some other microorganisms. At pH 4.5, P. chrysogenum biomass exhibited selectivity for Pb(+2) over other metal ions such as Cd(+2), Cu(+2), Zn(+2), and As(+3) Sorption preference for metals decreased in the following order: Pb > Cd > Cu > Zn > As. The sorption uptake of Pb(+2) remained unchanged in the presence of Cu(+2) and As(+3), it decreased in the presence of Zn(+2), and increased in the presence of Cd(+2). (c) 1993 John Wiley & Sons, Inc.  相似文献   

19.
Seven- to 10-month-old calves are the typical production of Galician Blond (GB), the most important bovine local beef breed in Spain. As meat lipid repercussions on human health depend on their fatty acid (FA) profile, this study aimed at analysing the individual FA at weaning and at the end of the feeding finishing period, especially trans and cis 18:1 isomers in total lipids of the Longissimus thoracis muscle in GB male calves. Distribution of main FA in veal lipids was characterized by gas-liquid chromatography (GLC) analysis on a high polar glass capillary column. Total trans and cis 18:1 isomers were purified, from total FA (TFA) methyl esters, by preparative reversed-phase high-performance liquid chromatography, to allow subsequent specific analysis of their different isomers by GLC. Calves stayed with their mothers at pasture for 2 or 5 months in intensive or semi-extensive systems, followed by an indoor feeding period. The weaned (W) group was finished on concentrate and hay, whereas the non-weaned (NW) group was finished on concentrate and hay and it continued suckling until slaughter. The studied effects did not present interactions. The duration of the indoor finishing period hardly had a significant influence on the parameters analysed. Compared to W calves, NW calves had higher proportions (% TFA) of 18:3n-3 (+38%, P < 0.0001), 20:5n-3 (+22%, P = 0.005), 22:5n-3 (+13%, P = 0.042), cis monounsaturated FA (MUFA; +8%, P = 0.032), total MUFA (+8%, P = 0.013), n-3 polyunsaturated FA (PUFA; +25%, P = 0.0001) and conjugated linoleic acid (CLA; +48%, P < 0.0001) to the detriment of 18:0 (-10%, P = 0.002), 18:2n-6 (-25%, P = 0.004) and n-6 PUFA (-20%, P = 0.011). With regard to cis and trans 18:1 isomers, NW calves had higher proportions (% total cis or trans 18:1) of Δ11trans and Δ16trans (+25% and +22%, respectively, P < 0.01) and Δ13 + 14trans (+13%, P < 0.05) and lower proportions of Δ6 to 8 and Δ10trans (-28% and 58%, respectively, P < 0.001). NW calves' meat might be more suitable for human health than W calves' meat due to the increase of anti-atherogenous FA such as n-3 PUFA, CLA and 18:1 Δ11trans.  相似文献   

20.
The purpose was to compare patterns of brain activation during imagined handgrip exercise and identify cerebral cortical structures participating in "central" cardiovascular regulation. Subjects screened for hypnotizability, five with higher (HH) and four with lower hypnotizability (LH) scores, were tested under two conditions involving 3 min of 1) static handgrip exercise (HG) at 30% of maximal voluntary contraction (MVC) and 2) imagined HG (I-HG) at 30% MVC. Force (kg), forearm integrated electromyography, rating of perceived exertion, heart rate (HR), mean blood pressure (MBP), and differences in regional cerebral blood flow distributions were compared using an ANOVA. During HG, both groups showed similar increases in HR (+13 +/- 5 beats/min) and MBP (+17 +/- 3 mmHg) after 3 min. However, during I-HG, only the HH group showed increases in HR (+10 +/- 2 beats/min; P < 0.05) and MBP (+12 +/- 2 mmHg; P < 0.05). There were no significant increases or differences in force or integrated electromyographic activity between groups during I-HG. The rating of perceived exertion was significantly increased for the HH group during I-HG, but not for the LH group. In comparison of regional cerebral blood flow, the LH showed significantly lower activity in the anterior cingulate (-6 +/- 2%) and insular cortexes (-9 +/- 4%) during I-HG. These findings suggest that cardiovascular responses elicited during imagined exercise involve central activation of insular and anterior cingulate cortexes, independent of muscle afferent feedback; these structures appear to have key roles in the central modulation of cardiovascular responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号