首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An immunoaffinity chromatographic procedure was developed to purify DNA polymerase-DNA primase complex from crude soluble extracts of yeast cells. The immunoabsorbent column is made of mouse monoclonal antibody to yeast DNA polymerase I covalently linked to Protein A-Sepharose. Purification of the complex involves binding of the complex to the immunoabsorbent column and elution with concentrated MgCl2 solutions. After rebinding to the monoclonal antibody column free primase activity is selectively eluted with a lower concentration of MgCl2. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate showed the presence of five major peptides, p180, p140, p74, p58, and p48 in the immunoaffinity-purified DNA polymerase-DNA primase complex. Free primase and free polymerase fractions obtained by fractionation on the immunoabsorbent column were analyzed on activity gels and immunoblots. These analyses showed that p180 and p140 are DNA polymerase peptides. Two polypeptides of 58 and 48 kDa co-fractionated with the free yeast DNA primase. From sucrose gradient analysis we estimate a molecular weight of 110 kDa for the native DNA primase.  相似文献   

2.
The molecular masses of two of the four DNA polymerase alpha-primase complex subunit peptides from various mammalian cells have been compared through the use of specific monoclonal antibodies. One monoclonal antibody (E4) binds to 77-kDa peptide from HeLa cells and cognate peptides from other mammalian cells (monkey, mouse, bovine, Indian muntjac, and hamster). Another monoclonal antibody (A5) binds the 180-kDa type peptide and its degradation product (160-kDa peptide) of the mammalian DNA polymerase alpha-primase complexes. Neither of these antibodies reacts with DNA polymerase alpha-primase complex from chicken cells. Comparative immunoblot analysis indicates that the molecular masses of the two main peptides of DNA polymerase alpha-primase complex isolated from the various mammalian sources are in excellent agreement with each other, except for the 77-kDa type peptide from bovine and Indian muntjac cells which was found to be significantly smaller (68 kDa) in these cases. The small molecular mass of bovine 77-kDa type peptide is not attributable to the action of a protease which may be present in the extract of bovine cells.  相似文献   

3.
T Yagura  T Kozu  T Seno  S Tanaka 《Biochemistry》1987,26(24):7749-7754
A hybrid cell line (HDR-854-E4) secreting monoclonal antibody (E4 antibody) against a subunit of human DNA polymerase alpha was established by immunizing mice with DNA replicase complex (DNA polymerase alpha-primase complex) prepared from HeLa cells. The E4 antibody immunoprecipitates DNA replicase complex from both human and mouse cells. The E4 antibody neutralizes the primase activity as assessed either by the direct primase assay (incorporation of [alpha-32P]AMP) or by assay of DNA polymerase activity coupled with the primase activity using unprimed poly(dT) as a template. The E4 antibody does not neutralize DNA polymerase alpha activity with the activated calf thymus DNA as a template. Western immunoblotting analysis shows that the E4 antibody binds to a polypeptide of 77 kilodaltons (kDa) which is tightly associated with DNA polymerase alpha. The 77-kDa polypeptide was distinguished from the catalytic subunit (160 and 180 kDa) for DNA synthesis which was detected by another monoclonal antibody, HDR-863-A5. Furthermore, it is unlikely that the 77-kDa peptide is the primase, since we found that the E4 antibody also immunoprecipitates the mouse 7.3S DNA polymerase alpha which has no primase activity, and Western immunoblotting analysis shows that the 77-kDa polypeptide is a subunit of the 7.3S DNA polymerase alpha. Furthermore, after dissociation of the primase from mouse DNA replicase by chromatography on a hydroxyapatite column in the presence of dimethyl sulfoxide and ethylene glycol, the 77-kDa polypeptide is associated with DNA polymerase alpha, and not with the primase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The immunoaffinity-purified subunits of the yeast DNA primase-DNA polymerase protein complex and subunit-specific monoclonal antibodies were used to explore the structural relationships of the subunits in the complex. The reconstituted four-subunit complex (180-, 86-, 58-, and 49-kDa polypeptides) behaved as a single species, exhibiting a Stokes radius of 80 A and a sedimentation coefficient of 8.9 S. The calculated molecular weight of the reconstituted complex is 312,000. We infer that the stoichiometry of the complex is one of each subunit per complex. The complex has a prolate ellipsoid shape with an axial ratio of approximately 16. When the 180-kDa and DNA primase subunits were recombined in the absence of the 86-kDa subunit, a physical complex formed, as judged by immunoprecipitation of DNA primase activity and polypeptides with an anti-180-kDa monoclonal antibody. While the 86-kDa subunit readily forms a physical complex with the 180-kDa DNA polymerase catalytic subunit, we have not detected a complex containing 86-kDa and the DNA primase subcomplex (49- and 58-kDa subunits). The 86-kDa subunit was not required for DNA primase-DNA polymerase complex formation; the 180-kDa subunit and DNA primase heterodimer directly interact. However, the presence of the 86-kDa subunit increased the rate at which the DNA primase and 180-kDa polypeptides formed a complex and increased the total fraction of DNA primase activity that was associated with DNA polymerase activity. The observations demonstrate that the DNA primase p49.p58 heterodimer and the DNA polymerase p86.p180 heterodimer interact via the 180-kDa subunit. The four-subunit reconstituted complex was sufficient to catalyze the DNA chain extension coupled to RNA primer synthesis on a single-stranded DNA template, as previously observed in the conventionally purified complex isolated from wild type cells.  相似文献   

5.
We have utilized immunoaffinity chromatography as a means of efficiently isolating a stable yeast DNA primase from the DNA primase-DNA polymerase complex, allowing identification of the polypeptides associated with this DNA primase activity and comparison of its enzymatic properties with those of the larger protein complex. A mouse monoclonal antibody specifically recognizing the DNA polymerase subunit was used to purify the complex. Stable DNA primase was subsequently separated from the complex in high yield. The highly purified protein fraction which bound to the DNA polymerase antibody column consisted of polypeptides with apparent molecular masses of 180, 86, 70, 58, 49, and 47 kDa. DNA primase activity eluted with a fraction containing only the 58-, 49-, and 47-kDa polypeptides. Partial chemical cleavage analysis of these three proteins demonstrated that the 49- and 47-kDa polypeptides are structurally related while the 58-kDa protein is unrelated to the other two. A DNA primase inhibitory monoclonal antibody was able to inhibit the activity of the purified DNA primase as well as the activity of the enzyme in the larger complex. In immunoprecipitation experiments, all three polypeptides were found in the immune complex. Thus, these three polypeptides are sufficient for DNA primase activity. In reactions using ribonucleotide substrates and natural as well as synthetic DNA templates, the purified DNA primase exhibited the same precise synthesis of unit length oligomers as did the larger protein complex and was able to extend these RNA oligomers by one additional unit length. An examination of the effects of deoxynucleotides on these DNA primase-catalyzed reactions revealed that the yeast DNA primase is an RNA-polymerizing enzyme and lacks significant DNA-polymerizing activity under the conditions tested.  相似文献   

6.
C D Lu  J J Byrnes 《Biochemistry》1992,31(49):12403-12409
Proliferating cell nuclear antigen (PCNA) and PCNA-dependent DNA polymerase delta were partially purified and characterized from rabbit bone marrow. Rabbit DNA polymerase delta sediments at 8.2 S upon glycerol density gradient centrifugation. Similar to calf thymus PCNA-dependent DNA polymerase delta, a 125-123-kDa doublet and 48-kDa polypeptides correlate with DNA polymerase activity. Western blotting of rabbit DNA polymerase delta with polyclonal antibody to calf thymus PCNA-dependent DNA polymerase delta gives the same results as calf thymus delta; the 125-123-kDa doublet is recognized. PCNA-dependent DNA polymerase delta is resistant to inhibition by dideoxynucleotides and is relatively insensitive to inhibition by N2-[p-(n-butyl)phenyl]dGTP. A 3'-->5' exonuclease copurifies with the DNA polymerase. The processivity of DNA polymerase delta alone is very low but greatly increases with the addition of PCNA from rabbit bone marrow or calf thymus. Comparative studies of the original DNA polymerase delta from rabbit bone marrow demonstrate a lack of recognition by antibodies to calf thymus delta and a high degree of processivity in the absence of PCNA. Additionally, the originally described DNA polymerase delta is a single polypeptide of 122 kDa. These features would recategorize the original delta to the epsilon category by recently proposed convention. PCNA-dependent DNA polymerase delta is a relatively minor component of rabbit bone marrow compared to DNA polymerase alpha and PCNA-independent DNA polymerase delta (epsilon), the relative proportions being alpha, 60%; delta, 7%; and epsilon, 30%.  相似文献   

7.
Immunoaffinity-purified DNA polymerase alpha-primase complex from calf thymus consists of subunits with molecular weights of 148,000-180,000, 73,000, 59,000, and 48,000 (Nasheuer, H.-P., and Grosse, F. (1987) Biochemistry 26, 8458-8466). Primase activity was separated from the immobilized complex by washing extensively with 2 M KCl or, alternatively, by shifting to pH 11.5 in the presence of 1 M KCl. From both elution procedures, the primase activity was found to be associated with the polypeptides with molecular weights of 59,000 and 48,000. The specific activity, using either elution procedure, was 30,000 units/mg. Both polypeptides sedimented together at 5.7 S upon zonal centrifugation on a sucrose gradient. Primase activity was found in the flow-through fraction after DEAE-cellulose chromatography of the free primase. Analysis of this fraction by sodium dodecyl sulfate gel electrophoresis revealed only one band with a Mr of 48,000. Polyclonal antibodies were raised against the Mr 59,000 and 48,000 polypeptides. The anti-Mr 59,000 antibody affected the primase activity only marginally, whereas the anti-Mr 48,000 antibody inhibited the primase activity nearly completely. UV cross-linking of the DNA polymerase alpha-primase complex with alpha-32P-labeled GTP revealed a binding site at the Mr 48,000 polypeptide, but none at the other subunits of the complex. Taken together, these results suggest that the Mr 48,000 polypeptide bears the active site of the DNA primase activity. The Mr 59,000 polypeptide stabilizes the primase activity.  相似文献   

8.
It has been shown that DNA primase activity is tightly associated with 10S DNA polymerase alpha from calf thymus (Yoshida, S. et al. (1983) Biochim. Biophys. Acta 741, 348-357). In the present study, the primase activity was separated from DNA polymerase alpha by treating purified 10S DNA polymerase alpha with 3.4 M urea followed by a fast column chromatography (Pharmacia FPLC, Mono Q column equilibrated with 2 M urea). Ten to 20 % of the primase activity was separated from 10S DNA polymerase alpha by this procedure but 80-90% remained in the complex. The separated primase activity sedimented at 5.6S through a gradient of glycerol. The separated primase was strongly inhibited by araATP (Ki = 10 microM) and was also sensitive to salts such as KCl (50% inhibition at 30 mM). The primase used poly(dT) or poly(dC) as templates efficiently, but showed little activity with poly(dA) or poly(dI). These properties agree well with those of the primase activity in the DNA polymerase alpha-primase complex (10S DNA polymerase alpha). These results indicate that the calf thymus primase may be a part of the 10S DNA polymerase alpha and its enzymological characters are preserved after separation from the complex.  相似文献   

9.
A novel DNA primase activity has been identified in HeLa cells infected with herpes simplex virus type 1 (HSV-1). Such an activity has not been detected in mock-infected cells. The primase activity coeluted with a portion of HSV-1 DNA polymerase from single-stranded DNA agarose columns loaded with high-salt extracts derived from infected cells. This DNA primase activity could be distinguished from host HeLa cell DNA primase by several criteria. First, the pH optimum of the HSV primase was relatively broad and peaked at 8.2 to 8.7 pH units. In contrast, the pH optimum of the HeLa DNA primase was very sharp and fell between pH 7.9 and 8.2. Second, freshly isolated HSV DNA primase was less salt sensitive than the HeLa primase and was eluted from single-stranded DNA agarose at higher salt concentrations than the host primase. Third, antibodies raised against individual peptides of the calf thymus DNA polymerase:primase complex cross-reacted with the HeLa primase but did not react with the HSV DNA primase. Fourth, freshly prepared HSV DNA primase appeared to be associated with the HSV polymerase, but after storage at 4 degrees C for several weeks, the DNA primase separated from the viral DNA polymerase. Separation or decoupling could also be achieved by gel filtration of the HSV polymerase:primase. This free DNA primase had an apparent molecular size of approximately 40 kilodaltons, whereas free HeLa DNA primase had an apparent molecular size of approximately 110 kilodaltons. On the basis of these data, we believe that the novel DNA primase activity in HSV-infected cells may be virus coded and that this enzyme represents a new and important function involved in the replication of HSV DNA.  相似文献   

10.
DNA polymerase epsilon, formerly known as a proliferating cell nuclear antigen-independent form of DNA polymerase delta, has been shown elsewhere to be catalytically and structurally distinct from DNA polymerase delta. The catalytic activity of HeLa DNA polymerase epsilon, an enzyme consisting of greater than 200- and 55-kDa polypeptides, was assigned to the larger polypeptide by polymerase trap reaction. This catalytic polypeptide was cleaved by incubation with trypsin into two polypeptide fragments with molecular masses of 122 and 136 kDa, the former of which was relatively resistant to further proteolysis and possessed the polymerase activity. The cleavage increased the polymerase and exonuclease activities of the enzyme some 2-3-fold. DNA polymerase epsilon was also purified in a smaller 140-kDa form from calf thymus. The digestion of this form of the enzyme by trypsin also generated a 122-kDa polypeptide. These results suggest that the catalytic core of DNA polymerase epsilon is a 258-kDa polypeptide that is composed of two segments linked with a protease-sensitive area. One of the segments harbors both DNA polymerase and 3'----5' exonuclease activities. In spite of the different polypeptide structures, the catalytic properties of the HeLa enzyme, its trypsin-digested form, and the calf thymus enzyme remained essentially the same.  相似文献   

11.
Using specific antibodies against calf thymus DNA ligases I and II (EC 6.5.1.1), we have investigated the polypeptide structures of DNA ligases I and II present in the impure enzyme preparations, and estimated the polypeptides of DNA ligases I and II present in vivo. Immunoblot analysis of DNA ligase I after sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a 130-kDa polypeptide as a major one in the enzyme preparations from calf thymus throughout the purification. In addition to the 130-kDa polypeptide, a 200-kDa polypeptide was detected in the enzyme preparations at the earlier steps of the purification, and a 90-kDa polypeptide was observed as a minor one in the enzyme preparations at the later steps of the purification. The polypeptides with molecular weight of 130 000 and 90 000 were detected by SDS-polyacrylamide gel electrophoresis of DNA ligase I-[3H]AMP complex. These results suggest that a 200-kDa polypeptide of DNA ligase I present in vivo is degraded to a 130-kDa polypeptide and then to a 90-kDa polypeptide during the isolation and purification procedures. On the other hand, the monospecific antibody against calf thymus DNA ligase II cross-reacted with only a 68 kDa polypeptide in the enzyme preparations throughout the purification, suggesting that the 68-kDa polypeptide is a single form of calf thymus DNA ligase II present in vivo as well as in vitro.  相似文献   

12.
The DNA polymerase alpha-DNA primase complex was purified over 17,000-fold to near homogeneity from calf thymus using an immunoaffinity column. Sodium dodecyl sulfate gel electrophoresis revealed three polypeptides with molecular weights of 140, 50 and 47 kDa, in a ratio of 1:2:0.25. The complex showed a sedimentation coefficient of 9.7 S, a Stokes radius of 56 A and a native molecular weight of 250-260 kDa. Taken together, the data suggest that the calf thymus dNA polymerase alpha-DNA primase complex is essentially a heterotrimer of large (140 kDa) and small (50 kDa) subunits in a ratio of 1:2, with a globular conformation. Electron-microscopic studies of the complex revealed a spherical particle of 120 A in diameter, in agreement with the physiochemical results. The binding of the complex to DNA was also demonstrated.  相似文献   

13.
Human placenta and calf thymus DNA-polymerase-alpha-primases were analyzed using native gradient-polyacrylamide-gel electrophoresis followed by overlay assays of polymerase and primase activities. The human enzyme contained three catalytically active native forms of 330, 440 and 560 kDa and the bovine enzyme five forms of 330, 440, 500, 590 and 660 kDa. Of the various DNA polymerase forms, only the largest (560 kDa for human DNA polymerase and 590 kDa and 660 kDa for bovine DNA polymerase) contained primase activity. Titration of human DNA-polymerase-alpha-primase with DNA-polymerase-free primase caused the conversion of the 440-kDa to the 560-kDa form. The data favour the idea that primase binds to DNA polymerase alpha as an oligomer of 3 primases/polymerase core. In addition, the ability of primase to utilize oligoriboadenylates containing (prA)n or pp(prA)n was investigated. The primase elongated pp(prA)2-7 up to nanoadenylates or decaadenylates, but did not add 9 or 10 mononucleotides to a preexistent primer. In contrast to pp(prA)n less than 10, (prA)n less than 10 were rather poor primers for the primase. Both pp(prA)8,9 and (prA)n greater than 10 were elongated by primase, producing characteristic multimeric oligonucleotides. The possible connection of the structure of the DNA-polymerase-alpha-primase complex with the catalytical properties of primase is discussed.  相似文献   

14.
Complex, multiprotein forms of bovine (calf thymus), hamster (Chinese hamster ovary cell), and human (HeLa) cell DNA polymerase alpha (Pol alpha) were analyzed for their content of calmodulin-binding proteins. The approach used an established autoradiographic technique employing 125I-labeled calmodulin to probe proteins in denaturing SDS-polyacrylamide gel electropherograms. All three Pol alpha enzymes were associated with discrete, Ca2+-dependent calmodulin-binding proteins. Conventionally purified calf thymus Pol alpha holoenzyme contained three prominent, trifluoperazine-sensitive species with apparent molecular masses of approx. 120, 80 and 48 kDa. The 120 and 48 kDa species remained associated with the polymerase.primase core of the calf enzyme during immunopurification with monoclonal antibodies directed specifically against the polymerase subunit. The patterns of the calmodulin-binding proteins displayed by conventionally purified preparations of hamster and human Pol alpha enzymes were similar to each other and distinctly different from the pattern of comparable preparations of calf thymus Pol alpha. Immunopurified preparations of the human and hamster Pol alphas retained significant calmodulin-binding activity of apparent molecular masses of approx. 55, 80 and 150-200 kDa.  相似文献   

15.
DNA primase activity has been resolved from a purified DNA primase-polymerase alpha complex of HeLa cells by hydrophobic affinity chromatography on phenylSepharose followed by chromatography on hexylagarose. This procedure provides a good yield (55%) of DNA primase that is free from polymerase alpha. The free DNA primase activity was purified to near homogeneity and its properties characterized. Sodium dodecyl sulfate polyacrylamide gel electrophoretic analysis of the purified free DNA primase showed a major protein staining band of Mr 70,000. The native enzyme in velocity sedimentation has an S20'W of 5. DNA primase synthesizes RNA oligomers with single-stranded M-13 DNA, poly(dT) and poly(dC) templates that are elongated by the DNA polymerase alpha in a manner that has already been described for several purified eukaryotic DNA primase-polymerase alpha complexes. The purified free DNA primase activity is resistant to neutralizing anti-human DNA polymerase alpha antibodies, BuPdGTP and aphidicolin that specifically inhibit the free DNA polymerase alpha and also DNA polymerase alpha complexed with the primase. The free primase activity is more sensitive to monovalent salt concentrations and is more labile than polymerase alpha. Taken together these results indicate that the DNA primase and polymerase alpha activities of the DNA primase-polymerase alpha complex reside on separate polypeptides that associate tightly through hydrophobic interactions.  相似文献   

16.
We have purified yeast DNA polymerase II to near homogeneity as a 145-kDa polypeptide. During the course of this purification we have detected and purified a novel form of DNA polymerase II that we designate as DNA polymerase II. The most highly purified preparations of DNA polymerase II are composed of polypeptides with molecular masses of 200, 80, 34, 30, and 29 kDa. Immunological analysis and peptide mapping of DNA polymerase II and the 200-kDa subunit of DNA polymerase II indicate that the 145-kDa DNA polymerase II polypeptide is derived from the 200-kDa polypeptide of DNA polymerase II. Activity gel analysis shows that the 145- and the 200-kDa polypeptides have catalytic function. The polypeptides present in the DNA polymerase II preparation copurify with the polymerase activity with a constant relative stoichiometry during chromatography over five columns and co-sediment with the activity during glycerol gradient centrifugation, suggesting that this complex may be a holoenzyme form of DNA polymerase II. Both forms of DNA polymerase II possess a 3'-5' exonuclease activity that remains tightly associated with the polymerase activity during purification. DNA polymerase II is similar to the proliferating cell nuclear antigen (PCNA)-independent form of mammalian DNA polymerase delta in its resistance to butylpheny-dGTP, template specificity, stimulation of polymerase and exonuclease activity by KCl, and high processivity. Although calf thymus PCNA does not stimulate the activity of DNA polymerase II on poly(dA):oligo(dT), possibly due to the limited length of the template, the high processivity of yeast DNA polymerase II on this template can be further increased by the addition of PCNA, suggesting that conditions may exist for interactions between PCNA and yeast DNA polymerase II.  相似文献   

17.
DNA polymerase I and DNA primase complex in yeast   总被引:10,自引:0,他引:10  
Chromatographic analysis of poly(dT) replication activity in fresh yeast extracts showed that the activities required co-fractionate with the yeast DNA polymerase I. Since poly(dT) replication requires both a primase and a DNA polymerase, the results of the fractionation studies suggest that these two enzymes might exist as a complex in the yeast extract. Sucrose gradient analysis of concentrated purified yeast DNA polymerase I preparations demonstrates that the yeast DNA polymerase I does sediment as a complex with DNA primase activity. Two DNA polymerase I peptides estimated at 78,000 and 140,000 Da were found in the complex that were absent from the primase-free DNA polymerase fraction. Rabbit anti-yeast DNA polymerase I antibody inhibits DNA polymerase I but not DNA primase although rabbit antibodies are shown to remove DNA primase activity from solution by binding to the complex. Mouse monoclonal antibody to yeast DNA polymerase I binds to free yeast DNA polymerase I as well as the complex, but not to the free DNA primase activity. These results suggest that these two activities exist as a complex and reside on the different polypeptides. Replication of poly(dT) and single-stranded circular phage DNA by yeast DNA polymerase I and primase requires ATP and dNTPs. The size of the primer produced is 8 to 9 nucleotides in the presence of dNTPs and somewhat larger in the absence of dNTPs. Aphidicolin, an inhibitor of yeast DNA polymerase I, is not inhibitory to the yeast DNA primase activity. The primase activity is inhibited by adenosine 5'-(3-thio)tri-phosphate but not by alpha-amanitin. The association of yeast DNA polymerase I and yeast DNA primase can be demonstrated directly by isolation of the complex on a column containing yeast DNA polymerase I mouse monoclonal antibody covalently linked to Protein A-Sepharose. Both DNA polymerase I and DNA primase activities are retained by the column and can be eluted with 3.5 M MgCl2. Part of the primase activity can be dissociated from DNA polymerase on the column with 1 M MgCl2 and this free primase activity can be detected as poly(dT) replication activity in the presence of Escherichia coli polymerase I.  相似文献   

18.
The DNA polymerase α-DNA primase complex was purified over 17 000-fold to near homogeneity from calf thymus using an immunoaffinity column. Sodium dodecyl sulfate gel electrophoresis revealed three polypeptides with molecular weights of 140, 50 and 47 kDa, in a ratio of 1:2:0.25. The complex showed a sedimentation coefficient of 9.7 S, a Stokes radius of 56 Å and a native molecular weight of 250–260 kDa. Taken together, the data suggest that the calf thymus dNA polymerase α-DNA primase complex is essentially a heterotrimer of large (140 kDa) and small (50 kDa) subunits in a ratio of 1:2, with a globular conformation. Electron-microscopic studies of the complex revealed a spherical particle of 120 Å in diameter, in agreement with the physicochemical results. The binding of the complex to DNA was also demonstrated.  相似文献   

19.
A panel of murine hybridoma cell lines which produce antibodies against polypeptides present in human placental DNA polymerase delta preparations was developed. Eight of these antibodies were characterized by virtue of their ability to inhibit DNA polymerase delta activity and immunoblot the 170-kDa catalytic polypeptide. Six of these eight antibodies inhibit DNA polymerase delta but not DNA polymerase alpha, showing that the two proteins are distinct. However, the other two monoclonal antibodies inhibited both DNA polymerase delta and alpha activities, providing the first evidence that these two proteins have a structural relationship. In addition to antibodies against the catalytic polypeptide we also identified 11 antibodies which recognize 120-, 100-, 88-, 75-, 62-, 36-, and 22-kDa polypeptides in DNA polymerase delta preparations, suggesting that these proteins might be part of a replication complex. The antibody to the 36-kDa polypeptide was shown to be directed against proliferating cell nuclear antigen/cyclin. These antibodies should prove useful for studies aimed at distinguishing between DNA polymerases alpha and delta and for the investigation of the functional roles of DNA polymerase delta polypeptides.  相似文献   

20.
DNA primase associated with 10 S DNA polymerase alpha from calf thymus   总被引:2,自引:0,他引:2  
Among multiple subspecies of DNA polymerase alpha of calf thymus, only 10 S DNA polymerase alpha had a capacity to initiate DNA synthesis on an unprimed single-stranded, circular M13 phage DNA in the presence of ribonucleoside triphosphates (DNA primase activity). The primase was copurified with 10 S DNA polymerase alpha through the purification and both activities cosedimented at 10 S through gradients of either sucrose or glycerol. Furthermore, these two activities were immunoprecipitated at a similar efficiency by a monoclonal antibody directed against calf thymus DNA polymerase alpha. These results indicate that the primase is tightly bound to 10 S DNA polymerase alpha. The RNA polymerizing activity was resistant to alpha-amanitin, required high concentration of all four ribonucleoside triphosphates (800 microM) for its maximal activity, and produced the limited length of oligonucleotides (around 10 nucleotides long) which were necessary to serve as a primer for DNA synthesis. Covalent bonding to RNA to DNA was strongly suggested by the nearest neighbour frequency analysis and the DNAase treatment. The DNA synthesis primed by the RNA oligomers may be carried out by the associating DNA polymerase alpha because it was strongly inhibited by araCTP, resistant to d2TTP, and was also inhibited by aphidicolin but at relatively high concentration. The primase preferred single-stranded DNA as a template, but it also showed an activity on the double-stranded DNA from calf thymus at an efficiency of approx. 10% of that with single-stranded DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号