首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Feces were collected from six Steller sea lions ( Eumetopias jubatus ) that consumed known amounts of Atka mackerel ( Pleurogrammus monopterygius ), Pacific herring ( Clupea barengus ), pink salmon ( Oncorhynchus gorbuscha ), walleye pollock ( Theragra chalcogramma ), and squid ( Loligo opalacens ). The goal was to determine the numbers and types of taxon-specific hard parts that pass through the digestive tract and to develop correction factors for certain abundantly occurring structures. Over 20,000 fish and squid were consumed during 267 d of fecal collection. During this period, over 119,000 taxon-specific hard parts, representing 56 different structures, were recovered. Skeletal structures and non-skeletal structures accounted for 72% and 28% of all hard parts, respectively. The branchiocranium, axial skeleton, and dermocranium regions of the skeletal system accounted for the greatest number of hard parts recovered. Over 70% of all recovered hard parts were represented by one to six taxa specific structures for each prey type. The average number of hard parts (3.1–31.2) and structure types (2.0–17.7) recovered per individual prey varied across taxa and were used to derive correction factors (to reconstruct original prey numbers). A measure of the variability of hard part recovery among sea lions showed no difference for certain herring, pollock, and squid structures, however, there was a significant difference for salmon and Atka mackerel structures. Identifying all taxon- specific prey hard parts increases the likelihood of identifying and estimating the number of prey consumed.  相似文献   

2.
Aim We used a novel approach to infer foraging areas of a central‐place forager, the Steller sea lion (Eumetopias jubatus), by assessing changes in the temporal and spatial distribution patterns of sea lions at terrestrial sites. Specifically, our objectives were (1) to classify seasonal distribution patterns of Steller sea lions and (2) to determine to what extent the seasonal distribution of Steller sea lions is explained by seasonal concentrations of prey. Location Southeast Alaska, USA. Methods Steller sea lions of all age classes were counted monthly (2001–04) by aerial surveys at 28 terrestrial sites. Hierarchical cluster analysis and principal components analysis were used to classify seasonal distribution patterns of Steller sea lions at these terrestrial sites. We estimated the proportion of sea lions in the study area that were associated with each seasonal distribution pattern. Results Multivariate ordination techniques revealed four distinct seasonal distributional patterns. During December, 55% of the sea lions in the study area were found at Type 1 sites, located near over‐wintering herring aggregations. During May, 56% of sea lions were found at Type 2 sites, near aggregations of spring‐spawning forage fish. In July, 78% of sea lions were found at Type 3 sites, near summer migratory corridors of salmon. During September, 44% of sea lions were found at Type 4 sites, near autumn migratory corridors of salmon. Main conclusions Seasonal attendance patterns of sea lions were commonly associated with the seasonal availability of prey species near terrestrial sites and reflected seasonal foraging patterns of Steller sea lions in Southeast Alaska. A reasonable annual foraging strategy for Steller sea lions is to forage on herring (Clupea pallasii) aggregations in winter, spawning aggregations of forage fish in spring, salmon (Oncorhynchus spp.) in summer and autumn, and pollock (Theragra chalcogramma) and Pacific hake (Merluccius productus) throughout the year. The seasonal use of haulouts by sea lions and ultimately haulout‐specific foraging patterns of Steller sea lions depend in part upon seasonally available prey species in each region.  相似文献   

3.
A leading hypothesis to explain the dramatic decline of Steller sea lions (Eumetopias jubatus) in western Alaska during the latter part of the 20th century is a change in prey availability due to commercial fisheries. We tested this hypothesis by exploring the relationships between sea lion population trends, fishery catches, and the prey biomass accessible to sea lions around 33 rookeries between 2000 and 2008. We focused on three commercially important species that have dominated the sea lion diet during the population decline: walleye pollock, Pacific cod and Atka mackerel. We estimated available prey biomass by removing fishery catches from predicted prey biomass distributions in the Aleutian Islands, Bering Sea and Gulf of Alaska; and modelled the likelihood of sea lions foraging at different distances from rookeries (accessibility) using satellite telemetry locations of tracked animals. We combined this accessibility model with the prey distributions to estimate the prey biomass accessible to sea lions by rookery. For each rookery, we compared sea lion population change to accessible prey biomass. Of 304 comparisons, we found 3 statistically significant relationships, all suggesting that sea lion populations increased with increasing prey accessibility. Given that the majority of comparisons showed no significant effect, it seems unlikely that the availability of pollock, cod or Atka mackerel was limiting sea lion populations in the 2000s.  相似文献   

4.
Seven prey species ( n total > 2,700) were fed to seven captive male Pacific harbor seals ( Phoca vitulina richardii ) in 177 experimental meals to quantify biases associated with scat analysis and current consumption models. Hard parts from an individual meal were recovered in an average of 3.8 ± 1.8 scats (range 1–10; mean ± SD). Overall, 57.7 ± 33.2% of otoliths and 89.5 ± 15.5% of squid beaks were recovered. Recovery rates varied, and prey with smaller, fragile otoliths were recovered in lesser quantities than prey with larger, robust otoliths. Recovery rates of all prey except pink salmon were improved by a mean of 31.7% when all diagnostic structures were included in estimates. Estimated recovery of pink salmon was 9.5 times that fed seals based on the all-structure technique. Mean length reduction of recovered otoliths was 20.4 ± 10.1%. Correction factors calculated from average length reduction improved length estimates for all fish species. Grade-specific length correction factors (gLCFs) reduced variability in all of the estimates and significantly improved estimates of prey with highly eroded otoliths including Pacific hake and shortbelly rockfish. The Biomass Reconstruction (BR) model accurately predicted biomass consumption within 4% of known consumption, whereas estimates based on frequency of occurrence were inaccurate.  相似文献   

5.
Reconstructing the diets of pinnipeds by visually identifying prey remains recovered in faecal samples is challenging because of differences in digestion and passage rates of hard parts. Analysing the soft-matrix of faecal material using DNA-based techniques is an alternative means to identify prey species consumed, but published techniques are largely nonquantitative, which limits their usefulness for some applications. We further developed and validated a real-time PCR technique using species-specific mitochondrial DNA primers to quantify the proportion of prey in the diets of Steller sea lions (Eumetopias jubatus), a pinniped species thought to be facing significant diet related challenges in the North Pacific. We first demonstrated that the proportions of prey tissue DNA in mixtures of DNA isolated from four prey species could be estimated within a margin of ~ 12% of the percent in the mix. These prey species included herring Clupea palasii, eulachon Thaleichthyes pacificus, squid Loligo opalescens and rosethorn rockfish Sebastes helvomaculatus. We then applied real-time PCR to DNA extracted from faecal samples obtained from Steller sea lions in captivity that were fed 11 different combinations of herring, eulachon, squid and Pacific ocean perch rockfish (Sebastes alutus), ranging from 7% to 75% contributions per meal (by wet weight). The difference between the average percentage estimated by real-time PCR and the percentage of prey consumed was generally <12% for all diets fed. Our findings indicate that real-time PCR of faecal DNA can detect the approximate relative quantity of prey consumed for complex diets and prey species, including cephalopods and fish.  相似文献   

6.
The DNA of prey present in animal scats may provide a valuable source of information for dietary studies. We conducted a captive feeding trial to test whether prey DNA could be reliably detected in scat samples from Steller sea lions (Eumetopias jubatus). Two sea lions were fed a diet of fish (five species) and squid (one species), and DNA was extracted from the soft component of collected scats. Most of the DNA obtained came from the predator, but prey DNA could be amplified using prey-specific primers. The four prey species fed in consistent daily proportions throughout the trial were detected in more than 90% of the scat DNA extractions. Squid and sockeye salmon, which were fed as a relatively small percentage of the daily diet, were detected as reliably as the more abundant diet items. Prey detection was erratic in scats collected when the daily diet was fed in two meals that differed in prey composition, suggesting that prey DNA is passed in meal specific pulses. Prey items that were removed from the diet following one day of feeding were only detected in scats collected within 48 h of ingestion. Proportions of fish DNA present in eight scat samples (evaluated through the screening of clone libraries) were roughly proportional to the mass of prey items consumed, raising the possibility that DNA quantification methods could provide semi-quantitative diet composition data. This study should be of broad interest to researchers studying diet since it highlights an approach that can accurately identify prey species and is not dependent on prey hard parts surviving digestion.  相似文献   

7.
Killer whales ( Orcinus orca ) feed on a wide variety of fish, cephalopods, and marine mammals throughout their cosmopolitan range; however, the dietary breadth that characterizes the species is not reflected in all populations. Here, we present the findings of a 14-yr study of the diet and feeding habits of killer whales in Prince William Sound, Alaska. Two non-associating forms of killer whale, termed resident and transient (Bigg et al. 1987), were identified. All prey seen taken by transients were marine mammals, including harbor seals ( Phoca vitulina ), Dall's porpoises ( Phocoenoides dalli ), Steller sea lions ( Eumetopias jubatus ), and harbor porpoises ( Phocoena phocoena ). Resident killer whales appeared to prey principally on salmon ( Oncorhynchus spp.), preferring coho salmon ( O. kisutch ) over other, more abundant salmon species. Pacific herring ( Clupea pallasi ) and Pacific halibut ( Hippocampus stenolepis ) were also taken. Resident killer whales frequently were seen to interact in non-predatory ways with Steller sea lions and Dall's porpoises, while transients were not. Differences in the social organization and behavior of the resident and transient killer whales in Prince William Sound are discussed in the light of the dietary differences documented here.  相似文献   

8.
Pinnipeds generally target relatively small prey that can be swallowed whole, yet often include larger prey in their diet. To eat large prey, they must first process it into pieces small enough to swallow. In this study we explored the range of prey‐processing behaviors used by Australian sea lions (Neophoca cinerea) when presented with large prey during captive feeding trials. The most common methods were chewing using the teeth, shaking prey at the surface, and tearing prey held between the teeth and forelimbs. Although pinnipeds do not masticate their food, we found that sea lions used chewing to create weak points in large prey to aid further processing and to prepare secured pieces of prey for swallowing. Shake feeding matches the processing behaviors observed in fur seals, but use of forelimbs for “hold and tear” feeding has not been previously reported for other otariids. When performing this processing method, prey was torn by being stretched between the teeth and forelimbs, where it was secured by being squeezed between the palms of their flippers. These results show that Australian sea lions use a broad repertoire of behaviors for prey processing, which matches the wide range of prey species in their diet.  相似文献   

9.
The behavioral and predatory patterns of Gulf of Alaska (GOA) transient killer whales ( Orcinus orca ) were studied between 2000 and 2005 using remote video and vessel-based observations near the Chiswell Island Steller sea lion ( Eumetopias jubatus ) rookery and in the broader Kenai Fjords (KF) region of the northern GOA. GOA transient killer whales were observed on 118 d over the 6-yr period; the median group size was two (range: 1–9). Nine predation events were observed from vessels and an additional sixteen were inferred from remote video studies; all involved Steller sea lions. Estimates from field observations suggest that fifty-nine sea lions were consumed over the summer seasons of 2002–2005; whereas estimates based on published caloric requirements of transient killer whales would suggest a loss of 103 sea lions over the same time period. GOA transients spent a large proportion (43%) of their time resting which may be a strategy for conserving energy. Predation on sea lion pups at the Chiswell Island rookery was greatest during years when a single killer whale was foraging alone and when a 1.5-yr-old calf was evidently being trained to handle prey. Predation on pups was low during years when killer whales were foraging in groups and were observed and presumed to be taking mostly juvenile sea lions. Our study suggests that GOA transients are having a minor effect on the recovery of Steller sea lions in the GOA.  相似文献   

10.
We examined the digestion and passage times of bones and other hard parts from pollock, herring, salmon, and sandlance recovered from two juvenile captive Steller's sea lions ( Eumetopias jubatus ) subjected to varying activity levels. Key bones that could be identified to species were distributed over an average of 3.2 scats (range 1–6) following a single meal, with pollock remains occurring in significantly more scats than other species. Relying on otoliths alone to determine the presence of prey resulted in significantly fewer prey being identified than if other structures were also used (such as vertebrae, jaw bones, and teeth), particularly for salmon. Using either technique, there were significant differences in the likelihood that bones would be recovered from the series of scats produced following a meal, with pollock recovery exceeding herring (by three-fold) and sandlance (by eight-fold). Differences between species were reduced when recovery was calculated on a per scat basis rather than over multiple scats. Active animals passed greater numbers of bones, but the overall effect on prey recovery estimates was not significant. Defecation times of prey structures from a meal were variable and ranged from an initial 2–56 h to a final 28–148 h. The time interval to pass 95% of recovered structutes varied by a factor of two among prey species, and was highest for pollock due to retention beyond 65 h.  相似文献   

11.
Synopsis Stomach contents of juvenile coho,Oncorhynchus kisutch, and chinook,O. tshawytscha, salmon collected in purse seines off the coast of Washington and Oregon were examined for variations related to predator size. There was a general trend toward increasing consumption of fish with increasing body size, due mainly to the increase in northern anchovy biomass consumed by the larger salmon. Most of the major prey taxa showed significant differences among the size classes examined for both salmon species. There was a direct relationship between predator and prey size for both coho and chinook, but considerable variation was found in prey length consumed within each size class. Prey width did not provide as good a fit as prey length for either species. In general, coho consumed larger fish prey in relation to their body length than chinook but there were substantial differences by month or year of collection.  相似文献   

12.
Feeding preferences of Celtic Sea fishes were investigated using a database of stomach content records, collected between 1977 and 1994. The diet of cod Gadus morhua, hake Merluccius merluccius, megrim Lepidorhombus whiffiagonis, whiting Merlangius merlangus and saithe Pollachius virens changed markedly as the animals grew larger, and although large predators generally chose larger bodied prey, the variability of prey sizes consumed also increased. Large predators continued to select small, low value, benthic prey (e.g. Callionymus spp. and Trisopterus spp.) which were easier to catch, rather than larger, more energy lucrative pelagic prey (e.g. mackerel Scomber scombrus), even though these pelagic prey‐fishes were nearly always available and were often very abundant. Stock estimates of the International Council for the Exploration of the Sea and U.K. groundfish survey catches were used as indices of prey abundance. Blue‐whiting Micromesistius poutassou and other small pelagic fishes (Argentina spp. and clupeoids) were identified as being particularly important, and were consumed by some predators more often than would be expected given the abundance of these prey in the environment. There was no evidence for density‐dependent feeding by predators on mackerel and only hake exhibited density‐dependent feeding on horse‐mackerel. Hake, cod and megrim consumed more blue‐whiting when this prey was at higher abundance in the environment. In choosing what prey to consume, predators must balance costs and benefits, considering the quality of prey and the energy expended during search, capture and handling.  相似文献   

13.
Impact of changing diet regimes on Steller sea lion body condition   总被引:1,自引:0,他引:1  
A leading theory for the cause of the decline of Steller sea lions is nutritional stress, which led to chronic high juvenile mortality and possibly episodic adult mortality. Nutritional stress may have resulted from either poor quality or low abundance of prey. The objective of this study was to determine whether we could predict shifts in body condition (i.e., body mass or body fat content) over different seasons associated with a change in diet (i.e., toward lower quality prey). Captive Steller sea lions (n= 3) were fed three different diet regimes, where Diet 1 approximated the diet in the Kodiak area in the 1970s prior to the documented decline in that area, Diet 2 approximated the species composition in the Kodiak area after the decline had begun, and Diet 3 approximated the diet in southeast Alaska where the Steller sea lion population has been increasing for over 25 yr. All the animals used in this study were still growing and gained mass regardless of diet. Body fat (%) varied between 13% and 28%, but was not consistently high or low for any diet regime or season. Mean intake (in kg) of Diet 2 was significantly greater for all sea lions during all seasons. All animals did, however, tend to gain less body mass on Diets 2 and 3, as well as during the breeding and postbreeding seasons. They also tended to gain more mass during the winter and on Diet 1, though these differences were not statistically significant. Thus, changing seasonal physiology of Steller sea lions appears to have more impact on body condition than quality of prey, provided sufficient quantity of prey is available. Steller sea lions are opportunistic predators and are evidently able to thrive on a variety of prey. Our results indicate that Steller sea lions are capable of compensating for prey of low quality.  相似文献   

14.
Intraspecific variability in foraging behavior has been documented across a range of taxonomic groups, yet the energetic consequences of this variation are not well understood for many species. Understanding the effect of behavioral variation on energy expenditure and acquisition is particularly crucial for mammalian carnivores because they have high energy requirements that place considerable pressure on prey populations. To determine the influence of behavior on energy expenditure and balance, we combined simultaneous measurements of at‐sea field metabolic rate (FMR) and foraging behavior in a marine carnivore that exhibits intraspecific behavioral variation, the California sea lion (Zalophus californianus). Sea lions exhibited variability in at‐sea FMR, with some individuals expending energy at a maximum of twice the rate of others. This variation was in part attributable to differences in diving behavior that may have been reflective of diet; however, this was only true for sea lions using a foraging strategy consisting of epipelagic (<200 m within the water column) and benthic dives. In contrast, sea lions that used a deep‐diving foraging strategy all had similar values of at‐sea FMR that were unrelated to diving behavior. Energy intake did not differ between foraging strategies and was unrelated to energy expenditure. Our findings suggest that energy expenditure in California sea lions may be influenced by interactions between diet and oxygen conservation strategies. There were no apparent energetic trade‐offs between foraging strategies, although there was preliminary evidence that foraging strategies may differ in their variability in energy balance. The energetic consequences of behavioral variation may influence the reproductive success of female sea lions and result in differential impacts of individuals on prey populations. These findings highlight the importance of quantifying the relationships between energy expenditure and foraging behavior in other carnivores for studies addressing fundamental and applied physiological and ecological questions.  相似文献   

15.
Pacific sleeper sharks Somniosus pacificus were captured near Steller sea lion Eumetopias jubatus rookeries during the period when Steller sea lion pups are most vulnerable to Pacific sleeper shark predation (first water entrance and weaning). Analysis of stomach contents revealed that teleosts were the dominant prey in August and cephalopods were the dominant prey in May ( n = 198). Marine mammals were found in 15% of stomachs regardless of season, but no Steller sea lion tissues were detected. Molecular genetic analysis identified grey whale Eschrichtius robustus and harbour seal Phoca vitulina remains in some Pacific sleeper shark stomachs. Most mammals were cetacean and at least 70% of the cetaceans were probably scavenged. Although Pacific sleeper shark and Steller sea lion ranges overlapped, so predation could potentially occur, the diet study suggested that predation on Steller sea lions is unlikely, at least when pups first enter the water or during weaning. Harbour seals were infrequent prey and may have been consumed alive. Pacific sleeper sharks consume fast-swimming prey like Pacific salmon Oncorhynchus sp., most likely live animals rather than scavenged animals. Pacific sleeper sharks appeared to be opportunistic consumers of the available prey and carrion, feeding both on the bottom and in the water column, and their diet shifted to teleosts and cetacean carrion as the fish grew larger.  相似文献   

16.
  • 1 Numbers of Steller sea lions Eumetopias jubatus in the North Pacific have declined. According to the nutritional stress hypothesis, this decline is due to reduced food availability. Data from studies conducted on pinnipeds in the laboratory are used here to test if the nutritional stress hypothesis can explain the decline of Steller sea lions.
  • 2 Overall, there is strong evidence for biologically meaningful differences in the nutritional quality of major prey species. Steller sea lions can partly compensate for low‐quality prey by increasing their food consumption.
  • 3 There appear to be no detrimental effects of low‐lipid prey on sea lion growth or body composition when sea lions can consume sufficient quantities of prey. However, the ability to increase consumption is physiologically limited, particularly in young animals. Overall, it is more difficult to maintain energy intake on a diet of low‐quality prey than on a normal diet.
  • 4 Under conditions of inadequate food intake (either due to decreased prey availability or quality, or increased energy requirements) the overall impacts of nutritional stress are complex, and are dependent upon season, prey quality, age and the duration and intensity of the nutritional stress event.
  • 5 Studies on pinnipeds in the laboratory have been instrumental in identifying the conditions under which changes in sea lion prey can result in nutritional stress and the nature of the physiological impacts of nutritional stress events.
  相似文献   

17.
18.
Predation and food consumption of five deep‐sea fish species living below 1000 m depth in the western Mediterranean Sea were analysed to identify the feeding patterns and food requirements of a deep‐sea fish assemblage. A feeding rhythm was observed for Risso's smooth‐head Alepocephalus rostratus, Mediterranean grenadier Coryphaenoides mediterraeus and Mediterranean codling Lepidion lepidion. Differences in the patterns of the prey consumed suggest that feeding rhythms at such depths are linked with prey availability. The diets of those predators with feeding rhythms are based principally on active‐swimmer prey, including pelagic prey known to perform vertical migrations. The diets of Günther's grenadier Coryphaenoides guentheri and smallmouth spiny eel Polyacanthonotus rissoanus, which did not show any rhythm in their feeding patterns, are based mainly on benthic prey. Food consumption estimates were low (<1% of body wet mass day?1). Pelagic feeding species showing diel feeding rhythms consumed more food than benthic feeding species with no feeding rhythms.  相似文献   

19.
Diet composition in pinnipeds is widely estimated using hard prey remains recovered from feces. To estimate the size and number of prey represented in fecal samples accurately, digestion correction factors (DCFs) must be applied to measurements and counts of fish otoliths and cephalopod beaks. In this study, 101 whole prey feeding trials were conducted with six harbor seals (Phoca vitulina) and 18 prey species. We derived species‐ and grade‐specific estimates of digestion coefficients (DCs) and species‐specific recovery rates (RRs) to account for partial and complete digestion, respectively. Greater than 98% of otoliths were passed within three days of consumption. RRs were smallest for Atlantic salmon smolts (RR = 0.306, SE = 0.031) and increasingly larger for sandeels (RR = 0.494, SE = 0.017), flatfish (RR = 0.789, SE = 0.033), and large gadoids (RR = 0.944, SE = 0.034). Species‐specific otolith width DCs were smallest for Trisopterus species (DC = 1.14, SE = 0.015) and increasingly larger for flatfish (DC = 1.27, SE = 0.045), large gadoids (DC = 1.32, SE = 0.067) and sandeels (DC = 1.57, SE = 0.035). RRs were similar to those from gray seals (Halichoerus grypus), but harbor seal species‐ and grade‐specific DCs were generally smaller. Differences in partial and complete digestion rates among prey species and between seal species highlight the importance of applying DCFs when reconstructing diet.  相似文献   

20.
Does diet in Celtic Sea fishes reflect prey availability?   总被引:1,自引:0,他引:1  
Feeding preferences of Celtic Sea fishes were investigated using a database of stomach content records, collected between 1977 and 1994. The diet of cod Gadus morhua , hake Merluccius merluccius , megrim Lepidorhombus whiffiagonis , whiting Merlangius merlangus and saithe Pollachius virens changed markedly as the animals grew larger, and although large predators generally chose larger bodied prey, the variability of prey sizes consumed also increased. Large predators continued to select small, low value, benthic prey ( e.g . Callionymus spp. and Trisopterus spp.) which were easier to catch, rather than larger, more energy lucrative pelagic prey ( e.g . mackerel Scomber scombrus ), even though these pelagic prey‐fishes were nearly always available and were often very abundant. Stock estimates of the International Council for the Exploration of the Sea and U.K. groundfish survey catches were used as indices of prey abundance. Blue‐whiting Micromesistius poutassou and other small pelagic fishes ( Argentina spp. and clupeoids) were identified as being particularly important, and were consumed by some predators more often than would be expected given the abundance of these prey in the environment. There was no evidence for density‐dependent feeding by predators on mackerel and only hake exhibited density‐dependent feeding on horse‐mackerel. Hake, cod and megrim consumed more blue‐whiting when this prey was at higher abundance in the environment. In choosing what prey to consume, predators must balance costs and benefits, considering the quality of prey and the energy expended during search, capture and handling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号