首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enviromental conditions, including such important climatic variables as temperature and precipitation, change with altitude; thus, elevation plays a significant role in determining population and community structure in a variety of organisms. Using single nucleotide polymorphisms (SNPs) and geometric morphometrics, nine populations of Culex theileri Theobald occurring in different ecological subregions at altitudes between 808-2,130 m in northeastern Turkey were compared. The wing size and shape data indicate that there are significant phenotypic differences among them, while Cx theileri populations are not genetically differentiated in the northeast part of Turkey. The size and shape variation analysis of wings showed that there is a positive correlation between wing (body) size/shape and altitude.  相似文献   

2.
Genetic diversity was studied at allozyme loci in two Palearctic and one Nearctic population of Aedimorphus (=Aedes) vexans, a species of public health and veterinary importance. The population from Serbia was the most polymorphic (P= 35%) with the highest observed heterozygosity (Ho= 0.027). The lowest observed heterozygosity (Ho= 0.010) was obtained for the Nearctic population. All analyses based on individual (STRUCTURE analysis) and population level (pairwise FST,Nm values, AMOVA, Nei's D value) revealed significant structuring between Nearctic and Palearctic populations, indicating a lack of gene flow and thus, the presence of independent gene pools. Taxon‐specific alleles at the diagnostic Ao, Hk‐2, Hk‐3, Hk‐4, Idh‐1, and Idh‐2 loci were used for identification and separation of Nearctic and Palearctic populations. Population genetics study provided valuable information on the correct distinction of Am. vexans populations and their adaptive potential that could find a future use in the studies of vector competence and development of vector‐control strategies.  相似文献   

3.
A survey of microgeographic variation using morphometric and allozyme analyses was conducted on 19 US populations of Aedes albopictus (Skuse) (Diptera: Culicidae), a mosquito that was recently introduced into the US. There was considerable variation within and among populations both in morphometric traits and allele frequencies. A multivariate discriminant analysis enabled the separation of populations into distinct groups; separation among the populations in the morphometric analysis was incomplete with an average of 70% of the individuals being correctly classified. In the allozyme analysis, the discrimination was complete. The populations from Texas were placed close together in the morphometric analysis, whereas in the allozyme analysis a geographic clustering of populations could not be detected. A test of association between the distance matrices derived from the morphometric and allozyme analyses was statistically nonsignificant. The results are discussed in the context of the colonization of the US by A. albopictus. The possible factors underlying the differences in the patterns of variation derived from morphometric and allozyme analyses are also discussed.  相似文献   

4.
The floodwater mosquito Aedes vexans can be a massive nuisance in the flood plain areas of mainland Europe, and is the vector of Tahyna virus and a potential vector of Dirofilaria immitis. This epidemiologically important species forms three subspecies worldwide, of which Aedes vexans arabiensis has a wide distribution in Europe and Africa. We quantified the genetic and phenotypic variation in Ae. vexans arabiensis in populations from Sweden (northern Europe), Hungary, and Serbia (central Europe). A landscape genetics approach (FST, STRUCTURE, BAPS, GENELAND) revealed significant differentiation between northern and southern populations. Similar to genetic data, wing geometric morphometrics revealed two different clusters, one made by Swedish populations, while another included Hungarian and Serbian populations. Moreover, integrated genetic and morphometric data from the spatial analysis suggested groupings of populations into three clusters, one of which was from Swedish and Hungarian populations. Data on spatial analysis regarding an intermediate status of the Hungarian population was supported by observed Isolation‐by‐Distance patterns. Furthermore, a low proportion of interpopulation vs intrapopulation variance revealed by AMOVA and low‐to‐moderate FST values on a broader geographical scale indicate a continuous between‐population exchange of individuals, including considerable gene flow on the regional scale, are likely to be responsible for the maintenance of the observed population similarity in Aе. vexans. We discussed data considering population structure in the light of vector control strategies of the mosquito from public health importance.  相似文献   

5.
The single species of Aepyceros, Aepyceros melampus (impala), is native to central and southern Africa, from Uganda to South Africa. It inhabits open woodlands, sandy bush country and acacia savannah. This study tested the morphological and geographical variation among specimens of impala and their possible relation with described subspecies. Nineteen skull and horn measurements were taken. A multivariate analysis was used and size and shape were explored. Facial coat patterns were also coded. The results supported four out of five traditionally described subspecies: Aepyceros melampus petersi from Angola/Namibia, Aepyceros melampus melampus from South Africa, Aepyceros melampus suara from East Africa and Aepyceros melampus johnstoni from Zambia and Malawi. We consider Aepyceros melampus rendilis to be a synonym of suara . A revised synopsis is suggested, with comments on the geographical ranges of the subspecies. Skull dimensions also allowed us to estimate the geographical origin and subspecies of some individuals of unknown provenance. Coat patterns showed no clear relation with subspecies or geographic location, with the exception of A. m. petersi .  相似文献   

6.
Studies of altitudinal changes in phenotype and genotype can complement studies of latitudinal patterns and provide evidence of natural selection in response to climatic factors. In Drosophila melanogaster, latitudinal variation in phenotype and genotype has been well studied, but altitudinal patterns have rarely been investigated. We studied populations from six different altitudes varying between 35 m and 2173 m in the Firtina Valley in northeastern part of Turkey to evaluate clinal trends in lifespan under experimental conditions. Lifespan in the D. melanogaster populations was examined in relation to altitude, sex, temperature (25 °C and 29 °C), and dietary yeast concentration (5 g/L and 25 g/L). As expected high temperature decrease lifespan in all populations. However, it was shown that lifespan was slightly affected by dietary stress. We found that lifespan decreases significantly under thermal stress conditions with increasing altitude. Moreover, there was a slightly negative relationship between altitude and lifespan, which was closely associated with climatic factors such as temperature and precipitation, may suggest local adaptation to climate.  相似文献   

7.
The wing shape and size morphology of populations of the medically important phlebotomine sand fly, Phlebotomus papatasi, were examined in two endemic (south of the Atlas Mountains) and nonendemic (north of the Atlas Mountains) foci of cutaneous leishmaniasis by using geometric morphometrics in Morocco. Although it is present in all of Morocco, P. papatasi is the main vector of Leishmania major in only southern part of the Atlas Mountains. There are four major mountain ranges that serve as geographical barriers for species distribution in the study area and at least four gaps were recognized among these barriers. We found statistically significant differences in wing shape morphology between southern and northern populations. Analysis clearly recognized two main groups of populations on both sides of the mountains. The graphical depiction of Principal Component Analysis (PCA) and Canonical Variates Analysis (CVA) confirmed our morphometric study suggesting that the difference in wing morphology between the populations indicates that the population of P. papatasi shows phenotypic plasticity in the study area. According to centroid size analyses, which were used as measures of wing size differences among different sites, the north population of P. papatasi had relatively larger wings than the south population.  相似文献   

8.
9.
This study investigated a rapidly vanishing group of fishes in the genus Characodon (including Characodon lateralis and Characodon audax) from the upper Rio Mezquital drainage in Mexico. Using specimens from museum collections, morphological variation was assessed to quantify body shape differentiation among historic (i.e. extirpated and extant) collection sites. In both sexes, body shape (particularly head shape, the proportion of the caudal peduncle and the position and size of dorsal and anal fins) varied significantly among populations and species. Variation among collection sites could at least partially be attributed to geography, as the presence of distinct hydrographic units and a major waterfall coincided with major body shape differences. These results are discussed in the light of previously published molecular genetic analyses, as they have direct implications for taxonomic problems and the need for conservation measures for these endangered fishes.  相似文献   

10.
Four populations of the phlebotomine sandfly Phlebotomus (Phlebotomus) papatasi (Scopoli) (Diptera: Psychodidae), in different ecoregions at altitudes between 368 and 1117 m in the Sanliurfa Province of Turkey, were compared using morphometric and isoenzyme analyses. A similarity phenogram obtained from allozyme data showed that heterozygosity was extremely low, particularly for the alleles which were found to be completely fixed in populations at Hamdun (HMD) and Alitas (ALT). Populations at Akcakale (AKL) and ALT branched as a separate group from populations at Hayatiharrani (HHR) and HMD. The ALT population at the highest altitude (1117 m), and the HHR population (488 m) were clustered distinctly when linear measurements of 46 morphological characteristics were examined. A UPGMA (unweighted pair-group method using arithmetic averages) phenogram also showed that ALT and HHR clustered separately, whereas AKL and HMD formed another group.  相似文献   

11.
The variability of cranial features of Atlantic and Mediterranean samples of Stenella coeruleoalba was examined using a three‐dimensional geometric morphometric approach. Data were collected on 79 skulls from the upper and middle Mediterranean Sea, the Atlantic French coasts, and Scotland. Three‐dimensional x, y, and z coordinates of 27 landmarks were recorded on each left half skull using a Microscribe 3‐D digitizer. All configurations were rotated, centered, and scaled, and residuals from the mean configuration were analyzed through multivariate analyses of variance. Mahalanobis distances among populations were used to evaluate phenetic relationships. Consensus configurations were compared to visualize shape differences among samples. Analyses revealed significant differences among populations, a clear distinction of the Scottish coasts dolphins from the other samples, and a closer relationship of the dolphins from the French coasts to the Mediterranean populations than to the Scottish one. Shape differences are mainly concentrated in the rostral and in the occipital regions of the skull. Phylogenetic and adaptive factors were invoked as possible causes of the variation patterns.  相似文献   

12.
13.
Morphological character variation was examined in Atherinops affinis , a temperate marine silverside with a broad geographic range and presumed limited powers of dispersal. Populations of this species were sampled from three California mainland sites, one Channel Island site and one site in the upper Gulf of California. A geometric morphometric analysis yielded higher resolution in the assessment of phenotypic divergence among the four Pacific coast populations than either body measurement or meristic analysis, and it showed that most of the shape variation among these populations occurs in the head region and body depth of the fish. All three analyses supported the hypothesis that populations of A. affinis from central and southern California coastal waters and from Santa Catalina Island are morphologically distinct from each other; the Santa Catalina Island population was found to be the most divergent. On the basis of meristic characters alone, the population of A. affinis from the upper Gulf of California was different from A. affinis populations along the Pacific coast of California. The analyses revealed variation in several morphological characters, e.g . body depth and meristics, known to vary in association with environmental conditions. Given that A. affinis appears to have low among‐population genetic variation, this species may be phenotypically plastic in response to the environmental conditions of the habitat of each population.  相似文献   

14.
Wing geometry helps to identify mosquito species, even cryptic ones. On the other hand, temperature has a well‐known effect on insect metric properties. Can such effects blur the taxonomic signal embedded in the wing? Two strains of Aedes albopictus (laboratory and field strain) were examined under three different rearing temperatures (26, 30 and 33 °C) using landmark‐ and outline‐based morphometric approaches. The wings of each experimental line were compared with Aedes aegypti. Both approaches indicated similar associations between wing size and temperature. For the laboratory strain, the wing size significantly decreased as the temperature increased. For the field strain, the largest wings were observed at the intermediate temperature. The two morphometric approaches describing shape showed different sensibilities to temperature. For both strains and sexes, the landmark‐based approach disclosed significant wing shape changes with temperature changes. The outline‐based approach showed lesser effects, detecting significant changes only in laboratory females and in field males. Despite the size and shape changes induced by temperature, the two strains of Ae. albopictus were always distinguished from Ae. aegypti. The present study confirms the lability of size. However, it also suggests that, despite environmentally‐induced variation, the architecture of the wing still provides a strong taxonomic signal.  相似文献   

15.
We employed landmark‐based 3D geometric morphometrics to assess cranial size and shape diversification in Trichechus manatus and T. inunguis to compare it with patterns among all manatee taxa (T. manatus latirostris, T. m. manatus, T. inunguis and T. senegalensis), and to analyse geographic variation within American manatee populations, using a sample of 189 skulls. Chromosome G‐ and C‐banding techniques were performed in T. m. manatus from Brazil. All taxa were statistically discriminated by skull shape. Trichechus m. manatus and T. m. latirostris have larger skulls than T. inunguis. A morphological discontinuity was noted within T. m. manatus, with the Brazilian population south of the Amazon discriminated from the T. m. manatus Caribbean and T. m. latirostris USA populations. Specimens from Suriname and Guyana had a skull shape more similar to the one from the Caribbean population. The Brazil Antillean manatee population exhibited morphological differences similar in magnitude to those found between the Amazonian and African species. Additionally, structural chromosome differences were detected between that population (chromosome pair 4 is metacentric and 10 is submetacentric) and manatees from Puerto Rico and Florida. Based on such morphological discontinuity and chromosomal divergence, we hypothesize that the Amazon River mouth may be acting as a reproductive barrier for the T. m. manatus population in Brazil, thus indicating that its taxonomic status and conservation strategies need an urgent reassessment.  相似文献   

16.
To date, all statements about evolutionary morphological transformation in Crocodylia have essentially been based on qualitative observations. In the present study, we assessed the morphological variation and covariation (integration) between the scapula, coracoid, humerus, radius, and ulna of 15 species of Crocodylidae, Alligatoridae, and Gavialis + Tomistoma using three‐dimensional geometric morphometrics. The results obtained reveal that the variation of elements within species (intraspecific) is large. However, despite this variability, variation across species (interspecific) is mainly concentrated in two dimensions where the disparity is constrained: ‘robusticity’ and ‘twist’ (forelimbs) and ‘robusticity’ and ‘flexion’ (pectoral girdle). Robusticity (first dimension of variation) embodies a set of correlated geometrical features such as the broadening of the girdle heads and blades, or the enlargement of proximal and distal bone ends. The twist is related to the proximal and/or distal epiphyses in the forelimb elements, and flexion of the scapula and coracoid blades comprises the second dimension of variation. In all crocodylians, forelimb integration is characterized by the strong correlations of a humerus–ulna–radius triad and by a radius–ulna pair, thus forming a tight forelimb module. Unexpectedly, we found that the humerus and coracoid form the most integrated pair, whereas the scapula is a more variable and relatively independent element. The integration pattern of the humerus–coracoid pair distinguishes a relatively robust configuration in alligatorids from that of the remainder groups. The patterns of variation and integration shared by all the analyzed species have been interpreted as an inherited factor, suggesting that developmental and functional requirements would have interacted in the acquisition of a semi‐aquatic and versatile locomotion at the Crocodylia node at least 65 Mya. Our findings highlight the need to incorporate the humerus–coracoid pair in biodynamic and biomechanical studies. © 2012 The Linnean Society of London  相似文献   

17.
Subtle differences of external traits characterize species of rodents in the Neotropical genus Graomys. On the other hand, the species differ markedly in chromosome number. In the present study, we evaluate the possible evolutionary forces involved in the evolution of the genus by assessing the degree of intra‐ and interspecific genetic and morphological variation. A phylogenetic analysis demonstrates the existence of at least three species with high levels of genetic distance (10%), which diverged between 1 and 1.5 Mya. Neither Graomys griseoflavus, nor Graomys chacoensis present marked phylogeographical structure. Regarding morphological characters, these species show shape differences in the skull that could be attributable to differences in the local conditions they inhabit, being more marked in G. griseoflavus than in G. chacoensis. The skull shape of G. chacoensis could have evolved under genetic drift, whereas evidence reported in the present study indicates that this character could be under selective pressures in G. griseoflavus. Reconstruction of the ancestral area suggests that G. griseoflavus originated in the central Monte desert, whereas G. chacoensis originated in the Chaco ecoregion surrounding the austral extreme of the Yungas rainforest. Subsequently, both species would have undergone demographic and geographical expansions almost simultaneously, starting approximately 150 000–175 000 years ago. The complex evolutionary history of the genus could be partly explained by the decoupling of morphological, karyological and molecular traits.  相似文献   

18.
A new cell line, UM-AVE1, was established from embryos of the mosquito Aedes vexans. Banding patterns for the isozymes lactate dehydrogenase (LDH), malate dehydrogenase (MDH), isocitrate dehydrogenase (IDH), xanthine dehydrogenase (XDH), and esterases were compared with those of larval Aedes vexans tissues as well as those of four other mosquito cell lines and one moth cell line. Karyotype analyses confirmed that the dipteran cell lines were not contaminated with lepidopteran cells, because in all mosquito lines the modal number of chromosomes was 6 (=2n) or 7. Isozyme electrophoresis established a specific profile for each cell line. Two isozymes present in UM-AVE1 (LDH, IDH) were not detected in larvae; this could be a reflection of the different stages used for cell line isolation and enzyme analysis, or lability of sample preparations. It is significant that extracts from UM-AVE1 cells and Aedes vexans larvae had an identical double band for XDH, while all other cell lines examined exhibited only a single band.  相似文献   

19.
20.
Active catches of adult females of Aedes vexans arabiensis Patton, (Diptera: Culicidae) Patton by nets or aspirator, were conducted in 2003 and 2004 in the vegetation at the edge of temporary ponds in Barkedji, Senegalese Ferlo area. Two hundred and forty-one engorged females were captured, dissected and the gut content adsorbed on a Whatman filter paper and analysed using the enzyme-linked immunosorbent assay (ELISA) technique to determinate the bloodmeal origin. Results indicated that Ae v. arabiensis fed primarily on mammals, including horses (35.7% of the bloodmeals), but also on birds (10%). Moreover, associations between horses and birds accounted for 42% of the mixed bloodmeals. These results show an opportunistic feeding behaviour and suggest that Ae v. arabiensis is a probable vector bridging the West Nile virus between horses and birds hosts in the Ferlo area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号