首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Exposure to blue light has previously been shown to induce the reversible quenching of fluorescence in cyanobacteria, indicative of a photoprotective mechanism responsible for the down regulation of photosynthesis. We have investigated the molecular mechanism behind fluorescence quenching by characterizing changes in excitation energy transfer through the phycobilin pigments of the phycobilisome to chlorophyll with steady-state and time-resolved fluorescence excitation and emission spectroscopy. Quenching was investigated in both a photosystem II-less mutant, and DCMU-poisoned wild-type Synechocystis sp. PCC 6803. The action spectra for blue-light-induced quenching was identical in both cell types and was dominated by a band in the blue region, peaking at 480 nm. Fluorescence quenching and its dark recovery was inhibited by the protein cross-linking agent glutaraldehyde, which could maintain cells in either the quenched or the unquenched state. We found that high phosphate concentrations that inhibit phycobilisome mobility and the regulation of energy transfer by the light-state transition did not affect blue-light-induced fluorescence quenching. Both room temperature and 77 K fluorescence emission spectra revealed that fluorescence quenching was associated with phycobilin emission. Quenching was characterized by a decrease in the emission of allophycocyanin and long wavelength phycobilisome terminal emitters relative to that of phycocyanin. A global analysis of the room-temperature fluorescence decay kinetics revealed that phycocyanin and photosystem I decay components were unaffected by quenching, whereas the decay components originating from allophycocyanin and phycobilisome terminal emitters were altered. Our data support a regulatory mechanism involving a protein conformational change and/or change in protein-protein interaction which quenches excitation energy at the core of the phycobilisome.  相似文献   

2.
To determine the mechanism of carotenoid-sensitized non-photochemical quenching in cyanobacteria, the kinetics of blue-light-induced quenching and fluorescence spectra were studied in the wild type and mutants of Synechocystis sp. PCC 6803 grown with or without iron. The blue-light-induced quenching was observed in the wild type as well as in mutants lacking PS II or IsiA confirming that neither IsiA nor PS II is required for carotenoid-triggered fluorescence quenching. Both fluorescence at 660 nm (originating from phycobilisomes) and at 681 nm (which, upon 440 nm excitation originates mostly from chlorophyll) was quenched. However, no blue-light-induced changes in the fluorescence yield were observed in the apcE mutant that lacks phycobilisome attachment. The results are interpreted to indicate that interaction of the Slr1963-associated carotenoid with - presumably - allophycocyanin in the phycobilisome core is responsible for non-photochemical energy quenching, and that excitations on chlorophyll in the thylakoid equilibrate sufficiently with excitations on allophycocyanin in wild type to contribute to quenching of chlorophyll fluorescence.  相似文献   

3.
Cyanobacteria are capable of using dissipation of phycobilisome-absorbed energy into heat as part of their photoprotective strategy. Non-photochemical quenching in cyanobacteria cells is triggered by absorption of blue-green light by the carotenoid-binding protein, and involves quenching of phycobilisome fluorescence. In this study, we find direct evidence that the quenching is accompanied by a considerable reduction of energy flow to the photosystems. We present light saturation curves of photosystems’ activity in quenched and non-quenched states in the cyanobacterium Synechocystis sp. PCC 6803. In the quenched state, the quantum efficiency of light absorbed by phycobilisomes drops by about 30-40% for both photoreactions—P700 photooxidation in the photosystem II-less strain and photosystem II fluorescence induction in the photosystem I-less strain of Synechocystis. A similar decrease of the excitation pressure on both photosystems leads us to believe that the core-membrane linker allophycocyanin APC-LCM is at or beyond the point of non-photochemical quenching. We analyze 77 K fluorescence spectra and suggest that the quenching center is formed at the level of the short-wavelength allophycocyanin trimers. It seems that both chlorophyll and APC-LCM may dissipate excess energy via uphill energy transfer at physiological temperatures, but neither of the two is at the heart of the carotenoid-binding protein-dependent non-photochemical quenching mechanism.  相似文献   

4.
To determine the mechanism of carotenoid-sensitized non-photochemical quenching in cyanobacteria, the kinetics of blue-light-induced quenching and fluorescence spectra were studied in the wild type and mutants of Synechocystis sp. PCC 6803 grown with or without iron. The blue-light-induced quenching was observed in the wild type as well as in mutants lacking PS II or IsiA confirming that neither IsiA nor PS II is required for carotenoid-triggered fluorescence quenching. Both fluorescence at 660 nm (originating from phycobilisomes) and at 681 nm (which, upon 440 nm excitation originates mostly from chlorophyll) was quenched. However, no blue-light-induced changes in the fluorescence yield were observed in the apcE(-) mutant that lacks phycobilisome attachment. The results are interpreted to indicate that interaction of the Slr1963-associated carotenoid with--presumably--allophycocyanin in the phycobilisome core is responsible for non-photochemical energy quenching, and that excitations on chlorophyll in the thylakoid equilibrate sufficiently with excitations on allophycocyanin in wild type to contribute to quenching of chlorophyll fluorescence.  相似文献   

5.
Campbell D  Oquist G 《Plant physiology》1996,111(4):1293-1298
An important factor in photosynthetic ecophysiology is the light regime that a photobiont is acclimated to exploit. In a wide range of cyanobacteria and cyano-lichens, the easily measured fluorescence parameters, coefficient of nonphotochemical quenching of photosystem II variable fluorescence (qN) and nonphotochemical quenching, decline to a minimum near the acclimated growth light intensity. This characteristic pattern predicts the integrated light regime to which populations are acclimated, information that is particularly useful for cyanobacteria or cyano-lichens from habitats with highly variable light intensities. qN reflects processes that compete with photosystem II photochemistry for absorbed excitation energy. In cyanobacteria, we find no evidence for energy-dependent quenching mechanisms, which are the predominant components of qN in higher plants. Instead, in cyanobacteria, qN correlates closely with the excitation flow from the phycobilisome to photosystem I, indicating that qN reflects the state transition mechanism for equilibration of excitation from the phycobilisome to the two photosystems.  相似文献   

6.
《BBA》2021,1862(12):148494
Quenching of excess excitation energy is necessary for the photoprotection of light-harvesting complexes. In cyanobacteria, quenching of phycobilisome (PBS) excitation energy is induced by the Orange Carotenoid Protein (OCP), which becomes photoactivated under high light conditions. A decrease in energy transfer efficiency from the PBSs to the reaction centers decreases photosystem II (PS II) activity. However, quantitative analysis of OCP-induced photoprotection in vivo is complicated by similar effects of both photochemical and non-photochemical quenching on the quantum yield of the PBS fluorescence overlapping with the emission of chlorophyll. In the present study, we have analyzed chlorophyll a fluorescence induction to estimate the effective cross-section of PS II and compared the effects of reversible OCP-dependent quenching of PBS fluorescence with reduction of PBS content upon nitrogen starvation or mutations of key PBS components. This approach allowed us to estimate the dependency of the rate constant of PS II primary electron acceptor reduction on the amount of PBSs in the cell. We found that OCP-dependent quenching triggered by blue light affects approximately half of PBSs coupled to PS II, indicating that under normal conditions, the concentration of OCP is not sufficient for quenching of all PBSs coupled to PS II.  相似文献   

7.
In the non-heterocyst, marine cyanobacterium Trichodesmium nitrogen fixation is confined to the photoperiod and occurs coevally with oxygenic photosynthesis although nitrogenase is irreversibly inactivated by oxygen. In previous studies it was found that regulation of photosynthesis for nitrogen fixation involves Mehler reaction and various activity states with reversible coupling of photosynthetic components. We now investigated these activity states in more detail. Spectrally resolved fluorescence kinetic measurements of single cells revealed that they were related to alternate uncoupling and coupling of phycobilisomes from and to the photosystems, changing the effective cross-section of PSII. Therefore, we isolated and purified the phycobiliproteins of Trichodesmium via ion exchange chromatography and recorded their UV/VIS absorption, fluorescence excitation and fluorescence emission spectra. After describing these spectra by mathematical equations via the Gauss-Peak-Spectra method, we used them to deconvolute the in vivo fluorescence spectra of Trichodesmium cells. This revealed that the contribution of different parts of the phycobilisome antenna to fluorescence quenching changed during the daily activity cycle, and that individual phycobiliproteins can be reversibly coupled to the photosystems, while the expression levels of these proteins did not change much during the daily activity cycle. Thus we propose that variable phycobilisome coupling plays a key role in the regulation of photosynthesis for nitrogen fixation in Trichodesmium.  相似文献   

8.
To avoid the photodamage, cyanobacteria regulate the distribution of light energy absorbed by phycobilisome antenna either to photosystem II or to photosystem I (PSI) upon high light acclimation by the process so-called state transition. We found that an alternative PSI subunit, PsaK2 (sll0629 gene product), is involved in this process in the cyanobacterium Synechocystis sp. PCC 6803. An examination of the subunit composition of the purified PSI reaction center complexes revealed that PsaK2 subunit was absent in the PSI complexes under low light condition, but was incorporated into the complexes during acclimation to high light. The growth of the psaK2 mutant on solid medium was inhibited under high light condition. We determined the photosynthetic characteristics of the wild type strain and the two mutants, the psaK1 (ssr0390) mutant and the psaK2 mutant, using pulse amplitude modulation fluorometer. Non-photochemical quenching, which reflects the energy transfer from phycobilisome to PSI in cyanobacteria, was higher in high light grown cells than in low light grown cells, both in the wild type and the psaK1 mutant. However, this change of non-photochemical quenching during acclimation to high light was not observed in the psaK2 mutant. Thus, PsaK2 subunit is involved in the energy transfer from phycobilisome to PSI under high light condition. The role of PsaK2 in state transition under high light condition was also confirmed by chlorophyll fluorescence emission spectra determined at 77 K. The results suggest that PsaK2-dependent state transition is essential for the growth of this cyanobacterium under high light condition.  相似文献   

9.
In cyanobacteria, strong blue-green light induces a photoprotective mechanism involving an increase of energy thermal dissipation at the level of phycobilisome (PB), the cyanobacterial antenna. This leads to a decrease of the energy arriving to the reaction centers. The photoactive Orange Carotenoid Protein (OCP) has an essential role in this mechanism. The binding of the red photoactivated OCP to the core of the PB triggers energy and PB fluorescence quenching. The core of PBs is constituted of allophycocyanin trimers emitting at 660 or 680nm. ApcD, ApcF and ApcE are the responsible of the 680nm emission. In this work, the role of these terminal emitters in the photoprotective mechanism was studied. Single and double Synechocystis PCC 6803 mutants, in which the apcD or/and apcF genes were absent, were constructed. The Cys190 of ApcE which binds the phycocyanobilin was replaced by a Ser. The mutated ApcE attached an unusual chromophore emitting at 710nm. The activated OCP was able to induce the photoprotective mechanism in all the mutants. Moreover, in vitro reconstitution experiments showed similar amplitude and rates of fluorescence quenching. Our results demonstrated that ApcD, ApcF and ApcE are not required for the OCP-related fluorescence quenching and they strongly suggested that the site of quenching is one of the APC trimers emitting at 660nm. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.  相似文献   

10.
Photoprotective mechanisms have evolved in photosynthetic organisms to cope with fluctuating light conditions. Under high irradiance, the production of dangerous oxygen species is stimulated and causes photo-oxidative stress. One of these photoprotective mechanisms, non photochemical quenching (qE), decreases the excess absorbed energy arriving at the reaction centers by increasing thermal dissipation at the level of the antenna. In this review we describe results leading to the discovery of this process in cyanobacteria (qE(cya)), which is mechanistically distinct from its counterpart in plants, and recent progress in the elucidation of this mechanism. The cyanobacterial photoactive soluble orange carotenoid protein is essential for the triggering of this photoprotective mechanism. Light induces structural changes in the carotenoid and the protein leading to the formation of a red active form. The activated red form interacts with the phycobilisome, the cyanobacterial light-harvesting antenna, and induces a decrease of the phycobilisome fluorescence emission and of the energy arriving to the reaction centers. The orange carotenoid protein is the first photoactive protein to be identified that contains a carotenoid as the chromophore. Moreover, its photocycle is completely different from those of other photoactive proteins. A second protein, called the Fluorescence Recovery Protein encoded by the slr1964 gene in Synechocystis PCC 6803, plays a key role in dislodging the red orange carotenoid protein from the phycobilisome and in the conversion of the free red orange carotenoid protein to the orange, inactive, form. This protein is essential to recover the full antenna capacity under low light conditions after exposure to high irradiance. This article is part of a Special Issue entitled: Photosystem II.  相似文献   

11.
In conditions of fluctuating light, cyanobacteria thermally dissipate excess absorbed energy at the level of the phycobilisome, the light-collecting antenna. The photoactive Orange Carotenoid Protein (OCP) and Fluorescence Recovery Protein (FRP) have essential roles in this mechanism. Absorption of blue-green light converts the stable orange (inactive) OCP form found in darkness into a metastable red (active) form. Using an in vitro reconstituted system, we studied the interactions between OCP, FRP, and phycobilisomes and demonstrated that they are the only elements required for the photoprotective mechanism. In the process, we developed protocols to overcome the effect of high phosphate concentrations, which are needed to maintain the integrity of phycobilisomes, on the photoactivation of the OCP, and on protein interactions. Our experiments demonstrated that, whereas the dark-orange OCP does not bind to phycobilisomes, the binding of only one red photoactivated OCP to the core of the phycobilisome is sufficient to quench all its fluorescence. This binding, which is light independent, stabilizes the red form of OCP. Addition of FRP accelerated fluorescence recovery in darkness by interacting with the red OCP and destabilizing its binding to the phycobilisome. The presence of phycobilisome rods renders the OCP binding stronger and allows the isolation of quenched OCP-phycobilisome complexes. Using the in vitro system we developed, it will now be possible to elucidate the quenching process and the chemical nature of the quencher.  相似文献   

12.
The PsbU subunit of photosystem II (PSII) is one of three extrinsic polypeptides associated with stabilizing the oxygen evolving machinery of photosynthesis in cyanobacteria. We investigated the influence of PsbU on excitation energy transfer and primary photochemistry by spectroscopic analysis of a PsbU-less (or deltaPsbU) mutant. The absence of PsbU was found to have multiple effects on the excited state dynamics of the phycobilisome and PSII. DeltaPsbU cells exhibited decreased variable fluorescence when excited with light absorbed primarily by allophycocyanin but not when excited with light absorbed primarily by chlorophyll a. Fluorescence emission spectra at 77 K showed evidence for impaired energy transfer from the allophycocyanin terminal phycobilisome emitters to PSII. Picosecond fluorescence decay kinetics revealed changes in both allophycocyanin and PSII associated decay components. These changes were consistent with a decrease in the coupling of phycobilisomes to PSII and an increase in the number of closed PSII reaction centers in the dark-adapted deltaPsbU mutant. Our results are consistent with the assumption that PsbU stabilizes both energy transfer and electron transport in the PBS/PSII assembly.  相似文献   

13.
Photosynthetic organisms have developed multiple protective mechanisms to survive under high-light conditions. In plants, one of these mechanisms is the thermal dissipation of excitation energy in the membrane-bound chlorophyll antenna of photosystem II. The question of whether or not cyanobacteria, the progenitor of the chloroplast, have an equivalent photoprotective mechanism has long been unanswered. Recently, however, evidence was presented for the possible existence of a mechanism dissipating excess absorbed energy in the phycobilisome, the extramembrane antenna of cyanobacteria. Here, we demonstrate that this photoprotective mechanism, characterized by blue light-induced fluorescence quenching, is indeed phycobilisome-related and that a soluble carotenoid binding protein, ORANGE CAROTENOID PROTEIN (OCP), encoded by the slr1963 gene in Synechocystis PCC 6803, plays an essential role in this process. Blue light is unable to quench fluorescence in the absence of phycobilisomes or OCP. The fluorescence quenching is not DeltapH-dependent, and it can be induced in the absence of the reaction center II or the chlorophyll antenna, CP43 and CP47. Our data suggest that OCP, which strongly interacts with the thylakoids, acts as both the photoreceptor and the mediator of the reduction of the amount of energy transferred from the phycobilisomes to the photosystems. These are novel roles for a soluble carotenoid protein.  相似文献   

14.
Biliproteins have extended the spectral range of fluorescent proteins into the near-infrared region (NIR, 700–770 nm) of maximal transmission of most tissues and are also favorable for multiplex labeling. Their application, however, presents considerable challenges to increase their stability under physiological conditions and, in particular, to increase their brightness while maintaining the emission in near-infrared regions: their fluorescence yield generally decreases with increasing wavelengths, and their effective brightness depends strongly on the environmental conditions. We report a fluorescent biliprotein triad, termed BDFP1.1:3.1:1.1, that combines a large red-shift (722 nm) with high brightness in mammalian cells and high stability under changing environmental conditions. It is fused from derivatives of the phycobilisome core subunits, ApcE2 and ApcF2. These two subunits are induced by far-red light (FR, 650–700 nm) in FR acclimated cyanobacteria. Two BDFP1.1 domains engineered from ApcF2 covalently bind biliverdin that is accessible in most cells. The soluble BDFP3 domain, engineered from ApcE2, binds phytochromobilin non-covalently, generating BDFP3.1. This phytochromobilin chromophore was added externally; it is readily generated by an improved synthesis in E. coli and subsequent extraction. Excitation energy absorbed in the FR by covalently bound biliverdins in the two BDFP1.1 domains is transferred via fluorescence resonance energy transfer to the non-covalently bound phytochromobilin in the BDFP3.1 domain fluorescing in the NIR around 720 nm. Labeling of a variety of proteins by fusion to the biliprotein triad is demonstrated in prokaryotic and mammalian cells, including human cell lines.  相似文献   

15.
In the light-harvesting antenna of the Synechocystis PCC 6803 phycobilisome (PB), the core consists of three cylinders, each composed of four disks, whereas each of the six rods consists of up to three hexamers (Arteni et al., Biochim Biophys Acta 1787(4):272–279, 2009). The rods and core contain phycocyanin and allophycocyanin pigments, respectively. Together these pigments absorb light between 400 and 650 nm. Time-resolved difference absorption spectra from wild-type PB and rod mutants have been measured in different quenching and annihilation conditions. Based upon a global analysis of these data and of published time-resolved emission spectra, a functional compartmental model of the phycobilisome is proposed. The model describes all experiments with a common set of parameters. Three annihilation time constants are estimated, 3, 25, and 147 ps, which represent, respectively, intradisk, interdisk/intracylinder, and intercylinder annihilation. The species-associated difference absorption and emission spectra of two phycocyanin and two allophycocyanin pigments are consistently estimated, as well as all the excitation energy transfer rates. Thus, the wild-type PB containing 396 pigments can be described by a functional compartmental model of 22 compartments. When the interhexamer equilibration within a rod is not taken into account, this can be further simplified to ten compartments, which is the minimal model. In this model, the slowest excitation energy transfer rates are between the core cylinders (time constants 115–145 ps), and between the rods and the core (time constants 68–115 ps).  相似文献   

16.
In response to iron deficiency, cyanobacteria synthesize the iron stress-induced chlorophyll binding protein IsiA. This protein protects cyanobacterial cells against iron stress. It has been proposed that the protective role of IsiA is related to a blue light-induced nonphotochemical fluorescence quenching (NPQ) mechanism. In iron-replete cyanobacterial cell cultures, strong blue light is known to induce a mechanism that dissipates excess absorbed energy in the phycobilisome, the extramembranal antenna of cyanobacteria. In this photoprotective mechanism, the soluble Orange Carotenoid Protein (OCP) plays an essential role. Here, we demonstrate that in iron-starved cells, blue light is unable to quench fluorescence in the absence of the phycobilisomes or the OCP. By contrast, the absence of IsiA does not affect the induction of fluorescence quenching or its recovery. We conclude that in cyanobacteria grown under iron starvation conditions, the blue light-induced nonphotochemical quenching involves the phycobilisome OCP-related energy dissipation mechanism and not IsiA. IsiA, however, does seem to protect the cells from the stress generated by iron starvation, initially by increasing the size of the photosystem I antenna. Subsequently, the IsiA converts the excess energy absorbed by the phycobilisomes into heat through a mechanism different from the dynamic and reversible light-induced NPQ processes.  相似文献   

17.
In order to prevent photodestruction by high light, photosynthetic organisms have evolved a number of mechanisms, known as non-photochemical quenching (NPQ), that deactivate the excited states of light harvesting pigments. Here we investigate the NPQ mechanism in the cyanobacterium Synechocystis sp. PCC 6803 mutant deficient in both photosystems. Using non-linear laser fluorimetry, we have determined molecular photophysical characteristics of phycocyanin and spectrally distinct forms of allophycocyanin for the cells in non-quenched and quenched states. Our analysis of non-linear fluorescence characteristics revealed that NPQ activation leads to an ~ 2-fold decrease in the relaxation times of both allophycocyanin fluorescence components, F660 and F680, and a 5-fold decrease in the effective excitation cross-section of F680, suggesting an emergence of a pathway of energy dissipation for both types of allophycocyanin. In contrast, NPQ does not affect the rates of singlet–singlet exciton annihilation. This indicates that, upon NPQ activation, the excess excitation energy is transferred from allophycocyanins to quencher molecules (presumably 3′hydroxyechinenone in the orange carotenoid protein), rather than being dissipated due to conformational changes of chromophores within the phycobilisome core. Kinetic measurements of fluorescence quenching in the Synechocystis mutant revealed the presence of several stages in NPQ development, as previously observed in the wild type. However, the lack of photosystems in the mutant enhanced the magnitude of NPQ as compared to the wild type, and allowed us to better characterize this process. Our results suggest a more complex kinetics of the NPQ process, thus clarifying a multistep model for the formation of the quenching center.  相似文献   

18.
Tanai Cardona 《BBA》2010,1797(3):425-433
Cyanobacteria adapt to varying light conditions by controlling the amount of excitation energy to the photosystems. On the minute time scale this leads to redirection of the excitation energy, usually referred to as state transitions, which involves movement of the phycobilisomes. We have studied short-term light adaptation in isolated heterocysts and intact filaments from the cyanobacterium Nostoc punctiforme ATCC 29133. In N.punctiforme vegetative cells differentiate into heterocysts where nitrogen fixation takes place. Photosystem II is inactivated in the heterocysts, and the abundancy of Photosystem I is increased relative to the vegetative cells. To study light-induced changes in energy transfer to Photosystem I, pre-illumination was made to dark adapted isolated heterocysts. Illumination wavelengths were chosen to excite Photosystem I (708 nm) or phycobilisomes (560 nm) specifically. In heterocysts that were pre-illuminated at 708 nm, fluorescence from the phycobilisome terminal emitter was observed in the 77 K emission spectrum. However, illumination with 560 nm light caused quenching of the emission from the terminal emitter, with a simultaneous increase in the emission at 750 nm, indicating that the 560 nm pre-illumination caused trimerization of Photosystem I. Excitation spectra showed that 560 nm pre-illumination led to an increase in excitation transfer from the phycobilisomes to trimeric Photosystem I. Illumination at 708 nm did not lead to increased energy transfer from the phycobilisome to Photosystem I compared to dark adapted samples. The measurements were repeated using intact filaments containing vegetative cells, and found to give very similar results as the heterocysts. This demonstrates that molecular events leading to increased excitation energy transfer to Photosystem I, including trimerization, are independent of Photosystem II activity.  相似文献   

19.
The structural changes associated to non-photochemical quenching in cyanobacteria is still a matter of discussion. The role of phycobilisome and/or photosystem mobility in this mechanism is a point of interest to be elucidated. Changes in photosystem II fluorescence induced by different quality of illumination (state transitions) or by strong light were characterized at different temperatures in wild-type and mutant cells, that lacked polyunsaturated fatty acids, of the cyanobacterium Synechocystis PCC 6803. The amplitude and the rate of state transitions decreased by lowering temperature in both strains. Our results support the hypothesis that a movement of membrane complexes and/or changes in the oligomerization state of these complexes are involved in the mechanism of state transitions. The quenching induced by strong blue light which was not associated to D1 damage and photoinhibition, did not depend on temperature or on the membrane state. Thus, the mechanism involved in the formation of this type of quenching seems to be unrelated to the movement of membrane complexes. Our results strongly support the idea that the mechanism involved in the fluorescence quenching induced by light 2 is different from that involved in strong blue light induced quenching.  相似文献   

20.
In Cyanobacteria, the Orange Carotenoid Protein (OCP) and Fluorescence Recovery Protein (FRP) are central to the photoprotective mechanism consisting in regulated quenching of phycobilisome (PBs) fluorescence. Due to a transient and flexible nature of the light-activated red quenching form, OCPR, which is obtained from the stable dark-adapted orange form, OCPO, by photoconversion, the detailed mechanism of photoprotection remains unclear. Here we demonstrate that our recently described W288A mutant of the Synechocystis OCP (hereinafter called OCPW288A) is a fully functional analogue of the OCPR form which is capable of constitutive PBs fluorescence quenching in vitro with no need of photoactivation. This PBs quenching effect is abolished in the presence of FRP, which interacts with OCPW288A with micromolar affinity and an apparent stoichiometry of 1:1, unexpectedly, implying dissociation of the FRP dimers. This establishes OCPW288A as a robust model system providing novel insights into the interplay between OCP and FRP to regulate photoprotection in cyanobacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号