首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
Meiotic studies were performed in twelve populations of four Oryzopsis species (O. pubiflora, O. lateralis, O. holciformis var. longiglomis and O. barbellata) to obtain data on the ploidy level and cytological evolution of the genus. The chromosome number 2n=2x=24 was revealed in all the species and populations studied. The present and other studies show the occurrence of two basic chromosome numbers in the genus, i.e. x=11 and x=12. Although Oryzopsis species and populations studied are diploid and are expected to form only bivalents in metaphase of meiosis‐I, quadrivalents were observed in O. pubiflora and O. lateralis, possibly due to the occurrence of heterozygote translocations. B‐chromosomes of 0–2 were observed in all species and populations studied. This is the first report of the occurrence of B‐chromosomes in the genus Oryzopsis. Several meiocytes showed the presence of double chromosome number in O. lateralis, and multipolar cells were observed in populations of O. barbellata, O. lateralis and O. holciformis var. longiglomis. The occurrence of large pollen grains (possibly unreduced) was observed along with smaller (normal) pollen grains in these species. Significant differences observed in chiasma frequency and distribution among studied species may be of use in species delimitation. The Kakan population differed significantly from the other populations of O. lateralis in meiotic characteristics. If such cytological differences are accompanied by morphological variation (under investigation), we may consider this population as a new variety or subspecies.  相似文献   

2.
Chromosome counts and genome sizes are reported from six species of Leontopodium: five from the centre of diversity in south‐western China, and L. japonicum from cultivation. Previously published chromosome counts for the genus are also compiled. Genome size (1C) in diploids ranges from 0.93 pg (L. dedeckensii) to 1.14 pg (L. cf. stracheyi) and 1.93 pg for tetraploid L. sinense. Leontopodium artemisiifolium had one pair of heteromorphic chromosomes. Leontopodium japonicum accessions showed variation in ploidy levels. Polyploidy, including autopolyploidy, is frequent in the genus. Variation is seen in basic chromosome number, including between species in the centre of diversity of the genus, where x = 12 or 13, but also within species among previously published counts. This variation does not correspond to currently inferred infrageneric groupings, and indicates both the importance of large‐scale chromosome evolution and the need for more in‐depth taxonomic work in a genus that shows little DNA sequence variation. © 2013 The Linnean Society of London  相似文献   

3.
In this study, we analysed chromosome number variation and chromomycin A3/4′,6‐diamidino‐2‐phenylindole (CMA/DAPI) banding patterns in 48 species belonging to 12 genera of subtribe Pleurothallidinae (Orchidaceae) in order to understand the chromosome evolution based on recent phylogenetic hypotheses and taxonomic treatments. All species had small chromosomes, with numbers ranging from 2n = 20 in two Specklinia spp. to 2n = 80 in an unidentified Octomeria sp. In Acianthera, the most highly represented genus in this study, a great diversity of chromosome number and pattern of fluorescent bands was observed, showing heterochromatin accumulation in Acianthera section Sicariae subsection Pectinatae. Interspecific ascending and, mainly, descending dysploidy were the main mechanisms of chromosome number evolution in subtribe Pleurothallidinae. For Pleurothallidinae, x = 20 is suggested as the basic chromosome number, the same suggested for the related subtribe Laeliinae and for the whole tribe Epidendreae. The Brazilian species of the mega‐genus Stelis had chromosomes with small amounts of heterochromatin and chromosome numbers based on x2 = 16. These are generally divergent from those reported for Andean and Meso‐American species, but in agreement with the monophyletic hypothesis proposed for Stelis spp. with a Brazilian Atlantic distribution. © 2015 The Linnean Society of London, Botanical Journal of the Linnean Society, 2015, 178 , 102–120.  相似文献   

4.
The genus Orthophytum Beer comprises 53 species, all narrow endemics to south-eastern and north-eastern Brazil. In this study we present meiotic and mitotic chromosome numbers of 12 species of this important genus in Bromeliaceae. For six of these taxa we are reporting the first cytogenetic study. Orthophytum albopictum, O. amoenum and O. burle-marxii presented 2n = 100 chromosomes and O. hatschbachii, O. mucugense, O. vagans, O. supthutii, O. zanonii and O. ophiuroides showed 2n = 50 chromosomes. These results are consistent with the proposed basic number of x = 25 for Bromeliaceae family. In the genus Orthophytum, polyploidy seems to play an important role in chromosome evolution associated with habitat differentiation among diploid and polyploid species.  相似文献   

5.
Cucumber, Cucumis sativus L. is the only taxon with 2n = 2x = 14 chromosomes in the genus Cucumis. It consists of two cross‐compatible botanical varieties: the cultivated C. sativus var. sativus and the wild C. sativus var. hardwickii. There is no consensus on the evolutionary relationship between the two taxa. Whole‐genome sequencing of the cucumber genome provides a new opportunity to advance our understanding of chromosome evolution and the domestication history of cucumber. In this study, a high‐density genetic map for cultivated cucumber was developed that contained 735 marker loci in seven linkage groups spanning 707.8 cM. Integration of genetic and physical maps resulted in a chromosome‐level draft genome assembly comprising 193 Mbp, or 53% of the 367 Mbp cucumber genome. Strategically selected markers from the genetic map and draft genome assembly were employed to screen for fosmid clones for use as probes in comparative fluorescence in situ hybridization analysis of pachytene chromosomes to investigate genetic differentiation between wild and cultivated cucumbers. Significant differences in the amount and distribution of heterochromatins, as well as chromosomal rearrangements, were uncovered between the two taxa. In particular, six inversions, five paracentric and one pericentric, were revealed in chromosomes 4, 5 and 7. Comparison of the order of fosmid loci on chromosome 7 of cultivated and wild cucumbers, and the syntenic melon chromosome I suggested that the paracentric inversion in this chromosome occurred during domestication of cucumber. The results support the sub‐species status of these two cucumber taxa, and suggest that C. sativus var. hardwickii is the progenitor of cultivated cucumber.  相似文献   

6.
Chromosome numbers are reported from 67 populations of 36 taxa, mostly in Phoradendron. The basic number is 14 in Phoradendron and probably also in Arceuthobium. The 4 species of Struthanthus for which chromosome numbers are recorded suggest that the basic number is 8. Numbers of n = 8 and n = 10 have been reported for Psittacanthus. In Phoradendron the 22 taxa examined are all diploid, although 1 instance of polyploidy was discovered. Objects interpreted as supernumerary chromosomes were discovered in a number of species of Phoradendron; no evidence of sex chromosomes previously reported in Phoradendron was observed. The Loranthaceae have chromosomes comparable in size to the largest in the plant kingdom.  相似文献   

7.
Faberia Hemsl., a small genus of six species in the tribe Cichorieae, Asteraceae, has been karyologically investigated for the first time. All four studied species were revealed to have the somatic chromosome number 2n = 34, and thus the basic number of the genus was assumed to be x = 17. This rather high basic number has been previously reported very rarely in the tribe, occurring otherwise only in Warionia Benth. & Coss., a monospecific genus endemic to northwestern Africa, and in the American species of Lactuca L. The chromosome morphology was very similar among the four species, with the majority being median centromeric (m) and a few submedian centromeric (sm). In all the karyotypes the chromosomes were medium‐sized (6.33–1.61 μm), and showed a steady gradation in length from the longest to the shortest, with no evidence of bimodality. Our results strongly support the recognition of Faberia as an independent genus and the inclusion of Faberiopsis Shih & Y. L. Chen in Faberia.  相似文献   

8.
To explain the frequency and distribution of heteromorphic sex chromosomes in the lizard genus Anolis, we compared the relative roles of sex chromosome conservation versus turnover of sex‐determining mechanisms. We used model‐based comparative methods to reconstruct karyotype evolution and the presence of heteromorphic sex chromosomes onto a newly generated Anolis phylogeny. We found that heteromorphic sex chromosomes evolved multiple times in the genus. Fluorescent in situ hybridization (FISH) of repetitive DNA showed variable rates of Y chromosome degeneration among Anolis species and identified previously undetected, homomorphic sex chromosomes in two species. We confirmed homology of sex chromosomes in the genus by performing FISH of an X‐linked bacterial artificial chromosome (BAC) and quantitative PCR of X‐linked genes in multiple Anolis species sampled across the phylogeny. Taken together, these results are consistent with long‐term conservation of sex chromosomes in the group. Our results pave the way to address additional questions related to Anolis sex chromosome evolution and describe a conceptual framework that can be used to evaluate the origins and evolution of heteromorphic sex chromosomes in other clades.  相似文献   

9.
Current understanding of sex chromosome evolution is largely dependent on species with highly degenerated, heteromorphic sex chromosomes, but by studying species with recently evolved or morphologically indistinct sex chromosomes we can greatly increase our understanding of sex chromosome origins, degeneration and turnover. Here, we examine sex chromosome evolution and stability in the gecko genus Aristelliger. We used RADseq to identify sex‐specific markers and show that four Aristelliger species, spanning the phylogenetic breadth of the genus, share a conserved ZZ/ZW system syntenic with avian chromosome 2. These conserved sex chromosomes contrast with many other gecko sex chromosome systems by showing a degree of stability among a group known for its dynamic sex‐determining mechanisms. Cytogenetic data from A. expectatus revealed homomorphic sex chromosomes with an accumulation of repetitive elements on the W chromosome. Taken together, the large number of female‐specific A. praesignis RAD markers and the accumulation of repetitive DNA on the A. expectatus W karyotype suggest that the Z and W chromosomes are highly differentiated despite their overall morphological similarity. We discuss this paradoxical situation and suggest that it may, in fact, be common in many animal species.  相似文献   

10.
The chromosome numbers of seven species ofPelargonium sect.Eumorpha have been determined from material of known wild origin, and karyotypic comparisons have been made. Within the section there is variation in basic chromosome number (x = 4, 8, 9, 11), variation in chromosome size, and two species have polyploid races. The three species with chromosome numbers based on x = 11 have the smallest chromosomes (1.0–1.5 µm); chromosomes are larger (1.0–3.0 µm) in the other species.P. elongatum has the lowest chromosome number in the genus (2n = 8).P. alchemilloides is exceptional in that it has four cytotypes, 2n = 16, 18, 34 and 36, and the form with 2n = 36 has large chromosomes (2.0–5.0 µm). Evidence from a synthesized hybrid suggests thatP. alchemilloides with 2n = 16 may be of polyploid origin. The three species based on x = 11 appear to be more closely related to species from other sections ofPelargonium that have the same basic chromosome number and small chromosome size, rather than to other species of sect.Eumorpha.  相似文献   

11.
The chromosome numbers and morphology in 92 populations belonging to 49 species and three varieties in the genus Delphinium L. (Ranunculaceae), mostly from the Hengduan Mountains region of south‐west China, were studied. Forty seven species and three varieties were diploid, with 2n = 16, one species was tetraploid, with 2n = 32, and one species had diploid and tetraploid cytotypes. Three species had B chromosomes, representing the first time the occurrence of B chromosomes has been reported in the genus. The karyotypes of all the diploid species were quite uniform, commonly bimodal, and usually consisted of one pair of large median‐centromeric (m), one pair of large submedian‐centromeric (sm), five pairs of medium‐sized subterminal‐centromeric (st), and one pair of smaller sm (rarely st) chromosomes. The low incidence of polyploids in Delphinium from the Hengduan Mountains region indicates that polyploidy has played a minor role in the speciation of this highly diversified genus in the region. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 172–188.  相似文献   

12.
The American genus Cuphea with ca. 260 species is extremely diverse with respect to chromosome number. Counts are now available for 78 species and/or varieties, or 29% of the genus. Included in this study are first reports for 15 taxa from Brazil, Cuba, Dominican Republic, Mexico, and Venezuela. Twenty-two different numbers are known for the genus, ranging from n = 6 to n = 54. The most common number in the primary center of species diversity in Brazil is n = 8, which is regarded as the base number of the genus. Two numbers are most common in the secondary center in Mexico, n = 10 and n = 12. Species with n = 14 or higher are considered to be of polyploid origin. Polyploids comprise 46% of the total species counted and appear in 9 of the 11 sections for which chromosome numbers have been reported. Aneuploid species comprise ca. 25% of the genus and are known from 7 of the 11 sections. The two subgenera are not characterized by different chromosome numbers or sequences of numbers. None of the 14 sections are circumscribed by a single chromosome number. Morphological and ecological variability in widespread, weedy species is correlated with differing chromosome numbers in some species whereas in others the chromosome number is stable. Summary of chromosome numbers by taxonomic section is presented. Section Euandra, centered in eastern Brazil, and the largest section of the genus, appears to be chromosomally most diverse. In section Trispermum, characterized by difficult, variable species with intermediate forms, two of the four species studied have polyploid races. Section Heterodon, endemic to Mexico and Central America and comprising most of the annual species of the genus, is best known chromosomally. Chromosome numbers have been counted for 25 of 28 species, and 12 different numbers are reported. The most advanced sections, Melvilla and Diploptychia, with numerous species occurring at higher altitudes, are characterized by high polyploids. Apomictic species occur in sect. Diploptycia. The cytoevolution of Cuphea is complex with frequent polyploid and aneuploid events apparently playing a significant role in speciation in both centers of diversity.  相似文献   

13.
Turner , B. L.. and R. M. King . (U. Texas, Austin.) A cytotaxonomic survey of Melampodium (Compositae-Heliantheae). Amer. Jour. Bot. 49(3): 233–26. Illus. 1962.—Chromosome counts are reported for individuals from 89 populations of Melampodium representing 26 species The genus is multibasic with x = 9, 10, 11, 12, 16 and 23. Chromosome numbers on a base of x = 10 characterize the section Melampodium while basic numbers of x = 23, 16, 12, 11 and 9 occur in the section Zarabellia. Melampodium camphoratum (n = 16) differs from all other species examined in having relatively small meiotic chromosomes. Only 6 of the 23 species are polyploid or have polyploid races. Melampodium leucanthum and M. cinereum have both diploid and tetraploid populations; the latter occur without any apparent morphological or geographical correlation and are probably autoploid in origin. A survey of the basic chromosome numbers known for other genera of the subtribe Melampodinae (12 of 22 genera) is presented. and it is suggested that x = 10 is the most probable basic number of the genus and subtribe.  相似文献   

14.
Chromosome counts were determined for 46 populations ofBiscutella representing 28 taxa. The genus was found to contain diploid taxa with 2n = 12, 16 and 18, tetraploid taxa with 2n = 36 and hexaploid taxa having 2n = 54.B. laevigata L. s. l. consists of diploid and tetraploid populations which are poorly differentiated morphologically. TetraploidB. laevigata s. l. and hexaploidB. variegata Boiss. & Reuter (s. l.) are characterized by chromosomal instability. The variation in chromosome numbers and the occurrence of polyploidy is discussed in relation to the taxonomy of the genus. An investigation of the breeding system showed that most of the annual species were self-compatible and partly inbreeding and most of the perennial species self-incompatible and, therefore, outbreeding, while one annual species,B. cichoriifolia Loisel., showed both systems.  相似文献   

15.
Passiflora L. has more than 575 species distributed especially in the Neotropics. The chromosome number variation in the genus is highly congruent with its main subgenera, but its basic chromosome number (x) and the underlying events responsible for this variation have remained controversial. Here, we provide a robust and well-resolved time-calibrated phylogeny that includes 102 taxa, and by means of phylogenetic comparative methods (PCM) we tested the relative importance of polyploidy and dysploidy events to Passiflora karyotype evolution and diversification. Passiflora arose 42.9 Mya, with subgenus diversification at the end of the Palaeogene (Eocene-Oligocene). The basic chromosome number of the genus is proposed as x?=?6, and a strong recent diversification found in the Passiflora subgenus (Miocene) correlated to genome size increase and a chromosome change from n?=?6 to n?=?9 by ascending dysploidy. Polyploidy, conversely, appeared restricted to few lineages, such as Astrophea and Deidamioides subgenera, and did not lead to diversification increases. Our findings suggest that ascending dysploidy provided a great advantage for generating long-term persistent lineages and promoting species diversification. Thus, chromosome numbers/genome size changes may have contributed to morphological/ecological traits that explain the pattern of diversification observed in the genus Passiflora.  相似文献   

16.
17.
 Three related and taxonomically close species of the genus Lilium (L. pyrenaicum Gouan, L. pomponium L. and L. carniolicum Bernh.), all of them with 2n=24 chromosomes, have been studied for chromosomal differentiation, using fluorochrome banding and fluorescence in situhybridization (FISH), and for genome size and GC percentage using flow cytometry. The total DNA content of L. pomponium (2C=70.26 pg) was about 5% higher than that of L. pyrenaicum (2C=67.74) and L. carniolicum (2C=67.37 pg), while GC percentage was higher in this last species (36.60%) than in L. pomponium (35.56%) and lower than in L. pyrenaicum (37.92%). Silver staining, fluorochrome banding with chromomycin A3 (CMA) and fluorescence in situ hybridization (FISH) clearly pointed out the number of nucleoli, the number and position of GC-rich bands and the number and location of rDNA sites thus permitting distinction of the three species at chromosomal level. Two families of ribosomal genes, 18S-5.8S-26S (18S) and 5S rRNA genes, were separated onto different pairs in chromosome complements of examined species. Chromosome regions containing both kinds of rRNA genes were also GC-rich regions. The results revealed a clear interspecific differentiation at the chromosomal level and permitted the discussion about relationships among the species. Received June 21, 2002; accepted October 4, 2002 Published online: Febraury 7, 2003  相似文献   

18.
The genus Hypochaeris (Asteraceae, Lactuceae) contains ten species in Europe, three in Asia, and approximately 50 in South America. Previous cytotaxonomic studies have shown two groups of taxa: (1) European species with different basic chromosome numbers and differentiated karyotypes, and (2) South American species with x=4 and uniform asymmetric and bimodal karyotypes. Karyotypic data are synthesized for South American species of Hypochaeris with new information for six Chilean species: H. acaulis, H. apargioides, H. palustris, H. spathulata, H. tenuifolia and H. thrincioides. Four main groups can be distinguished based on presence and localization of secondary constrictions – SCs (bearing Nucleolar Organizer Regions – NORs) on chromosomes 2 and 3, and 18S–25S and 5S rDNA loci number, localization, and activity. We propose karyotypic evolution of South American Hypochaeris (x=4) from H. maculata-like (x=5) European ancestors. The original South American karyotype would have possessed two SCs, one on the long arm of chromosome 2, and the other on the short arm of chromosome 3 (in terminal position). Further evolution would have involved inversion within the short arm of chromosome 3 and inactivation/loss of the SC on chromosome 2.  相似文献   

19.
Comparative Genome Analysis in Two Flax Species by C-Banding Patterns   总被引:1,自引:0,他引:1  
C-banding patterns of the karyotypes of two closely related wild flax species, Linum austriacumL. (2n= 18) and Linum grandiflorumDesf. (2n= 16), were studied. The karyotypes of both species were similar in the chromosome morphology and size. In each species, metacentric and acrocentric chromosomes (1.7–4.3 m) and one satellite chromosome were observed. In the karyotypes of the species studied, all homologous chromosome pairs were identified, and quantitative idiograms were constructed. Eight chromosome pairs in the two species had similar C-banding patterns. A low level of intraspecific polymorphism in the intercalary and telomeric C-bands was shown in both species. The results indicate that the genomes of two flax species originated from one ancestral genome with the basic chromosome number of 8 or 9. Apparently, the duplication or loss of one chromosome with subsequent redistribution of the chromosome material in the ancestral form resulted in the divergence into two species,L. austriacumL. and L. grandiflorumDesf. A considerable similarity of chromosomes in these species provides evidence for their close phylogenetic relatedness, which makes it possible to place them in one section within the Linumgenus.  相似文献   

20.
Random amplified polymorphic DNA (RAPD) fingerprinting was used to study species boundaries in six closely related NE Turkish Lilium (Liliaceae) taxa of the section Liriotypus. The investigated taxa were L. ciliatum, L. akkusianum, L. ponticum, L. kesselringianum, L. armenum, and L. szovitsianum. Of the 108 primers screened, 11 provided polymorphic and reproducible bands. A total of 93 polymorphic bands were scored for 122 individuals from 18 populations of the six Lilium taxa and principle coordinate analysis and neighbour-joining cluster analysis based on these RAPD profiles were performed. The results demonstrate a clear distinction between the two species L. ciliatum and L. akkusianum, and the other four species. While populations of the two species groups are found to be allopatrically distributed, the two species groups overlap in their geographical ranges. Analysis of molecular variance (AMOVA) indicated that nearly half of the total molecular variance is found within the individual populations and that the molecular variance among species is as high as the variance within the individual species, indicating that genetic differentiation of the species is rather weak.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号