首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecosystem-based management (EBM) of marine resources attempts to conserve interacting species. In contrast to single-species fisheries management, EBM aims to identify and resolve conflicting objectives for different species. Such a conflict may be emerging in the northeastern Pacific for southern resident killer whales (Orcinus orca) and their primary prey, Chinook salmon (Oncorhynchus tshawytscha). Both species have at-risk conservation status and transboundary (Canada-US) ranges. We modeled individual killer whale prey requirements from feeding and growth records of captive killer whales and morphometric data from historic live-capture fishery and whaling records worldwide. The models, combined with caloric value of salmon, and demographic and diet data for wild killer whales, allow us to predict salmon quantities needed to maintain and recover this killer whale population, which numbered 87 individuals in 2009. Our analyses provide new information on cost of lactation and new parameter estimates for other killer whale populations globally. Prey requirements of southern resident killer whales are difficult to reconcile with fisheries and conservation objectives for Chinook salmon, because the number of fish required is large relative to annual returns and fishery catches. For instance, a U.S. recovery goal (2.3% annual population growth of killer whales over 28 years) implies a 75% increase in energetic requirements. Reducing salmon fisheries may serve as a temporary mitigation measure to allow time for management actions to improve salmon productivity to take effect. As ecosystem-based fishery management becomes more prevalent, trade-offs between conservation objectives for predators and prey will become increasingly necessary. Our approach offers scenarios to compare relative influence of various sources of uncertainty on the resulting consumption estimates to prioritise future research efforts, and a general approach for assessing the extent of conflict between conservation objectives for threatened or protected wildlife where the interaction between affected species can be quantified.  相似文献   

2.
Killer whales are top predators in marine trophic chains, and therefore their feeding preferences can substantially affect the abundance of species on the lower trophic levels. Killer whales are known to feed on many different types of prey from small fish to large whales, but a given killer whale population usually focuses on a specific type of prey. Stable isotope analysis is widely used to study whale diets, because direct observations are often impossible. Killer whale feeding habits in the western North Pacific are poorly studied, and the large-scale stable isotope analysis provides a unique opportunity to gain insights into the trophic links of this top predator. In this study, we compare the δ13C and δ15N stable isotope values from killer whale skin samples obtained in different areas of the western North Pacific from fish-eating (R-type) and mammal-eating (T-type) killer whale ecotypes. The effect of ecotype was highly significant: both carbon and nitrogen stable isotope values were lower in R-type whales than in T-type whales. The geographical variation also affected killer whale stable isotope values due to both the differences in killer whale diet and the variation in baseline stable isotope values across the study areas.  相似文献   

3.
Killer whales (Orcinus orca) are large predators that occupy the top trophic position in the world''s oceans and as such may have important roles in marine ecosystem dynamics. Although the possible top-down effects of killer whale predation on populations of their prey have received much recent attention, little is known of how the abundance of these predators may be limited by bottom-up processes. Here we show, using 25 years of demographic data from two populations of fish-eating killer whales in the northeastern Pacific Ocean, that population trends are driven largely by changes in survival, and that survival rates are strongly correlated with the availability of their principal prey species, Chinook salmon (Oncorhynchus tshawytscha). Our results suggest that, although these killer whales may consume a variety of fish species, they are highly specialized and dependent on this single salmonid species to an extent that it is a limiting factor in their population dynamics. Other ecologically specialized killer whale populations may be similarly constrained to a narrow range of prey species by culturally inherited foraging strategies, and thus are limited in their ability to adapt rapidly to changing prey availability.  相似文献   

4.
The apparent lack of significant recovery of western North Atlantic right whale populations may be related to the availability of prey in exploitable densities. We have attempted to estimate the concentration of zooplankton required by right whales to obtain a net energetic benefit over the long term, using estimated values for body weight, metabolic rate, assimilation efficiency, time spent feeding, mouth size and swimming speed. The estimated range of required energy densities is 7.57 to 2,394 kcal m−3 (3.17 × 104 to 1.00 × 107 joule m−3). These values are from one to more than three orders of magnitude greater than the densest concentration sampled in the vicinity of right whale aggregations in the Great South Channel. Right whales must seek out and exploit extremely dense patches of prey organisms in order to feed efficiently. The presence of such dense patches of zooplankton is likely to be a primary characteristic of spring, summer and fall right whale habitats.  相似文献   

5.
Predation can regulate prey numbers but predator behaviour in multiple-prey systems can complicate understanding of control mechanisms. We investigate killer whale (Orcinus orca) predation in an ocean system where multiple marine mammal prey coexist. Using stochastic models with Monte-Carlo simulations, we test the most likely outcome of predator selection and compare scenarios where killer whales: (1) focus predation on larger prey which presumably offer more energy per effort, (2) generalize by feeding on prey as encountered during searches, or (3) follow a mixed foraging strategy based on a combination of encounter rate and prey size selection. We test alternative relationships within the Hudson Bay geographic region, where evidence suggests killer whales seasonally concentrate feeding activities on the large-bodied bowhead whale (Balaena mysticetus). However, model results indicate that killer whales do not show strong prey specialization and instead alternatively feed on narwhal (Monodon monoceros) and beluga (Delphinapterus leucas) whales early and late in the ice-free season. Evidence does support the conjecture that during the peak of the open water season, killer whale predation can differ regionally and feeding techniques can focus on bowhead whale prey. The mixed foraging strategy used by killer whales includes seasonal predator specialization and has management and conservation significance since killer whale predation may not be constrained by a regulatory functional response.  相似文献   

6.
The annual migrations of baleen whales are a conspicuous but unexplained feature of their behavioral repertoire. Some hypotheses offered to explain whale migration focus on direct benefits to the calf (thermoregulation, calm water) and some do not (resource tracking, and the “evolutionary holdover” hypothesis). Here, we suggest that a major selective advantage to migrating pregnant female baleen whales is a reduced risk of killer whale (Orcinus orca) predation on their newborn calves in low-latitude waters. Killer whale abundance in high latitudes is substantially greater than that in lower latitudes, and most killer whales do not appear to migrate with baleen whales. We suggest that the distribution of killer whales is determined more by their primary marine mammal prey, pinnipeds, and that following the baleen whale migrations would remove them from their pinniped prey. There are problems with all current hypotheses, most of which stem from a lack of directed research. We explore variation in migratory habits between species, populations, and individuals that may provide a “natural laboratory” for discriminating among the competing hypotheses.  相似文献   

7.

Background

Killer whales (Orcinus orca) are the most widely distributed cetacean, occurring in all oceans worldwide, and within ocean regions different ecotypes are defined based on prey preferences. Prey items are largely unknown in the eastern Canadian Arctic and therefore we conducted a survey of Inuit Traditional Ecological Knowledge (TEK) to provide information on the feeding ecology of killer whales. We compiled Inuit observations on killer whales and their prey items via 105 semi-directed interviews conducted in 11 eastern Nunavut communities (Kivalliq and Qikiqtaaluk regions) from 2007-2010.

Results

Results detail local knowledge of killer whale prey items, hunting behaviour, prey responses, distribution of predation events, and prey capture techniques. Inuit TEK and published literature agree that killer whales at times eat only certain parts of prey, particularly of large whales, that attacks on large whales entail relatively small groups of killer whales, and that they hunt cooperatively. Inuit observations suggest that there is little prey specialization beyond marine mammals and there are no definitive observations of fish in the diet. Inuit hunters and elders also documented the use of sea ice and shallow water as prey refugia.

Conclusions

By combining TEK and scientific approaches we provide a more holistic view of killer whale predation in the eastern Canadian Arctic relevant to management and policy. Continuing the long-term relationship between scientists and hunters will provide for successful knowledge integration and has resulted in considerable improvement in understanding of killer whale ecology relevant to management of prey species. Combining scientists and Inuit knowledge will assist in northerners adapting to the restructuring of the Arctic marine ecosystem associated with warming and loss of sea ice.  相似文献   

8.
Springer et al . (2003) contend that sequential declines occurred in North Pacific populations of harbor and fur seals, Steller sea lions, and sea otters. They hypothesize that these were due to increased predation by killer whales, when industrial whaling's removal of large whales as a supposed primary food source precipitated a prey switch. Using a regional approach, we reexamined whale catch data, killer whale predation observations, and the current biomass and trends of potential prey, and found little support for the prey-switching hypothesis. Large whale biomass in the Bering Sea did not decline as much as suggested by Springer et al ., and much of the reduction occurred 50–100 yr ago, well before the declines of pinnipeds and sea otters began; thus, the need to switch prey starting in the 1970s is doubtful. With the sole exception that the sea otter decline followed the decline of pinnipeds, the reported declines were not in fact sequential. Given this, it is unlikely that a sequential megafaunal collapse from whales to sea otters occurred. The spatial and temporal patterns of pinniped and sea otter population trends are more complex than Springer et al . suggest, and are often inconsistent with their hypothesis. Populations remained stable or increased in many areas, despite extensive historical whaling and high killer whale abundance. Furthermore, observed killer whale predation has largely involved pinnipeds and small cetaceans; there is little evidence that large whales were ever a major prey item in high latitudes. Small cetaceans (ignored by Springer et al .) were likely abundant throughout the period. Overall, we suggest that the Springer et al . hypothesis represents a misleading and simplistic view of events and trophic relationships within this complex marine ecosystem.  相似文献   

9.
Currently, there are three recognized ecotypes (or species) of killer whales (Orcinus orca) in Antarctic waters, including type B, a putative prey specialist on seals, which we refer to as “pack ice killer whale” (PI killer whale). During January 2009, we spent a total of 75.4 h observing three different groups of PI killer whales hunting off the western Antarctic Peninsula. Observed prey taken included 16 seals and 1 Antarctic minke whale (Balaenoptera bonaerensis). Weddell seals (Leptonychotes weddellii) were taken almost exclusively (14/15 identified seal kills), despite the fact that they represented only 15% of 365 seals identified on ice floes; the whales entirely avoided taking crabeater seals (Lobodon carcinophaga; 82% relative abundance) and leopard seals (Hydrurga leptonyx; 3%). Of the seals killed, the whales took 12/14 (86%) off ice floes using a cooperative wave‐washing behavior; they produced 120 waves during 22 separate attacks and successfully took 12/16 (75%) of the Weddell seals attacked. The mean number of waves produced per successful attack was 4.1 (range 1–10) and the mean attack duration was 30.4 min (range 15–62). Seal remains that we examined from one of the kills provided evidence of meticulous postmortem prey processing perhaps best termed “butchering.”  相似文献   

10.
Measuring chemical tracers in tissues of marine predators provides insight into the prey consumed and the predator's contaminant exposure. In this study, samples from Type C killer whales ( Orcinus orca ) biopsied in Antarctica were analyzed for chemical tracers ( i.e. , stable isotopes of carbon and nitrogen, fatty acids, and persistent organic pollutants [POPs]). Profiles of these individual tracers were very different from those of killer whale populations that have been studied in the eastern North and eastern Tropical Pacific. For example, δ13C and δ15N stable isotope values and most POP concentrations were significantly lower in the Antarctic population. In addition, multivariate statistical analyses of both fatty acid and POP profiles found distinctly different patterns for Antarctic Type C whales compared to those from whales in the other populations. Similar assays were conducted on four species of Antarctic marine fish considered potential prey for Type C killer whales. Results were consistent with a diet of fish for Type C whales, but other species ( e.g. , low trophic-level marine mammals or penguins) could not be eliminated as supplemental prey.  相似文献   

11.

Background

Gray whales (Eschrichtius robustus) undertake long migrations, from Baja California to Alaska, to feed on seasonally productive benthos of the Bering and Chukchi seas. The invertebrates that form their primary prey are restricted to shallow water environments, but global sea-level changes during the Pleistocene eliminated or reduced this critical habitat multiple times. Because the fossil record of gray whales is coincident with the onset of Northern Hemisphere glaciation, gray whales survived these massive changes to their feeding habitat, but it is unclear how.

Methodology/Principal Findings

We reconstructed gray whale carrying capacity fluctuations during the past 120,000 years by quantifying gray whale feeding habitat availability using bathymetric data for the North Pacific Ocean, constrained by their maximum diving depth. We calculated carrying capacity based on modern estimates of metabolic demand, prey availability, and feeding duration; we also constrained our estimates to reflect current population size and account for glaciated and non-glaciated areas in the North Pacific. Our results show that key feeding areas eliminated by sea-level lowstands were not replaced by commensurate areas. Our reconstructions show that such reductions affected carrying capacity, and harmonic means of these fluctuations do not differ dramatically from genetic estimates of carrying capacity.

Conclusions/Significance

Assuming current carrying capacity estimates, Pleistocene glacial maxima may have created multiple, weak genetic bottlenecks, although the current temporal resolution of genetic datasets does not test for such signals. Our results do not, however, falsify molecular estimates of pre-whaling population size because those abundances would have been sufficient to survive the loss of major benthic feeding areas (i.e., the majority of the Bering Shelf) during glacial maxima. We propose that gray whales survived the disappearance of their primary feeding ground by employing generalist filter-feeding modes, similar to the resident gray whales found between northern Washington State and Vancouver Island.  相似文献   

12.
The gray whale (Eschrichtius robustus) is a coastal species whose nearshore summer foraging grounds off the coast of British Columbia offer an opportunity to study the fine scale foraging response of baleen whales. We explore the relationship between prey density and gray whale foraging starting with regional scale (10 km) assessments of whale density (per square kilometer) and foraging effort as a response to regional mysid density (per cubic meter), between 2006 and 2007. In addition we measure prey density at a local scale (100 m), while following foraging whales during focal surveys. We found regional mysid density had a significant positive relationship with both gray whale density and foraging effort. We identify a threshold response to regional mysid density for both whale density and foraging effort. In 2008 the lowest average local prey density measured beside a foraging whale was 2,300 mysids/m3. This level was maintained even when regional prey density was found to be substantially lower. Similar to other baleen whales, the foraging behavior of gray whales suggests a threshold response to prey density and a complex appreciation of prey availability across fine scales.  相似文献   

13.
  • 1 The significance of killer whale Orcinus orca predation on baleen whales (Mysticeti) has been a topic of considerable discussion and debate in recent years. Discourse has been constrained by poor understanding of predator‐prey dynamics, including the relative vulnerability of different mysticete species and age classes to killer whales and how these prey animals avoid predation. Here we provide an overview and analysis of predatory interactions between killer whales and mysticetes, with an emphasis on patterns of antipredator responses.
  • 2 Responses of baleen whales to predatory advances and attacks by killer whales appear to fall into two distinct categories, which we term the fight and flight strategies. The fight strategy consists of active physical defence, including self‐defence by single individuals, defence of calves by their mothers and coordinated defence by groups of whales. It is documented for five mysticetes: southern right whale Eubalaena australis, North Atlantic right whale Eubalaena glacialis, bowhead whale Balaena mysticetus, humpback whale Megaptera novaeangliae and grey whale Eschrichtius robustus. The flight strategy consists of rapid (20–40 km/h) directional swimming away from killer whales and, if overtaken and attacked, individuals do little to defend themselves. This strategy is documented for six species in the genus Balaenoptera.
  • 3 Many aspects of the life history, behaviour and morphology of mysticetes are consistent with their antipredator strategy, and we propose that evolution of these traits has been shaped by selection for reduced predation. Fight species tend to have robust body shapes and are slow but relatively manoeuvrable swimmers. They often calve or migrate in coastal areas where proximity to shallow water provides refuge and an advantage in defence. Most fight species have either callosities (rough and hardened patches of skin) or encrustations of barnacles on their bodies, which may serve (either primarily or secondarily) as weapons or armour for defence. Flight species have streamlined body shapes for high‐speed swimming and they can sustain speeds necessary to outrun pursuing killer whales (>15–20 km/h). These species tend to favour pelagic habitats and calving grounds where prolonged escape sprints from killer whales are possible.
  • 4 The rarity of observed successful attacks by killer whales on baleen whales, especially adults, may be an indication of the effectiveness of these antipredator strategies. Baleen whales likely offer low profitability to killer whales, relative to some other marine mammal prey. High‐speed pursuit of flight species has a high energetic cost and a low probability of success while attacks on fight species can involve prolonged handling times and a risk of serious injury.
  相似文献   

14.
Killer whales (Orcinus orca) are increasing in occurrence and residence time in the eastern Canadian Arctic (ECA) in part due to a decrease in sea ice associated with global climate change. Killer whales prey on bowhead whales (Balaena mysticetus) of the Eastern Canada-West Greenland (EC-WG) population, but their patterns of predation pressure and effect on the EC-WG population’s ability to recover from historical whaling remain unknown. We analyzed photographs of individual bowhead whale flukes from five regions within the EC-WG population’s geographic range (Cumberland Sound, Foxe Basin, Isabella Bay, Repulse Bay and Disko Bay), taken during 1986 and from 2007 to 2012, to estimate the occurrence of rake marks (parallel scars caused by killer whale teeth). Of 598 identified whales, 10.2 % bore rake marks from killer whales. A higher occurrence of rake marks was found in Repulse and Disko Bays, where primarily adult bowhead whales occur seasonally, than in Foxe Basin, where juveniles and females with calves occur. Older bowheads, which have had greater exposure time to killer whales due to their age, had higher occurrences of rake marks than juveniles and calves, which may indicate that younger whales do not survive killer whale attacks. A high proportion of adult females also had rake marks, perhaps due to protecting their calves from killer whale predation. In order to quantify the effect of killer whales on EC-WG population recovery, further research is needed on the relationship between the occurrence of rake marks and bowhead adult, calf, and juvenile mortality in the ECA, as well as more information about Arctic killer whale ecology.  相似文献   

15.
Blue whales were widely distributed in the North Pacific prior to the primary period of modern commercial whaling in the early 1900s. Despite concentrations of blue whale catches off British Columbia and in the Gulf of Alaska, there had been few documented sightings in these areas since whaling for blue whales ended in 1965. In contrast, large concentrations of blue whales have been documented off California and Baja California and in the eastern tropical Pacific since the 1970s, but it was not known if these animals were part of the same population that previously ranged into Alaskan waters. We document 15 blue whale sightings off British Columbia and in the Gulf of Alaska made since 1997, and use identification photographs to show that whales in these areas are currently part of the California feeding population. We speculate that this may represent a return to a migration pattern that has existed for earlier periods for eastern North Pacific blue whale population. One possible explanation for a shift in blue whale use is changes in prey driven by changes in oceanographic conditions, including the Pacific Decadal Oscillation (PDO), which coincides with some of the observed shifts in blue whale occurrence.  相似文献   

16.
Group hunting by killer whales for walruses was observed in August 18, 2008, in the littoral area (3 km from the haulout of walruses, Retkyn Spit, Chukotka). The group of killer whales consisted of seven adults (one adult male did not participate in attacks) and two calves. Based on prey type, these killer whales were mammal-eating. The total duration of their hunt activity was not less than 95 min. The hunt consisted of three phases. The first phase was an attack on the group of walruses and choice of individual prey; the second phase was attacks on the chosen walrus; and the third (final) phase was a decrease in activity of killer whales and leaving group with walrus from sea shore. The main behavioral patterns of killer whales during the hunt were discerned. Two killer whales tried to kill walruses by chasing them and jumping out of the water on the shore. The video analysis of the ??attack phase?? showed that killer whales made 55 attacks on the walrus during 17.3 min. On average, each killer whale attacked the walrus seven times. The attack tactics of killer whales, the number of movements, and the location of killer whales (adults and calves) relative to each other and to the walrus were described. Well coordination of their movements and group actions was observed.  相似文献   

17.
Abstract

We report data on the stomach contents of the long‐finned pilot whale, Globicephala melas, recovered from a group of whales stranded on Ruakaka Beach, northeastern New Zealand, in November 2006. In nine whales for which identifiable stomach contents were recovered (three that stranded on 10 November and six that stranded on 11 November) prey remains comprised exclusively cephalopod beaks attributed to five squid species. The stomachs of a further two whales contained unidentifiable upper beaks only, while the stomachs of five whales were completely empty. No whale appeared to have been satiated immediately before stranding, given that the maximum biomass of prey recently consumed by any one whale was calculated to be <5 kg. All squids ingested represented oceanic species, found from 50 to 1000 m but more common towards the deeper end of this range. These data both complement and contrast with the only other dietary information available for this species in New Zealand waters, reported from stomach contents of whales stranded on Farewell Spit, South Island in December 2005.  相似文献   

18.
Mass stranding of several species of beaked whales (family Ziphiidae) associated with exposure to anthropogenic sounds has raised concern for the conservation of these species. However, little is known about the species’ life histories, prey or habitat requirements. Without this knowledge, it becomes difficult to assess the effects of anthropogenic sound, since there is no way to determine whether the disturbance is impacting the species’ physical or environmental requirements. Here we take a bioenergetics approach to address this gap in our knowledge, as the elusive, deep-diving nature of beaked whales has made it hard to study these effects directly. We develop a model for Ziphiidae linking feeding energetics to the species’ requirements for survival and reproduction, since these life history traits would be the most likely to be impacted by non-lethal disturbances. Our models suggest that beaked whale reproduction requires energy dense prey, and that poor resource availability would lead to an extension of the inter-calving interval. Further, given current information, it seems that some beaked whale species require relatively high quality habitat in order to meet their requirements for survival and reproduction. As a result, even a small non-lethal disturbance that results in displacement of whales from preferred habitats could potentially impact a population if a significant proportion of that population was affected. We explored the impact of varying ecological parameters and model assumptions on survival and reproduction, and find that calf and fetus survival appear more readily affected than the survival of adult females.  相似文献   

19.
Reports of killer whales (Orcinus orca) preying on large whales have been relatively rare, and the ecological significance of these attacks is controversial. Here we report on numerous observations of killer whales preying on neonate humpback whales (Megaptera novaeangliae) off Western Australia (WA) based on reports we compiled and our own observations. Attacking killer whales included at least 19 individuals from three stable social groupings in a highly connected local population; 22 separate attacks with known outcomes resulted in at least 14 (64%) kills of humpback calves. We satellite‐tagged an adult female killer whale and followed her group on the water for 20.3 h over six separate days. During that time, they attacked eight humpback calves, and from the seven known outcomes, at least three calves (43%) were killed. Overall, our observations suggest that humpback calves are a predictable, plentiful, and readily taken prey source for killer whales and scavenging sharks off WA for at least 5 mo/yr. Humpback “escorts” vigorously assisted mothers in protecting their calves from attacking killer whales (and a white shark, Carcharodon carcharias). This expands the purported role of escorts in humpback whale social interactions, although it is not clear how this behavior is adaptive for the escorts.  相似文献   

20.
Killer whales (Orcinus orca) have a global distribution, but many high‐latitude populations are not well studied. We provide a comprehensive review of the history and ecology of killer whales in the Canadian Arctic, for which there has previously been little information. We compiled a database of 450 sightings spanning over 15 decades (1850–2008) to document the historical occurrence, distribution, feeding ecology, and seasonality of killer whales observed throughout the region. Sighting reports per decade increased substantially since 1850 and were most frequent in the eastern Canadian Arctic. The mean reported group size was 8.3 (median = 4, range 1–100), but size varied significantly among regions and observed prey types. Observations of predation events indicate that Canadian Arctic killer whales prey upon other marine mammals. Monodontids were the most frequently observed prey items, followed by bowhead whales (Balaena mysticetus), phocids, and groups of mixed mammal prey. No killer whale sightings occurred during winter, with sightings gradually increasing from early spring to a peak in summer, after which sightings gradually decreased. Our results suggest that killer whales are established, at least seasonally, throughout the Canadian Arctic, and we discuss potential ecological implications of increased presence with declining sea ice extent and duration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号