首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objectives of this study were to investigate the presence and annual cycle of sex steroids in scleractinian coral, Euphyllia ancora. The free and conjugated forms of sex steroids in coral and spawning seawater were investigated, and aromatase activity in the coral tissue was identified. Polyps collected from corals and seawater were extracted with diethyl ether, and purified by alumina column and reversed-phase HPLC; testosterone and estradiol-17beta (E2) was measured by a validated RIA. E2 and testosterone in their free and glucuronide forms were consistently detected in coral tissue throughout the year. Peak concentrations of free E2, E2 glucuronide, and testosterone glucuronide were obtained in the coral tissue just prior to spawning. The presence of specific aromatase activity was demonstrated in coral tissue. Free E2 and E2 glucuronide concentrations were higher than androgen (testosterone and testosterone glucuronide) in coral tissue and spawning seawater. Higher concentrations of free E2 than E2 glucuronide were detected in coral tissues throughout the year. In contrast, higher concentrations of E2 glucuronide than free E2 and testosterone glucuronide were found in seawater during mass coral spawning. No steroid sulfate could be detected in the coral tissue and seawater. We suggest that the release of E2 glucuronide may play an important role in coral mass spawning.  相似文献   

2.
Population outbreaks of crown-of-thorns starfish (Acanthaster planci L.) represent one of the most significant biological disturbances on tropical coral reefs and have the potential to devastate coral communities, thereby altering the biological and physical structure of reef habitats. This study reports on changes in area cover, species diversity and taxonomic composition of corals during an outbreak of A. planci at Lizard Island, in the northern Great Barrier Reef, Australia. Mean coral cover declined by 28.8% across ten locations studied. However, densities of A. planci, and their effects on local coral assemblages, were very patchy. Declines in coral cover were mostly due to the selective removal of certain coral taxa (mainly Acropora and Pocilloporidae corals); such that the greatest coral loss occurred at locations with highest initial cover of preferred coral prey. Most notably, coral assemblages in back-reef locations were transformed from topographically complex staghorn Acropora-dominated habitats, to relatively depauperate assemblages dominated by alcyonacean soft corals. Although coral loss was greatest among formerly dominant taxa (especially Acropora), effects were sufficiently widespread across different coral taxa, such that overall coral diversity tended to decline. Clearly, moderate outbreaks of A. planci have the potential to greatly alter community structure of coral communities even if they do not devastate live corals. Recovery in this instance is expected to be very rapid given that all coral taxa persisted, and effects were greatest among fast growing corals.  相似文献   

3.
The microbial community associated with the reef building coral Pocillopora damicornis located on the Great Barrier Reef was investigated using culture-independent molecular microbial techniques. The microbial communities of three separate coral colonies were assessed using clone library construction alongside restriction fragment length polymorphism and phylogenetic analysis. Diversity was also investigated spatially across six replicate samples within each single coral colony using 16S rDNA and rpoB-DGGE analysis. Clone libraries demonstrated that the majority of retrieved sequences from coral tissue slurry libraries affiliated with gamma-Proteobacteria. This contrasted with clone libraries of seawater and coral mucus, which were dominated by alpha-Proteobacteria. A number of retrieved clone sequences were conserved between coral colonies; a result consistent with previous studies suggesting a specific microbe-coral association. rpoB-DGGE patterns of replicate tissue slurry samples underestimated microbial diversity, but demonstrated that fingerprints were identical within the same coral. These fingerprints were also conserved across coral colonies. The 16S rDNA-DGGE patterns of replicate tissue slurry samples were more complex, although non-metric multidimensional scaling (nMDS) analysis showed groupings of these banding patterns indicating that some bacterial diversity was uniform within a coral colony. Sequence data retrieved from DGGE analysis support clone library data in that the majority of affiliations were within the gamma-Proteobacteria. Many sequences retrieved also affiliated closely with sequences derived from previous studies of microbial diversity of healthy corals in the Caribbean. Clones showing high 16S rDNA sequence identity to both Vibrio shiloi and Vibrio coralliilyticus were retrieved, suggesting that these may be opportunist pathogens. Comparisons of retrieved microbial diversity between two different sampling methods, a syringe extracted coral mucus sample and an airbrushed coral tissue slurry sample were also investigated. Non-metric multidimensional scaling of clone library data highlighted that clone diversity retrieved from a coral mucus library more closely reflected the diversity of surrounding seawater than a corresponding coral tissue clone library.  相似文献   

4.
Habitat specificity plays a pivotal role in forming community patterns in coral reef fishes, yet considerable uncertainty remains as to the extent of this selectivity, particularly among newly settled recruits. Here we quantified habitat specificity of juvenile coral reef fish at three ecological levels; algal meadows vs. coral reefs, live vs. dead coral and among different coral morphologies. In total, 6979 individuals from 11 families and 56 species were censused along Ningaloo Reef, Western Australia. Juvenile fishes exhibited divergence in habitat use and specialization among species and at all study scales. Despite the close proximity of coral reef and algal meadows (10's of metres) 25 species were unique to coral reef habitats, and seven to algal meadows. Of the seven unique to algal meadows, several species are known to occupy coral reef habitat as adults, suggesting possible ontogenetic shifts in habitat use. Selectivity between live and dead coral was found to be species-specific. In particular, juvenile scarids were found predominantly on the skeletons of dead coral whereas many damsel and butterfly fishes were closely associated with live coral habitat. Among the coral dependent species, coral morphology played a key role in juvenile distribution. Corymbose corals supported a disproportionate number of coral species and individuals relative to their availability, whereas less complex shapes (i.e. massive & encrusting) were rarely used by juvenile fish. Habitat specialisation by juvenile species of ecological and fisheries importance, for a variety of habitat types, argues strongly for the careful conservation and management of multiple habitat types within marine parks, and indicates that the current emphasis on planning conservation using representative habitat areas is warranted. Furthermore, the close association of many juvenile fish with corals susceptible to climate change related disturbances suggests that identifying and protecting reefs resilient to this should be a conservation priority.  相似文献   

5.
Fragments of the coral Pocillopora spp. were collected from Carrizales Reef to assess two transplantation techniques for coral reef restoration: (1) coral clusters (CC) technique, in which five to seven coral fragments were joined using plastic straps, and (2) simple aggregation (SA) technique, in which fragments were placed evenly on the seabed. Over 270 days, the transplanted fragments were monitored for various indicators of coral health, including skeletal growth, the proportion of colonizing invertebrates, coral fragmentation, the proportion of algal growth, signs of coral disease, and the degree of fusion of coral fragments. We found 95.5% and 89.0% survival of fragments with the CC and SA techniques, respectively. These results indicate that the CC technique leads to greater stability, merger and integration of fragments, and greater aggregation of the fragments with the substrate at transplantation sites. Both transplantation methods are economical and could easily be applied at a broad scale for coral reef restoration.  相似文献   

6.
A 3-dimensional individual-based model, the ReefModel, was developed to simulate the dynamical structure of coral reef community using object-oriented techniques. Interactions among functional groups of reef organisms were simulated in the model. The behaviours of these organisms were described with simple mechanistic rules that were derived from their general behaviours (e.g. growing habits, competitive mechanisms, response to physical disturbance) observed in natural coral reef communities. The model was implemented to explore the effects of physical disturbance on the dynamical structure of a 3-coral community that was characterized with three functional coral groups: tabular coral, foliaceous coral and massive coral. Simulation results suggest that (i) the integration of physical disturbance and differential responses (disturbance sensitivity and growing habit) of corals plays an important role in structuring coral communities; (ii) diversity of coral communities can be maximal under intermediate level of acute physical disturbance; (iii) multimodality exists in the final states and dynamic regimes of individual coral group as well as coral community structure, which results from the influence of small random spatial events occurring during the interactions among the corals in the community, under acute and repeated physical disturbances. These results suggest that alternative stable states and catastrophic regime shifts may exist in a coral community under unstable physical environment.  相似文献   

7.
Coral reefs are undergoing rapid changes as living corals give way to dead coral on which other benthic organisms grow. This decline in live coral could influence habitat availability for fish parasites with benthic life stages. Gnathiid isopod larvae live in the substratum and are common blood-feeding parasites of reef fishes. We examined substrate associations and preferences of a common Caribbean gnathiid, Gnathia marleyi. Emergence traps set over predominantly live coral substrata captured significantly fewer gnathiids than traps set over dead coral substrata. In laboratory experiments, gnathiids preferred dead coral and sponge and tended to avoid contact with live coral. When live gnathiids were added to containers with dead or live coral, significantly fewer were recovered from the latter after 24 h. Our data therefore suggest that live coral is not suitable microhabitat for parasitic gnathiid isopods and that a decrease in live coral cover increases available habitat for gnathiids.  相似文献   

8.
珊瑚礁生态脆弱性评价——以泰国思仓岛为例   总被引:1,自引:0,他引:1  
珊瑚礁生态系统受到环境变化、人类活动等各种因素的严重威胁,保护珊瑚礁生态系统是目前全球海洋生态保护的热点,对珊瑚礁开展定量的生态脆弱性评估能够为保护管理对策的制定提供重要科学依据。本研究选取泰国思仓岛作为研究区域,结合空间分析技术建立了具有通用性的珊瑚礁生态脆弱性评估方法。基于ESA模型构建了珊瑚礁生态脆弱性综合指数和评价指标体系,系统分析了思仓岛珊瑚礁脆弱性的来源、构成,并直观展现了脆弱性的区域空间分布。结果表明:思仓岛研究区东北侧的珊瑚礁生态脆弱性大于西南侧,当地珊瑚礁的关键影响因子分别为驳船排污、港口码头、水体透明度等。根据脆弱性评价的结果,提出了当地珊瑚礁保护与修复的空间分区管理对策。本研究为印度-太平洋区系珊瑚礁生态脆弱性评价提供了可行的示例,也为中国的珊瑚礁可持续管理研究提供了借鉴和参照。  相似文献   

9.
Yu  Xiaopeng  Yu  Kefu  Chen  Biao  Liao  Zhiheng  Liang  Jiayuan  Yao  Qiucui  Qin  Zhenjun  Wang  Hao  Yu  Jiaoyang 《Coral reefs (Online)》2021,40(6):1697-1711

Ecological surveys observe coral “winners” and “losers” in global coral bleaching events. However, the key contributors to holobiont tolerance and interactions between symbionts remain unclear. Herein, we compared bleaching and unbleaching Acropora pruinosa corals from Weizhou Island, during an extreme high-temperature event in the northern South China Sea in 2020. We found the dominant Symbiodiniaceae subclade in the bleaching and unbleaching corals to be C1; however, the density of Symbiodiniaceae in the latter was significantly higher than that in the former. Additionally, the symbiotic bacteria α diversity in the unbleaching coral was significantly higher than that in the bleaching coral, with a reorganized bacterial community structure. Core microbiome analyses revealed 55 bacterial core operational taxonomic units (OTUs), of which 10 were significantly differentially enriched between the two coral groups. The significantly enriched bacterial core OTUs in the unbleaching coral were primarily nitrogen cycling related, while those enriched in the bleaching coral were associated with antimicrobial activity. RNA-Seq analyses revealed that significantly upregulated genes in the bleaching coral were primarily associated with diseases and autophagy, while those in the unbleaching coral were associated with immune defense and maintenance of the symbiotic relationship between corals and symbionts. We propose that the differences in tolerance of A. pruinosa result from the cooperation between coral host, Symbiodiniaceae, and symbiotic bacteria. In extreme high-temperature events, unbleaching corals may maintain stable symbiotic relationships by increasing the diversity of symbiotic bacteria, regulating the structure of the symbiotic bacteria community, improving the interaction between coral host and symbiont and enhancing host immunity, thus avoiding coral bleaching. This study illuminates the relationship between the coral symbiont and tolerance differences of coral holobionts, providing new insights for further exploration into the adaptability of scleractinian corals in the context of global warming.

  相似文献   

10.
The high biodiversity of coral reefs is attributable to the many invertebrate groups which live in symbiotic relationships with other reef organisms, particularly those which associate with the living coral habitat. However, few studies have examined the diversity and community structure of coral-dwelling invertebrates and how they vary among coral species. This study quantified the species richness and composition of animals associated with four common species of branching corals (Acropora nasuta, A. millepora, Pocillopora damicornis, and Seriatopora hystrix) at Lizard Island in the northern Great Barrier Reef. One hundred and seventy-eight nominal species from 12 different phyla were extracted across 50 replicate colonies of each coral host. A single coral colony, approximately 20 cm in diameter, harbored as many as 73 individuals and 24 species. There were substantial differences in invertebrate species composition among coral hosts of different families as well as genera. Twenty-seven species (15% of all taxa collected) were found on only one of the four different coral species, which may potentially indicate some level of specialization among coral hosts. The distinct assemblages on different coral species, and the presence of potential specialists, suggests invertebrate communities will be sensitive to the differential loss of branching coral species resulting from coral reef degradation.  相似文献   

11.
There are limited quantitative data available documenting the natural, or non-epizootic, occurrence of scleractinian coral diseases over multiple years. Individual coral colonies exhibiting black band disease (BBD), white plague (WP), dark spots syndrome (DSS), and white band disease (WBD) were monitored 3 times per year on 5 south Florida reefs over a 2 yr period. Surveys included measurements of coral population composition, coral diversity, disease type, coral species affected, colony size, percent of colony affected, and the number of lesions or active infections per colony. Data on re-infections of the same colonies, multiple infections per colony, disease duration, disease-associated tissue mortality, and coral recruitment are also presented. A total of 674 coral colonies exhibiting coral diseases were tagged and monitored. DSS was the most common syndrome (n = 620 infected colonies), but BBD and WP infections caused the largest amount of coral tissue death. The only disease that exhibited a linear increase in incidence with elevated temperature was BBD. DSS and BBD were the most persistent conditions, and WP infections were comparatively short-lived, with obvious signs of disease typically disappearing after 2 to 3 mo. The only disease that caused total colony death as oppposed to partial mortality during the survey period was WBD. WP and DSS incidence was significantly positively correlated with the relative frequency of the species most commonly affected by each disease at each study site. Of the 61 colonies examined in the recruitment survey, only 5 scleractinian coral recruits were identified. The most commonly recorded colonizer of exposed coral skeleton was filamentous/turf algae, thus indicating the potential for a shift towards algal-dominated reef communities.  相似文献   

12.
Climate change is reshaping biological communities against a background of existing human pressure. Evaluating the impacts of multiple stressors on community dynamics can be particularly challenging in species‐rich ecosystems, such as coral reefs. Here, we investigate whether life‐history strategies and cotolerance to different stressors can predict community responses to fishing and temperature‐driven bleaching using a 20‐year time series of coral assemblages in Kenya. We found that the initial life‐history composition of coral taxa largely determined the impacts of bleaching and coral loss. Prior to the 1998 bleaching event, coral assemblages within no‐take marine reserves were composed of three distinct life histories – competitive, stress‐tolerant and weedy– and exhibited strong declines following bleaching with limited subsequent recovery. In contrast, fished reefs had lower coral cover, fewer genera and were composed of stress‐tolerant and weedy corals that were less affected by bleaching over the long term. Despite these general patterns, we found limited evidence for cotolerance as coral genera and life histories were variable in their sensitivities to fishing and bleaching. Overall, fishing and bleaching have reduced coral diversity and led to altered coral communities of ‘survivor’ species with stress‐tolerant and weedy life histories. Our findings are consistent with expectations that climate change interacting with existing human pressure will result in the loss of coral diversity and critical reef habitat.  相似文献   

13.
Although the global decline in coral reef health is likely to have profound effects on reef associated fishes, these effects are poorly understood. While declining coral cover can reduce the abundance of reef fishes through direct effects on recruitment and/or mortality, recent evidence suggests that individuals may survive in disturbed habitats, but may experience sublethal reductions in their condition. This study examined the response of 2 coral associated damselfishes (Pomacentridae), Chrysiptera parasema and Dascyllus melanurus, to varying levels of live coral cover. Growth, persistence, and the condition of individuals were quantified on replicate coral colonies in 3 coral treatments: 100% live coral (control), 50% live coral (partial) and 0% live coral (dead). The growth rates of both species were directly related to the percentage live coral cover, with individuals associated with dead corals exhibiting the slowest growth, and highest growth on control corals. Such differences in individual growth between treatments were apparent after 29 d. There was no significant difference in the numbers of fishes persisting or the physiological condition of individuals between different treatments on this time-scale. Slower growth in disturbed habitats will delay the onset of maturity, reduce lifetime fecundity and increase individual's vulnerability to gape-limited predation. Hence, immediate effects on recruitment and survival may underestimate the longer-term impacts of declining coral on the structure and diversity of coral-associated reef fish communities.  相似文献   

14.
The surface area of corals represents a major reference parameter for the standardization of flux rates, for coral growth investigations, and for investigations of coral metabolism. The methods currently used to determine the surface area of corals are rather approximate approaches lacking accuracy, or are invasive and often destructive methods that are inapplicable for experiments involving living corals. This study introduces a novel precise and non-destructive technique to quantify surface area in living coral colonies by applying computed tomography (CT) and subsequent 3D reconstruction. Living coral colonies of different taxa were scanned by conventional medical CT either in air or in sea water. Resulting data volumes were processed by 3D modeling software providing realistic 3D coral skeleton surface reconstructions, thus enabling surface area measurements. Comparisons of CT datasets obtained from calibration bodies and coral colonies proved the accuracy of the surface area determination. Surface area quantifications derived from two different surface rendering techniques applied for scanning living coral colonies showed congruent results (mean deviation ranging from 1.32 to 2.03%). The validity of surface area measurement was verified by repeated measurements of the same coral colonies by three test persons. No significant differences between all test persons in all coral genera and in both surface rendering techniques were found (independent sample t-test: all n.s.). Data analysis of a single coral colony required approximately 15 to 30 min for a trained user using the isosurface technique regardless of the complexity and growth form of the latter, rendering the method presented in this study as a time-saving and accurate method to quantify surface areas in both living coral colonies and bare coral skeletons. Communicated by Biology Editor Dr Michael Lesser  相似文献   

15.
The feeding diets of 18 Chaetodontid fishes from a coral reef of Moorea (French Polynesia) were studied by quantitative analysis of their stomach contents. Three major types of feeding behaviours were distinguished. Sixteen species essentially ingested coral polyps. Among these species, 5 were exclusive coral browsers and the others displayed more heterogeneous diets. One species was a plankton feeder and the other consumed benthic invertebrates other than corals. The importance of coral consumption on the reef by Chaetodontid fishes was estimated knowing the feeding diets and density of species in the various biota. Moreover, the species which were previously observed as quantitatively dominant in the different reef zones, were found to be exclusive coral browsers. Besides, the proportion between obligative and facultative coral feeders was found to be relatively constant on the reef, emphasizing that a balance is established among the Chaetodontid species occupying the same habitat for the resource partitioning.  相似文献   

16.
Sea-level rise will change environmental conditions on coral reef flats, which comprise extensive habitats in shallow tropical seas and support a wealth of ecosystem services. Rapid relative sea-level rise of 0.6 m over a relatively pristine coral reef in Solomon Islands, caused by a subduction earthquake in April 2007, generated a unique opportunity to examine in situ coral reef response to relative sea-level rise of the magnitude (but not the rate) anticipated by 2100. Extent of live coral was measured from satellite imagery in 2003, 2006, 2009 and 2012. Ecological data were obtained from microatolls and ecological surveys in May 2013. The reef was sampled at 12 locations where dense live hard coral remained absent, remained present or changed from absent to present following subsidence. Ecological data (substratum depth, live coral canopy depth, coral canopy height, substratum suitability, recruitment, diversity and Acropora presence) were measured at each location to identify factors associated with coral response to relative sea-level rise. Vertical and horizontal proliferation of coral occurred following subsidence. Lateral expansion of live coral, accomplished primarily by branching Acropora spp., resulted in lower diversity in regions which changed composition from pavement to dense live coral following subsidence. Of the ecological factors measured, biotic factors were more influential than abiotic factors; species identity was the most important factor in determining which regions of the reef responded to rapid sea-level rise. On relatively pristine reef flats under present climatic conditions, rapid relative sea-level rise generated an opportunity for hard coral to proliferate. However, the species assemblage of the existing reef was important in determining response to sea-level change, by providing previously bare substrate with a source of new coral colonies. Degraded reefs with altered species composition and slower coral growth rates may be less able to respond to climate change-induced sea-level changes.  相似文献   

17.
The structure of coral reef habitat has a pronounced influence on the diversity, composition and abundance of reef-associated fishes. However, the particular features of the habitat that are most critical are not always known. Coral habitats can vary in many characteristics, notably live coral cover, topographic complexity and coral diversity, but the relative effects of these habitat characteristics are often not distinguished. Here, we investigate the strength of the relationships between these habitat features and local fish diversity, abundance and community structure in the lagoon of Lizard Island, Great Barrier Reef. In a spatial comparison using sixty-six 2m2 quadrats, fish species richness, total abundance and community structure were examined in relation to a wide range of habitat variables, including topographic complexity, habitat diversity, coral diversity, coral species richness, hard coral cover, branching coral cover and the cover of corymbose corals. Fish species richness and total abundance were strongly associated with coral species richness and cover, but only weakly associated with topographic complexity. Regression tree analysis showed that coral species richness accounted for most of the variation in fish species richness (63.6%), while hard coral cover explained more variation in total fish abundance (17.4%), than any other variable. In contrast, topographic complexity accounted for little spatial variation in reef fish assemblages. In degrading coral reef environments, the potential effects of loss of coral cover and topographic complexity are often emphasized, but these findings suggest that reduced coral biodiversity may ultimately have an equal, or greater, impact on reef-associated fish communities.  相似文献   

18.
The present study aimed to investigate the spatial structure of fish communities at juvenile and adult stages on coral reefs at Kudaka Island (Ryukyu Archipelago, Japan) and to relate spatial patterns in the structure of the fish communities to gradients in environmental variables. Diurnal visual censuses allowed us to record 2,602 juveniles belonging to 60 species and 1,543 adults belonging to 53 species from October to December 2005. The distribution of species highlighted that the juvenile community was organised into three distinct assemblages, rather than exhibiting gradual change in community structure along the cross-reef gradient. Correlations between spatial patterns of juvenile community and environmental variables revealed that the most significant factors explaining variation in community structure were coral rubble and coral slab. In contrast, the adult community was organised into one assemblage, and the most significant variation factors in community structure were depth, live coral in massive form, live coral in branched form, dead coral and sand. Overall, the present study showed that most juvenile and adult coral reef fish at Kudaka Island exhibited striking patterns in their distribution and depth and some biological factors (e.g., abundance of live coral, dead coral and coral rubble) might exert considerable influence on the distribution of fishes.  相似文献   

19.
The effect of increased light intensity and heat stress on heat shock protein Hsp60 was examined in two coral species using a branched coral and a laminar coral, selected for their different resistance to environmental perturbation. Transient Hsp60 induction was observed in the laminar coral following either light or thermal stress. Sustained induction was observed when these stresses were combined. The branched coral exhibited comparatively weak transient Hsp60 induction after heat stress and no detectable induction following light stress, consistent with its susceptibility to bleaching in native environments compared to the laminar coral. Our observations also demonstrate that increased light intensity and heat stress exhibited a greater negative impact on the photosynthetic capacity of environmentally sensitive branched coral than the more resistant laminar coral. This supports a correlation between stress induction of Hsp60 and (a) ability to counter perturbation of photosynthetic capacity by light and heat stress and (b) resistance to environmentally induced coral bleaching.  相似文献   

20.
Coral bleaching: the winners and the losers   总被引:11,自引:0,他引:11  
Sea surface temperatures were warmer throughout 1998 at Sesoko Island, Japan, than in the 10 preceding years. Temperatures peaked at 2.8 °C above average, resulting in extensive coral bleaching and subsequent coral mortality. Using random quadrat surveys, we quantitatively documented the coral community structure one year before and one year after the bleaching event. The 1998 bleaching event reduced coral species richness by 61% and reduced coral cover by 85%. Colony morphology affected bleaching vulnerability and subsequent coral mortality. Finely branched corals were most susceptible, while massive and encrusting colonies survived. Most heavily impacted were the branched Acropora and pocilloporid corals, some of which showed local extinction. We suggest two hypotheses whose synergistic effect may partially explain observed mortality patterns (i.e. preferential survival of thick-tissued species, and shape-dependent differences in colony mass-transfer efficiency). A community-structural shift occurred on Okinawan reefs, resulting in an increase in the relative abundance of massive and encrusting coral species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号