首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Net ecosystem exchange (NEE) of C varies greatly among Arctic ecosystems. Here, we show that approximately 75 per cent of this variation can be accounted for in a single regression model that predicts NEE as a function of leaf area index (LAI), air temperature and photosynthetically active radiation (PAR). The model was developed in concert with a survey of the light response of NEE in Arctic and subarctic tundras in Alaska, Greenland, Svalbard and Sweden. Model parametrizations based on data collected in one part of the Arctic can be used to predict NEE in other parts of the Arctic with accuracy similar to that of predictions based on data collected in the same site where NEE is predicted. The principal requirement for the dataset is that it should contain a sufficiently wide range of measurements of NEE at both high and low values of LAI, air temperature and PAR, to properly constrain the estimates of model parameters. Canopy N content can also be substituted for leaf area in predicting NEE, with equal or greater accuracy, but substitution of soil temperature for air temperature does not improve predictions. Overall, the results suggest a remarkable convergence in regulation of NEE in diverse ecosystem types throughout the Arctic.  相似文献   

2.
基于生命周期评价的上海市水稻生产的碳足迹   总被引:12,自引:0,他引:12  
碳足迹是指由企业、组织或个人引起的碳排放的集合。参照PAS2050规范并结合生命周期评价方法对上海市水稻生产进行了碳足迹评估。结果表明:(1)目前上海市水稻生产的碳排放为11.8114 t CO2e/hm2,折合每吨水稻生产周期的碳足迹为1.2321 t CO2e;(2)稻田温室气体排放是水稻生产最主要的碳排放源,每吨水稻生产的总排放量为0.9507 t CO2e,占水稻生产全部碳排放的77.1%,其中甲烷(CH4)又是最主要的温室气体,对稻田温室气体碳排放的贡献率高达96.6%;(3)化学肥料的施用是第二大碳排放源,每吨水稻生产的总排放量为0.2044 t CO2e,占水稻生产总碳排放的16.5%,其中N最高,排放量为0.1159 t CO2e。因此,上海低碳水稻生产的关键在降低稻田甲烷的排放,另外可通过提高氮肥利用效率,减少氮肥施用等方法减少种植过程中碳排放。  相似文献   

3.
Life cycle assessment (LCA) was combined with primary data from nine forest harvesting operations in New York, Maine, Massachusetts, and Vermont, from 2013 to 2019 where forest biomass (FB) for bioenergy was one of several products. The objective was to conduct a data‐driven study of greenhouse gas emissions associated with FB feedstock harvesting operations in the Northeast United States. Deterministic and stochastic LCA models were built to simulate the current FB bioenergy feedstock supply chain in the Northeast US with a cradle‐to‐gate scope (forest harvest through roadside loading) and a functional unit of 1.0 Mg of green FB feedstock at a 50% moisture content. Baseline LCA, sensitivity analysis, and uncertainty analyses were conducted for three different FB feedstock types—dirty chips, clean chips, and grindings—enabling an empirically driven investigation of differences between feedstock types, individual harvesting process contributions, and literature comparisons. The baseline LCA average impacts were lower for grindings (4.57 kg CO2eq/Mg) and dirty chips (7.16 kg CO2eq/Mg) than for clean chips (23.99 kg CO2eq/Mg) under economic allocation, but impacts were of similar magnitude under mass allocation, ranging from 24.42 to 27.89 kg CO2eq/Mg. Uncertainty analysis showed a wider range of probable results under mass allocation compared to economic allocation. Sensitivity analysis revealed the impact of variations in the production masses and total economic values of primary products of forest harvests on the LCA results due to allocation of supply chain emissions. The high variability in fuel use between logging contractors also had a distinct influence on LCA results. The results of this study can aid decision‐makers in energy policy and guide emissions reductions efforts while informing future LCAs that expand the system boundary to regional FB energy pathways, including electricity generation, transportation fuels, pellets for heat, and combined heat and power.  相似文献   

4.
The net CO2 exchange of forests was investigated to study net atmospheric impact of forest bioenergy production (BP) and utilization in Finnish boreal conditions. Net CO2 exchange was simulated with a life cycle assessment tool over a 90‐year period and over the whole Finland based on National Forest Inventory data. The difference in the net exchanges between the traditional timber production (TP) and BP regime was considered the net atmospheric impact of forest bioenergy utilization. According to the results, forests became net sources of CO2 after about 20 years of simulation, and the net exchange was higher in the BP regime than in the TP regime until the middle of the simulation period. From 2040 onwards, the net exchange started to decrease in both regimes and became higher in the TP regime, excluding the last decade of the simulation. The shift of forests to becoming a CO2 source reflected the decrease in CO2 sequestration due to the increasing share of recently harvested and seedling stands that are acting as sources of CO2, and an increase of emissions from degradation of wood products. When expressed in terms of radiative forcing, the net atmospheric impact was on average 19% less for bioenergy compared with that for coal energy over the whole simulation period. The results show the importance of time dependence when considering dynamic forest ecosystems in BP and climate change mitigation. Furthermore, the results emphasize the dualistic role and possibilities of forest management in controlling the build and release of carbon into and from the stocks and in controlling the rate of the build speed, i.e. growth. This information is needed in identifying the capability and possibilities of ecosystems to produce biomass for energy, alongside other products and ecosystem services (e.g. pulp wood and timber), and simultaneously to mitigate climate change.  相似文献   

5.
Short rotation coppices (SRC) are considered prime candidates for biomass production, yielding good‐quality feedstock that is easy to harvest. Besides technical, social and economical aspects, environmental issues are important to be taken into account when developing SRC. Here, we evaluated the environmental impacts of delivering 1 GJ of heat from eucalyptus SRC using life cycle assessment (LCA), based on management scenarios involving different rotations lengths, fertilizer input rates, stem densities and harvest methods. Compared to equivalent fossil chains, all eucalyptus scenarios achieved savings of fossil energy and greenhouse gas (GHG) emissions in the 80–90% range, and had generally lower impacts, except for eutrophication. The 3 year rotation scenario was the most energy and GHG‐intensive, whereas manual felling for the longer rotations resulted in twofold larger photochemical ozone impacts compared to the other scenarios. Transportation of wood chips and fertilization were the top two contributors to the impacts, the latter being more important with the shorter rotation lengths due to the evergreen character of eucalyptus. The possibility of including ecosystem carbon dynamics was also investigated, by translating the temporary sequestration of atmospheric CO2 in the above and belowground biomass of eucalyptus as CO2 savings using various published equivalence factors. This offset the life cycle GHG emissions of heat provision from eucalyptus SRC by 70–400%.  相似文献   

6.
Forests are a significant pool of terrestrial carbon. A key feature related to forest biomass harvesting and use is the typical time difference between carbon release into and sequestration from the atmosphere. Traditionally, the use of sustainably grown biomass has been considered as carbon neutral in life cycle assessment (LCA) studies. However, various approaches to account for greenhouse gas (GHG) emissions and sinks of forest biomass acquisition and use have also been developed and applied, resulting in different conclusions on climate impacts of forest products. The aim of this study is to summarize, clarify, and assess the suitability of these approaches for LCA. A literature review is carried out, and the results are analyzed through an assessment framework. The different approaches are reviewed through their approach to the definition of reference land‐use situation, consideration of time frame and timing of carbon emissions and sequestration, substitution credits, and indicators applied to measure climate impacts. On the basis of the review, it is concluded that, to account for GHG emissions and the related climate impacts objectively, biomass carbon stored in the products and the timing of sinks and emissions should be taken into account in LCA. The reference situation for forest land use has to be defined appropriately, describing the development in the absence of the studied system. We suggest the use of some climate impact indicator that takes the timing of the emissions and sinks into consideration and enables the use of different time frames. If substitution credits are considered, they need to be transparently presented in the results. Instead of carbon stock values taken from the literature, the use of dynamic forest models is recommended.  相似文献   

7.
Life cycle assessment of contaminated sites remediation   总被引:1,自引:0,他引:1  
For the federal state of Baden-Wiirttemberg, Germany, the decision tool “Umweltbilanz von Altlastensanierungsverfahren” has been developed and found suitable for the quantification and evaluation of environmental impacts caused by remediation of contaminated sites. The developed tool complements the remediation toolbox of Baden-Wiirttemberg. The tool includes a streamlined life cycle assessment (LCA) and a synopsis of the LCA results with the results of a risk assessment of the contaminated site. The risk assessment tool is not explained here. The data base for the life cycle inventory includes several techniques used in remedial actions. The life cycle impact assessment utilises 14 impact categories. The method allows comparisons between remedial options for specific contaminated sites. A software tool has been developed to be available in 1999.  相似文献   

8.
《植物生态学报》2016,40(12):1219
AimsGlobal warming could have profound effects on ecosystem carbon (C) fluxes in alpine ecosystems. The aim of our study is to examine the effects of gradient warming on net ecosystem carbon exchange (NEE).MethodsIn the Northern Tibetan Grassland Ecosystem Research Station (Nagqu station), Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, we conducted various levels of temperature increasing experiments (i.e., 2 °C and 4 °C increments). The warming was achieved using open-top chambers (OTCs). In total, there were three levels of temperature treatments (control, 2 °C and 4 °C increment), and four replicates for each treatment. The ecosystem NEE was monitored every five days during the growing season in 2015.Important findings Our findings highlight the importance of soil moisture in mediating the responses of NEE to climatic warming in alpine meadow ecosystem. The 4 °C warming significantly stimulated NEE,except for July measurements. The 2 °C warming had no effects on NEE during the growing season. Compared to the 2 °C warming, the 4 °C warming significantly stimulated NEE. The results showed that our targeted ecosystem acts as a carbon sink under 2 °C warming, whereas will act as a net carbon source under 4 °C warming in the future. This study provides basic data and theoretical basis for evaluating the alpine ecosystem’s responses to climate change.  相似文献   

9.
全球气候变暖将对陆地生态系统(尤其是高寒草甸生态系统)碳循环产生深远影响。该研究依托中国科学院地理科学与资源研究所藏北高原草地生态系统研究站(那曲站), 设置不同增温幅度实验, 模拟未来2 ℃增温和4 ℃增温的情景, 探究不同增温幅度对青藏高原高寒草甸净生态系统碳交换(NEE)的影响。研究结果显示: 1)在2015年生长季(6-9月), 不增温和2 ℃增温处理下NEE小于0, 总体表现为碳汇, 而4 ℃增温处理下NEE大于0, 总体表现为碳源; 2)在生长季的6月、8月及整个生长季, 与不增温相比, 4 ℃增温处理显著提高了NEE, 而2 ℃增温处理没有显著改变NEE; 7月, 2 ℃和4 ℃增温处理均显著提高了NEE; 3)在半干旱的高寒草甸生态系统, 土壤水分是决定NEE的关键因素, 增温通过降低土壤水分而导致高寒草甸生态系统碳汇能力下降。该研究可为青藏高原高寒草甸生态系统应对未来气候变化提供基础数据和理论依据。  相似文献   

10.
Nanomaterials are expected to play an important role in the development of sustainable products. The use of nanomaterials in solar cells has the potential to increase their conversion efficiency. In this study, we performed a life cycle assessment (LCA) for an emerging nanowire‐based solar technology. Two lab‐scale manufacturing routes for the production of nanowire‐based solar cells have been compared—the direct growth of GaInP nanowires on silicon substrate and the growth of InP nanowires on native substrate, peel off, and transfer to silicon substrate. The analysis revealed critical raw materials and processes of the current lab‐scale manufacturing routes such as the use of trifluoromethane (CHF3), gold, and an InP wafer and a stamp, which are used and discarded. The environmental performance of the two production routes under different scenarios has been assessed. The scenarios include the use of an alternative process to reduce the gold requirements—electroplating instead of metallization, recovery of gold, and reuse of the InP wafer and the stamp. A number of suggestions, based on the LCA results—including minimization of the use of gold and further exploration for upscaling of the electroplating process, the increase in the lifetimes of the wafer and the stamp, and the use of fluorine‐free etching materials—have been communicated to the researchers in order to improve the environmental performance of the technology. Finally, the usefulness and limitations of lab‐scale LCA as a tool to guide the sustainable development of emerging technologies are discussed.  相似文献   

11.
广州市十种森林生态系统的碳循环   总被引:2,自引:0,他引:2  
为了探讨南亚热带森林生态系统碳循环的规律,在广泛收集资料和试验数据的基础上,对广州10种森林生态系统的碳循环进行研究.结果表明:10种森林生态系统的碳密度在108.35~151.85 t C·hm-2,其中乔木层碳密度在10.85~48.86 t C·hm-2,0~60 cm土壤层在87.74~99.01 t C·hm-2,均低于全国平均水平;从大气流向植被层的碳流量为4.41~9.15 t C·hm-2·a-1,植被层流向土壤层的碳流量为0.74~2.06 t C·hm-2·a-1,土壤层流向大气层的碳流量为3.94~5.42 t C·hm-2·a-1,即系统从大气净吸收碳在0.47~4.97 t C·hm-2·a-1之间.各种林分的净系统生产力不同,阔叶林大于针叶林,混交林大于纯林,天然次生林大于人工林.  相似文献   

12.
Central Asia is covered by vast desert ecosystems, and the majority of these ecosystems have alkaline soils. Their contribution to global net ecosystem CO2 exchange (NEE) is of significance simply because of their immense spatial extent. Some of the latest research reported considerable abiotic CO2 absorption by alkaline soil, but the rate of CO2 absorption has been questioned by peer communities. To investigate the issue of carbon cycle in Central Asian desert ecosystems with alkaline soils, we have measured the NEE using eddy covariance (EC) method at two alkaline sites during growing season in Kazakhstan. The diurnal course of mean monthly NEE followed a clear sinusoidal pattern during growing season at both sites. Both sites showed significant net carbon uptake during daytime on sunny days with high photosynthetically active radiation (PAR) but net carbon loss at nighttime and on cloudy and rainy days. NEE has strong dependency on PAR and the response of NEE to precipitation resulted in an initial and significant carbon release to the atmosphere, similar to other ecosystems. These findings indicate that biotic processes dominated the carbon processes, and the contribution of abiotic carbon process to net ecosystem CO2 exchange may be trivial in alkaline soil desert ecosystems over Central Asia.  相似文献   

13.
森林生态系统碳循环动态仿真系统的设计   总被引:1,自引:0,他引:1  
模型方法是森林碳循环研究的有力工具.在Simulink环境下设计开发了通用的森林生态系统碳循环动态仿真系统FORCASS,从仿真系统的模式框架、设计方案和开发过程方面进行综合分析表明,FORCASS具有可行性.该仿真系统具有如下特点:1)将森林生态系统划分为植被碳库、枯落物碳库、土壤碳库和动物碳库4个分室,考虑了众多碳流转移项,具有较高的机理性和解释性;2)仿真系统基于过程,以植被器官生物量碳储量Richards生长方程为驱动项,带入差分方程组进行计算,可操作性高,能够实现林龄变化下的植被净第一性生产力(NPP)、净生态系统生产力(NEP)等多种输出;3)仿真系统基于通用的碳循环模式框架建立,可扩展性能良好.  相似文献   

14.
Seasonal net carbon dioxide exchange of a beech forest with the atmosphere   总被引:10,自引:0,他引:10  
The seasonal carbon dioxide exchange of a beech forest of Central Italy was studied by means of the eddy covariance technique. Additional measurements of biomass respiration with cuvettes and relationship of carbon dioxide exchanges with temperature and light were used to interpolate missing data during the dormant and part of the growing season. The net ecosystem production of the forest equals 472 g C m?2 y?1 while the gross ecosystem production 1016 g C m?2 y?1 and respiration 544 g C m?2 y?1. These estimates are compared with the net primary production determined by direct biomass sampling which amounts to 802 g C m?2 y?1.  相似文献   

15.
Connected and automated vehicles (CAVs) are emerging technologies expected to bring important environmental, social, and economic improvements in transportation systems. Given their implications in terms of air quality and sustainable and safer movement of goods, heavy‐duty trucks (HDTs), carrying the majority of U.S. freight, are considered an ideal domain for the application of CAV technology. An input–output (IO) model is developed based on the Eora database—a detailed IO database that consists of national IO tables, covering almost the entire global economy. Using the Eora‐based IO model, this study quantifies and assesses the environmental, economic, and social impacts of automated diesel and battery electric HDTs based on 20 macro‐level indicators. The life cycle sustainability performances of these HDTs are then compared to that of a conventional diesel HDT. The study finds an automated diesel HDT to cause 18% more fatalities than an automated electric HDT. The global warming potential (GWP) of automated diesel HDTs is estimated to be 4.7 thousand metric tons CO2‐eq. higher than that of automated electric HDTs. The health impact costs resulting from an automated diesel HDT are two times higher than that of an automated electric HDT. Overall, the results also show that automation brings important improvements to the selected sustainability indicators of HDTs such as global warming potential, life cycle cost, GDP, decrease in import, and increase in income. The findings also show that there are significant trade‐offs particularly between mineral and fossil resource losses and environmental gains, which are likely to complicate decision‐making processes regarding the further development and commercialization of the technology.  相似文献   

16.
Life cycle assessment of biofuels: Energy and greenhouse gas balances   总被引:1,自引:0,他引:1  
The promotion of biofuels as energy for transportation in the industrialized countries is mainly driven by the perspective of oil depletion, the concerns about energy security and global warming. However due to sustainability constraints, biofuels will replace only 10 to 15% of fossil liquid fuels in the transport sector. Several governments have defined a minimum target of GHG emissions reduction for those biofuels that will be eligible to public incentives, for example a 35% emissions reduction in case of biofuels in Members States of the European Union. This article points out the significant biases in estimating GHG balances of biofuels stemming from modelling choices about system definition and boundaries, functional unit, reference systems and allocation methods. The extent to which these choices influence the results is investigated. After performing a comparison and constructive criticism of various modelling choices, the LCA of wheat-to-bioethanol is used as an illustrative case where bioethanol is blended with gasoline at various percentages (E5, E10 and E85). The performance of these substitution options is evaluated as well. The results show a large difference in the reduction of the GHG emissions with a high sensitivity to the following factors: the method used to allocate the impacts between the co-products, the type of reference systems, the choice of the functional unit and the type of blend. The authors come out with some recommendations for basing the estimation of energy and GHG balances of biofuels on principles such as transparency, consistency and accuracy.  相似文献   

17.
肖雅心  杨建新 《生态学报》2016,36(18):5949-5955
从生命周期角度看,建筑碳足迹与能源和建材生产系统具有密切关系。随着技术的进步和节能政策的推进,中国能源的生产和使用,以及建材生产过程中的环境排放都随着时间在持续降低,这将间接地影响到建筑的环境表现。依据1990—2010年期间每5a的中国能源与建材生命周期清单数据,对北京市20年间住宅建筑系统开展生命周期评价和碳足迹核算,以揭示北京市住宅建筑系统的环境负荷变化特征。结果表明,北京市住宅建筑生命周期碳足迹随时间推移呈现降低趋势,主要来自能源系统和建材生产系统的碳减排贡献。不同结构建筑的碳足迹尽管有差异,但也呈现了相似的下降趋势。从生命周期阶段看,建筑碳足迹主要体现在建筑使用阶段和建材生产阶段。尽管建筑使用阶段的节能对于降低建筑生命周期碳足迹具有重要贡献,但节能在经济成本及环境成本方面而言是有限度的。在可持续的环境政策管理制定中,应从生命周期角度,统筹考虑协调各行业减碳的协调发展。论文同时也验证了在生命周期评价中考虑时间变量将有助于更好地利用生命周期评价结果支持环境可持续管理。结论对于城市规划的政策制定、量化环境表现是有益的。  相似文献   

18.
Changing forest management practices towards more intensive biomass utilization for energy purposes will affect the sustainability of resource management. The Tool for Sustainability Impact Assessment was applied to evaluate the environmental, social, and economic sustainability impacts of the stepwise increased extraction of forest biomass of three typical Scandinavian Scots pine bioenergy production chains (BPCs). The assessed sources of the woody biomass were pellets as a by‐product of the sawmilling industry, wood chips deriving from early whole‐tree harvesting, and residues from final cuttings. Three commercially practiced BPCs were compared. By the additional extraction of biomass for heat production, the employment increased by 0.6 person‐years 1000 m?3 solid wood chips, while there was a decrease in the costs and greenhouse gases emitted per unit of heat consumed. Furthermore this practice did not only add positive socio‐economic but also positive environmental impacts on sustainability, particularly on the greenhouse gas balance and the energy efficiency ratio (input to output ratio along the BPC), which was determined to be 1–24. Potential drawbacks, on the other hand, include decreasing nutrient returns to the soil and the associated potential reduction in future stand productivity. Fertilization might be needed to maintain sustainable forest growth on poor sites.  相似文献   

19.
Wooden and plastic pallets are used extensively in global trade to transport finished goods and products. This article compares the life cycle performance of treated wooden and plastic pallets through a detailed cradle‐to‐grave life cycle assessment (LCA), and conducts an analysis of the various phytosanitary treatments. The LCA investigates and evaluates the environmental impacts due to the resources consumed and emissions of the product throughout its life cycle. The environmental impacts of the pallets are compared on a one‐trip basis and a 100,000‐trips basis. Impact categories are chosen with respect to environmental concerns. The results show that on a one‐trip basis, wooden pallets with conventional and radio frequency (RF) heat treatment incur an overall carbon footprint of 71.8% and 80.3% lower, respectively, than plastic pallets during their life cycle; and in comparison with wooden pallets treated with methyl bromide fumigation, they incur 20% and 30% less overall carbon footprint. Theoretical calculations of the resource consumption and emissions of RF treatment of pallets suggest that dielectric technology may provide a lower‐carbon alternative to both current ISPM 15‐approved treatments and to plastic pallets. Methyl bromide fumigation (15.95 kg CO2 equivalent [eq.]) has a larger carbon footprint than conventional heat treatment (12.69 kg CO2 eq.) of pallets. For the 100,000‐trips basis, the differences are even more significant. The results recommend that wooden pallets are more environmentally friendly than plastic pallets, and conventional and RF heat treatment for wooden pallets is more sustainable than methyl bromide fumigation treatment.  相似文献   

20.
Healthcare is a critical and complex service sector with direct and indirect greenhouse gas (GHG) emissions amounting to 5%–10% of the national total in developed economies like Canada and the United States. Along with a growing, albeit sporadic, set of life cycle assessment (LCA) (and “carbon footprinting”) studies of specific medical products and procedures, there is growing interest in “environmental footprinting” of hospitals. In this article, we advance this rapidly evolving area through a comprehensive organizational LCA of a 40-bed hospital in British Columbia, Canada, in its 2019 fiscal year. Our results indicate that the total environmental footprint of the hospital includes, among other things, global warming potential of 3500–5000 t CO2 eq. (with 95% confidence). “Hotspots” in this footprint are attributable to energy and water use (and wastewater released), releases of anesthetic gases (which are potent GHGs), and the upstream production of the thousands of materials, chemicals, pharmaceuticals, and other products used in the hospital. The generalizability and comparability of these results are limited by inconsistencies across the few environmental footprinting studies of hospitals conducted to date. Nonetheless, our novel methodological approach, in which we compiled new LCA data for 200 goods and services used in healthcare—strategically selected to statistically represent the 2927 unique products in the hospital's “supply-chains”—has broad applicability in healthcare and beyond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号