首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
7.
We measured the effect of intrinsic lipid curvature, J0, on structural properties of asymmetric vesicles made of palmitoyl-oleoyl-phosphatidylethanolamine (POPE; J0<0) and palmitoyl-oleoyl-phosphatidylcholine (POPC; J00). Electron microscopy and dynamic light scattering were used to determine vesicle size and morphology, and x-ray and neutron scattering, combined with calorimetric experiments and solution NMR, yielded insights into leaflet-specific lipid packing and melting processes. Below the lipid melting temperature we observed strong interleaflet coupling in asymmetric vesicles with POPE inner bilayer leaflets and outer leaflets enriched in POPC. This lipid arrangement manifested itself by lipids melting cooperatively in both leaflets, and a rearrangement of lipid packing in both monolayers. On the other hand, no coupling was observed in vesicles with POPC inner bilayer leaflets and outer leaflets enriched in POPE. In this case, the leaflets melted independently and did not affect each other’s acyl chain packing. Furthermore, we found no evidence for transbilayer structural coupling above the melting temperature of either sample preparation. Our results are consistent with the energetically preferred location of POPE residing in the inner leaflet, where it also resides in natural membranes, most likely causing the coupling of both leaflets. The loss of this coupling in the fluid bilayers is most likely the result of entropic contributions.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
The biomechanical environment of the optic nerve head (ONH), of interest in glaucoma, is strongly affected by the biomechanical properties of sclera. However, there is a paucity of information about the variation of scleral mechanical properties within eyes and between individuals. We thus used biaxial testing to measure scleral stiffness in human eyes. Ten eyes from 5 human donors (age 55.4±3.5 years; mean±SD) were obtained within 24 h of death. Square scleral samples (6 mm on a side) were cut from each ocular quadrant 3–9 mm from the ONH centre and were mechanically tested using a biaxial extensional tissue tester (BioTester 5000, CellScale Biomaterials Testing, Waterloo). Stress–strain data in the latitudinal (toward the poles) and longitudinal (circumferential) directions, here referred to as directions 1 and 2, were fit to the four-parameter Fung constitutive equation W=c(eQ?1), where Q=c1E112+c2E222+2c3E11E22 and W, c’s and Eij are the strain energy function, material parameters and Green strains, respectively. Fitted material parameters were compared between samples. The parameter c3 ranged from 10?7 to 10?8, but did not contribute significantly to the accuracy of the fitting and was thus fixed at 10?7. The products c?c1 and c?c2, measures of stiffness in the 1 and 2 directions, were 2.9±2.0 and 2.8±1.9 MPa, respectively, and were not significantly different (two-sided t-test; p=0.795). The level of anisotropy (ratio of stiffness in orthogonal directions) was 1.065±0.33. No statistically significant correlations between sample thickness and stiffness were found (correlation coefficients=?0.026 and ?0.058 in directions 1 and 2, respectively). Human sclera showed heterogeneous, near-isotropic, nonlinear mechanical properties over the scale of our samples.  相似文献   

16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号