首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Model‐based global projections of future land‐use and land‐cover (LULC) change are frequently used in environmental assessments to study the impact of LULC change on environmental services and to provide decision support for policy. These projections are characterized by a high uncertainty in terms of quantity and allocation of projected changes, which can severely impact the results of environmental assessments. In this study, we identify hotspots of uncertainty, based on 43 simulations from 11 global‐scale LULC change models representing a wide range of assumptions of future biophysical and socioeconomic conditions. We attribute components of uncertainty to input data, model structure, scenario storyline and a residual term, based on a regression analysis and analysis of variance. From this diverse set of models and scenarios, we find that the uncertainty varies, depending on the region and the LULC type under consideration. Hotspots of uncertainty appear mainly at the edges of globally important biomes (e.g., boreal and tropical forests). Our results indicate that an important source of uncertainty in forest and pasture areas originates from different input data applied in the models. Cropland, in contrast, is more consistent among the starting conditions, while variation in the projections gradually increases over time due to diverse scenario assumptions and different modeling approaches. Comparisons at the grid cell level indicate that disagreement is mainly related to LULC type definitions and the individual model allocation schemes. We conclude that improving the quality and consistency of observational data utilized in the modeling process and improving the allocation mechanisms of LULC change models remain important challenges. Current LULC representation in environmental assessments might miss the uncertainty arising from the diversity of LULC change modeling approaches, and many studies ignore the uncertainty in LULC projections in assessments of LULC change impacts on climate, water resources or biodiversity.  相似文献   

2.
We implemented a spatial application of a previously evaluated model of soil GHG emissions, ECOSSE, in the United Kingdom to examine the impacts to 2050 of land‐use transitions from existing land use, rotational cropland, permanent grassland or woodland, to six bioenergy crops; three ‘first‐generation’ energy crops: oilseed rape, wheat and sugar beet, and three ‘second‐generation’ energy crops: Miscanthus, short rotation coppice willow (SRC) and short rotation forestry poplar (SRF). Conversion of rotational crops to Miscanthus, SRC and SRF and conversion of permanent grass to SRF show beneficial changes in soil GHG balance over a significant area. Conversion of permanent grass to Miscanthus, permanent grass to SRF and forest to SRF shows detrimental changes in soil GHG balance over a significant area. Conversion of permanent grass to wheat, oilseed rape, sugar beet and SRC and all conversions from forest show large detrimental changes in soil GHG balance over most of the United Kingdom, largely due to moving from uncultivated soil to regular cultivation. Differences in net GHG emissions between climate scenarios to 2050 were not significant. Overall, SRF offers the greatest beneficial impact on soil GHG balance. These results provide one criterion for selection of bioenergy crops and do not consider GHG emission increases/decreases resulting from displaced food production, bio‐physical factors (e.g. the energy density of the crop) and socio‐economic factors (e.g. expenditure on harvesting equipment). Given that the soil GHG balance is dominated by change in soil organic carbon (SOC) with the difference among Miscanthus, SRC and SRF largely determined by yield, a target for management of perennial energy crops is to achieve the best possible yield using the most appropriate energy crop and cultivar for the local situation.  相似文献   

3.
Agricultural drainage of organic soils has resulted in vast soil subsidence and contributed to increased atmospheric carbon dioxide (CO2) concentrations. The Sacramento‐San Joaquin Delta in California was drained over a century ago for agriculture and human settlement and has since experienced subsidence rates that are among the highest in the world. It is recognized that drained agriculture in the Delta is unsustainable in the long‐term, and to help reverse subsidence and capture carbon (C) there is an interest in restoring drained agricultural land‐use types to flooded conditions. However, flooding may increase methane (CH4) emissions. We conducted a full year of simultaneous eddy covariance measurements at two conventional drained agricultural peatlands (a pasture and a corn field) and three flooded land‐use types (a rice paddy and two restored wetlands) to assess the impact of drained to flooded land‐use change on CO2 and CH4 fluxes in the Delta. We found that the drained sites were net C and greenhouse gas (GHG) sources, releasing up to 341 g C m?2 yr?1 as CO2 and 11.4 g C m?2 yr?1 as CH4. Conversely, the restored wetlands were net sinks of atmospheric CO2, sequestering up to 397 g C m?2 yr?1. However, they were large sources of CH4, with emissions ranging from 39 to 53 g C m?2 yr?1. In terms of the full GHG budget, the restored wetlands could be either GHG sources or sinks. Although the rice paddy was a small atmospheric CO2 sink, when considering harvest and CH4 emissions, it acted as both a C and GHG source. Annual photosynthesis was similar between sites, but flooding at the restored sites inhibited ecosystem respiration, making them net CO2 sinks. This study suggests that converting drained agricultural peat soils to flooded land‐use types can help reduce or reverse soil subsidence and reduce GHG emissions.  相似文献   

4.
Climate and land‐use change jointly affect the future of biodiversity. Yet, biodiversity scenarios have so far concentrated on climatic effects because forecasts of land use are rarely available at appropriate spatial and thematic scales. Agent‐based models (ABMs) represent a potentially powerful but little explored tool for establishing thematically and spatially fine‐grained land‐use scenarios. Here, we use an ABM parameterized for 1,329 agents, mostly farmers, in a Central European model region, and simulate the changes to land‐use patterns resulting from their response to three scenarios of changing socio‐economic conditions and three scenarios of climate change until the mid of the century. Subsequently, we use species distribution models to, first, analyse relationships between the realized niches of 832 plant species and climatic gradients or land‐use types, respectively, and, second, to project consequent changes in potential regional ranges of these species as triggered by changes in both the altered land‐use patterns and the changing climate. We find that both drivers determine the realized niches of the studied plants, with land use having a stronger effect than any single climatic variable in the model. Nevertheless, the plants' future distributions appear much more responsive to climate than to land‐use changes because alternative future socio‐economic backgrounds have only modest impact on land‐use decisions in the model region. However, relative effects of climate and land‐use changes on biodiversity may differ drastically in other regions, especially where landscapes are still dominated by natural or semi‐natural habitat. We conclude that agent‐based modelling of land use is able to provide scenarios at scales relevant to individual species distribution and suggest that coupling ABMs with models of species' range change should be intensified to provide more realistic biodiversity forecasts.  相似文献   

5.
Contemporary forest inventory data are widely used to understand environmental controls on tree species distributions and to construct models to project forest responses to climate change, but the stability and representativeness of contemporary tree‐climate relationships are poorly understood. We show that tree‐climate relationships for 15 tree genera in the upper Midwestern US have significantly altered over the last two centuries due to historical land‐use and climate change. Realised niches have shifted towards higher minimum temperatures and higher rainfall. A new attribution method implicates both historical climate change and land‐use in these shifts, with the relative importance varying among genera and climate variables. Most climate/land‐use interactions are compounding, in which historical land‐use reinforces shifts in species‐climate relationships toward wetter distributions, or confounding, in which land‐use complicates shifts towards warmer distributions. Compounding interactions imply that contemporary‐based models of species distributions may underestimate species resilience to climate change.  相似文献   

6.
The semiarid and arid zones cover a quarter of the global land area and support one‐fifth of the world's human population. A significant fraction of the global soil–atmosphere exchange for climatically active gases occurs in semiarid and arid zones yet little is known about these exchanges. A study was made of the soil–atmosphere exchange of CH4, CO, N2O and NOx in the semiarid Mallee system, in north‐western Victoria, Australia, at two sites: one pristine mallee and the other cleared for approximately 65 years for farming (currently wheat). The mean (± standard error) rates of CH4 exchange were uptakes of ?3.0 ± 0.5 ng(C) m?2 s?1 for the Mallee and ?6.0 ± 0.3 ng(C) m?2 s?1 for the Wheat. Converting mallee forest to wheat crop increases CH4 uptake significantly. CH4 emissions were observed in the Mallee in summer and were hypothesized to arise from termite activity. We find no evidence that in situ growing wheat plants emit CH4, contrary to a recent report. The average CO emissions of 10.1 ± 1.8 ng(C) m?2 s?1 in the Mallee and 12.6 ± 2.0 ng(C) m?2 s?1 in the Wheat. The average N2O emissions were 0.5 ± 0.1 ng(N) m?2 s?1 from the pristine Mallee and 1.4 ± 0.3 ng(N) m?2 s?1 from the Wheat. The experimental results show that the processes controlling these exchanges are different to those in temperate systems and are poorly understood.  相似文献   

7.
We present an analysis of direct land use change (dLUC) resulting from the conversion of semiarid woodlands in Brazil and India to Jatropha curcas, a perennial biofuel crop. The sites examined include prosopis woodlands, managed for woodfuel production under periodic coppicing, in southern India, and unmanaged caatinga woodlands in the Brazilian state of Minas Gerais. The jatropha plantations under consideration include pruned and unpruned stands and ranged from 2 to 4 years of age. Stocks of carbon in aboveground (AG) pools, including woody biomass, coarse debris, leaf litter, and herbaceous matter, as well as soil organic carbon (SOC) were evaluated. The jatropha plantations store 8–10 tons of carbon per hectare (t C ha?1) in AG biomass and litter when managed with regular pruning in both India and Brazil. Unpruned trees, only examined in Brazil, store less biomass (and carbon), accumulating just 3 t C ha?1 in AG pools. The two woodlands that were replaced with jatropha show substantial differences in carbon pools: prosopis contains ~11 t C ha?1 in AG stocks of carbon, which was very close to the jatropha stand which replaced it. In contrast, caatinga stores ~35 t C ha?1 in AG biomass. Moreover, no change in SOC was detected in land that was converted from Prosopis to jatropha. As a result, there is no detectable change in AG carbon stocks at the sites in South India where jatropha replaced prosopis woodlands. In contrast, large losses of AG carbon were detected in Central Brazil where jatropha replaced native caatinga woodlands. These losses represent a carbon debt that would take 10–20 years to repay.  相似文献   

8.
In the conservation literature on land‐use change, it is often assumed that land‐use intensification drives species loss, driving a loss of functional trait diversity and ecosystem function. Modern research, however, does not support this cascade of loss for all natural systems. In this paper we explore the errors in this assumption and present a conceptual model taking a more mechanistic approach to the species–functional trait association in a context of land‐use change. We provide empirical support for our model's predictions demonstrating that the association of species and functional trait diversity follows various trajectories in response to land‐use change. The central premise of our model is that land‐use change impacts upon processes of community assembly, not species per se. From the model, it is clear that community context (i.e. type of disturbance, species pool size) will affect the response trajectory of the relationship between species and functional trait diversity in communities undergoing land‐use change. The maintenance of ecosystem function and of species diversity in the face of increasing land‐use change are complementary goals. The use of a more ecologically realistic model of responses of species and functional traits will improve our ability to make wise management decisions to achieve both aims in specific at‐risk systems.  相似文献   

9.
Bioenergy production is seen as one way of meeting future energy needs. The growing demand for biomass for energy production induces the cultivation of a few fast growing and high‐yielding energy crops on vast areas of arable land. This land‐use change has been found associated with the reduction of habitat suitability for farmland birds and a decline in farmland biodiversity in general. A large number of studies have assessed the ecological effects of energy crop cultivation at the local scale of a single field. This study focuses on regional landscape changes caused by increased energy crop cultivation, which includes reduction of crop‐type richness and spatial concentration of single crop‐types. We present a spatially explicit ecological model to assess the population‐level consequences of these effects on the abundance of the farmland bird species Skylark (Alauda arvensis). We also investigate the impacts of different land‐use scenarios and aim to identify adaptive conservation options. We show that (1) the impacts of increased energy crop cultivation on Skylark population abundance depend strongly on the landscape structure; (2) impacts could be tolerated as long as a certain minimum level of crop‐type heterogeneity is retained at the landscape level and (3) conservation actions are required and effective especially on landscapes where crop‐field size is large.  相似文献   

10.
The widespread production of cash crops can result in the decline of forests, peatlands, rice fields and local community land. Such unwanted land‐use and land‐cover (LULC) change can lead to decreased carbon stocks, diminished biodiversity, displaced communities and reduced local food production. In this study, we analysed to what extent four main commodities, namely, palm oil, pulpwood, rice and rubber, can be produced in North and East Kalimantan in Indonesia without such unwanted LULC change. We investigated the technical potential of four measures to mitigate unwanted LULC change between 2008 and 2020 under low, medium and high scenarios, referring to the intensities of the mitigation measures compared with those implemented in 2008. These measures are related to land sparing through (i) the improvements of yields, (ii) chain efficiencies, (iii) chain integration and (iv) the steering of any expansion of these commodities to suitable and available underutilised (potentially degraded) lands. Our analyses resulted in a land‐sparing potential of 0.4–1.2 Mha (i.e. 24–62% of the total land demand of the commodities) between 2008 and 2020, depending on the land‐use projection of the four commodities and the scenario for implementing the mitigation measures. Additional expansion on underutilised land is the most important mitigation measure (45–62% of the total potential), followed by yield improvements as the second most important mitigation measure (32–46% of the total potential). Our study shows that reconciling the production of palm oil, pulpwood, rice and rubber with the maintenance of existing agricultural lands, forests and peatlands is technically possible only (i) under a scenario of limited agricultural expansion, (ii) if responsible land zoning is applied and enforced and (iii) if the yields and chain efficiencies are strongly improved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号