首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在大肠杆菌中表达的一段戊型肝炎病毒(HEV)结构蛋白NE2,纯化后以弗氏佐剂,按0d,10d,30d的方案10μg/针的剂量免疫3只恒河猴,在第2周抗体阳转,第6周时1只滴度达1∶100 000,另2只滴度1∶20 000,此时以106 PCR滴度的HEV病毒粪悬液攻击。对照组3只均出现血清转氨酶(ALT)升高,抗体阳转,粪便持续排毒1月以上;疫苗组无一发病,未检出非疫苗来源的抗体,其中1只始终未检出粪便排毒,另2只仅出现短暂排毒。以一份NE2免疫后猴血清(滴度1∶20 000)与103 PCR滴度的病毒混匀后感染2只恒河猴,结果对照组2只均持续排毒3周以上,抗体阳转,1只ALT明显升高;而抗体中和组2只猴始终未检出粪便排毒,抗NE2抗体缓慢下降,ALT正常。这些结果表明NE2具有良好的免疫原性和免疫保护性,有可能成为有效的戊肝疫苗。  相似文献   

2.
Plasmid vectors containing Japanese encephalitis virus (JEV) premembrane (prM) and envelope (E) genes were constructed that expressed prM and E proteins under the control of a cytomegalovirus immediate-early gene promoter. COS-1 cells transformed with this plasmid vector (JE-4B clone) secreted JEV-specific extracellular particles (EPs) into the culture media. Groups of outbred ICR mice were given one or two doses of recombinant plasmid DNA or two doses of the commercial vaccine JEVAX. All mice that received one or two doses of DNA vaccine maintained JEV-specific antibodies 18 months after initial immunization. JEVAX induced 100% seroconversion in 3-week-old mice; however, none of the 3-day-old mice had enzyme-linked immunosorbent assay titers higher than 1:400. Female mice immunized with this DNA vaccine developed plaque reduction neutralization antibody titers of between 1:20 and 1:160 and provided 45 to 100% passive protection to their progeny following intraperitoneal challenge with 5,000 PFU of virulent JEV strain SA14. Seven-week-old adult mice that had received a single dose of JEV DNA vaccine when 3 days of age were completely protected from a 50, 000-PFU JEV intraperitoneal challenge. These results demonstrate that a recombinant plasmid DNA which produced JEV EPs in vitro is an effective vaccine.  相似文献   

3.
戊型肝炎病毒衣壳蛋白内包含一个强H-2d限制性Th表位P34。以该表位肽免疫BALB/c鼠,其脾细胞能够在体外识别重组戊型肝炎病毒衣壳蛋白,剔除实验表明应答细胞几乎完全是CD4 T细胞,证明P34表位肽能有效诱导产生特异性Th细胞。以P34肽初免小鼠,再以包含该表位的重组戊型肝炎病毒抗原(E2)免疫,结果表明,10μg、20μgE2免疫组在免疫后第1周即有部分小鼠产生抗体,到第3周所有小鼠均能够产生抗体;而对照肽P18初免的小鼠,以20μgE2加强免疫亦无法诱导小鼠产生抗体。这表明,Th表位肽P34初免诱导产生的Th细胞能够有效促进小鼠对携带该表位的载体蛋白的体液免疫应答。  相似文献   

4.
A plasmid encoding Japanese encephalitis virus (JEV) prM and E proteins was constructed, and its efficacy as a candidate vaccine against JEV was evaluated in suckling mice. Groups of 10 BALB/c mice (5-7 days old) were immunized twice via muscular injection with this DNA vaccine, an empty vector or PBS at an interval of 3 weeks, and were challenged with a lethal dose of JEV 3 weeks after the second inoculation. Both cellular and humoral immune responses were examined before the challenge. Two animals from each group were sacrificed to detect the JEV-specific cytotoxic T lymphocyte activity. JEV-specific lactate dehydrogenase release in the DNA vaccine, empty vector and PBS groups was 37.5%, 18% and 8.5% respectively. JEV-specific antibody was detected in 8 of 10 animals in DNA vaccine group with a geometrical mean titer of 1: 28.3. The pooled serum from the same group also showed a neutralizing activity. Six of 8 mice in the DNA vaccine group survived the challenge, with a protection rate of 75%, but all the mice died in the two control groups. These results show that this JEV prM and E DNA vaccine is immunogenic and protective against JEV infection in the mouse model.  相似文献   

5.
Hepatitis E virus (HEV) constitutes a significant health burden worldwide, with an estimated approximately 33% of the world’s population exposed to the pathogen. The recent licensed HEV 239 vaccine in China showed excellent protective efficacy against HEV of genotypes 1 and 4 in the general population and pregnant women. Because hepatitis E is a zoonosis, it is also necessary to ascertain whether this vaccine can serve to manage animal sources of human HEV infection. To test the efficacy of the HEV 239 vaccine in protecting animal reservoirs of HEV against HEV infection, twelve specific-pathogen-free (SPF) rabbits were divided randomly into two groups of 6 animals and inoculated intramuscularly with HEV 239 and placebo (PBS). All animals were challenged intravenously with swine HEV of genotype 4 or rabbit HEV seven weeks after the initial immunization. The course of infection was monitored for 10 weeks by serum ALT levels, duration of viremia and fecal virus excretion and HEV antibody responses. All rabbits immunized with HEV 239 developed high titers of anti-HEV and no signs of HEV infection were observed throughout the experiment, while rabbits inoculated with PBS developed viral hepatitis following challenge, with liver enzyme elevations, viremia, and fecal virus shedding. Our data indicated that the HEV 239 vaccine is highly immunogenic for rabbits and that it can completely protect rabbits against homologous and heterologous HEV infections. These findings could facilitate the prevention of food-borne sporadic HEV infection in both developing and industrialized countries.  相似文献   

6.
The present study evaluated the potential of archaesomes, prepared from the total polar lipids extracted from Methanobrevibacter smithii, as adjuvants for combination (multivalent) vaccines. Groups of Balb/c mice were immunized subcutaneously at day 0 and 21 with one of the following vaccines: trivalent vaccine formulated by the simultaneous co-encapsulation of bovine serum albumine (BSA), ovalbumin (OVA) and hen egg lysozyme (HEL) into archaeosomes (CEC vaccine); an univalent archaeosome vaccine (UVE vaccine) containing either BSA, OVA or HEL; or an admixture vaccine (AMC vaccine) consisting of the three UVE vaccines. Serum specific antibody (IgG + M) responses were determined at day 32, 112 and 203, and specific IgG1 and IgG2a responses were determined at day 112. Mice immunized with the CEC of AMC vaccine developed strong and sustained specific antibody responses to all three antigens at a magnitude similar to those seen in control mice immunized with UVE vaccines. Moreover, the serum BSA-, OVA-, and HEL-specific IgG1 and IgG2a levels in the CEC and AMC immunized mice were overall comparable to those of the UVE immunized control mice. Boosting CEC and AMC vaccinated mice with antigens alone at day 203 elicited strong antibody memory responses, comparable to those in the UVE vaccinated groups. These results show that archaeosomes could be used as adjuvants in developing combination vaccines.  相似文献   

7.
Hepatitis A virus (HAV) and Hepatitis E virus (HEV) are the most common causes of infectious hepatitis. These viruses are spread largely by the fecal-oral route and lead to clinically important disease in developing countries. To evaluate the potential of targeting hepatitis A and E infection simultaneously, a combined mucosal candidate vaccine was developed with the partial open reading frame 2 (ORF2) sequence (aa 368–607) of HEV (HE-ORF2) and partial virus protein 1 (VP1) sequence (aa 1–198) of HAV (HA-VP1), which included the viral neutralization epitopes. Tuftsin is an immunostimulatory peptide which can enhance the immunogenicity of a protein by targeting it to macrophages and dendritic cells. Here, we developed a novel combined protein vaccine by conjugating tuftsin to HE-ORF2 and HA-VP1 and used synthetic CpG oligodeoxynucleotides (ODNs) as the adjuvant. Subsequent experiments in BALB/c mice demonstrated that tuftsin enhanced the serum-specific IgG and IgA antibodies against HEV and HAV at the intestinal, vaginal and pulmonary interface when delivered intranasally. Moreover, mice from the intranasally immunized tuftsin group (HE-ORF2-tuftsin + HA-VP1-tuftsin + CpG) showed higher levels of IFN-γ-secreting splenocytes (Th1 response) and ratio of CD4+/CD8+ T cells than those of the no-tuftsin group (HE-ORF2 + HA-VP1 + CpG). Thus, the tuftsin group generated stronger humoral and cellular immune responses compared with the no-tuftsin group. Moreover, enhanced responses to the combined protein vaccine were obtained by intranasal immunization compared with intramuscular injection. By integrating HE-ORF2, HA-VP1 and tuftsin in a vaccine, this study validated an important concept for further development of a combined mucosal vaccine against hepatitis A and E infection.  相似文献   

8.
Shata MT  Hone DM 《Journal of virology》2001,75(20):9665-9670
A prototype Shigella human immunodeficiency virus type 1 (HIV-1) gp120 DNA vaccine vector was constructed and evaluated for immunogenicity in a murine model. For comparative purposes, mice were also vaccinated with a vaccinia virus-env (vaccinia-env) vector or the gp120 DNA vaccine alone. Enumeration of the CD8(+)-T-cell responses to gp120 after vaccination using a gamma interferon enzyme-linked spot assay revealed that a single intranasal dose of the Shigella HIV-1 gp120 DNA vaccine vector elicited a CD8(+) T-cell response to gp120, the magnitude of which was comparable to the sizes of the analogous responses to gp120 that developed in mice vaccinated intraperitoneally with the vaccinia-env vector or intramuscularly with the gp120 DNA vaccine. In addition, a single dose of the Shigella gp120 DNA vaccine vector afforded significant protection against a vaccinia-env challenge. Moreover, the number of vaccinia-env PFU recovered in mice vaccinated intranasally with the Shigella vector was about fivefold less than the number recovered from mice vaccinated intramuscularly with the gp120 DNA vaccine. Since the Shigella vector did not express detectable levels of gp120, this report confirms that Shigella vectors are capable of delivering passenger DNA vaccines to host cells and inducing robust CD8(+) T-cell responses to antigens expressed by the DNA vaccines. Furthermore, to our knowledge, this is the first documentation of antiviral protective immunity following vaccination with a live Shigella DNA vaccine vector.  相似文献   

9.
In order to evaluate the possibility of developing an oral vaccine against Japanese encephalitis virus (JEV), mice were fed with recombinant JEV envelope (E) protein synthesized in Escherichia coli. The protein was administered orally to mice with or without an immunostimulatory cytosine-phosphate-guanosine (CpG) motif containing synthetic oligodeoxynucleotide (ODN) as an adjuvant. The immunized mice made high-titered anti-E and anti-JEV antibodies. Mice immunized with JEV E protein along with the ODN adjuvant produced higher antibody titers and these were predominantly IgG2a type. These antibodies, however, failed to neutralize JEV activity in vitro, and the immunization did not protect the mice against lethal JEV challenge. Splenocytes from the immunized mice secreted large amounts of interferon (IFN)-gamma and showed proliferation in the presence of JEV E protein. Our results indicate that JEV E protein delivered orally to mice together with ODN generated both humoral and cellular immune responses to JEV, and these were of the Th1 type.  相似文献   

10.
West Nile virus is now distributed throughout many temperate, subtropical and tropical areas: vaccines need to be developed that are affordable for developed and developing countries. Here, we constructed and evaluated a DNA vaccine expressing the premembrane and envelope proteins of West Nile virus (pcWNME). Mice immunized twice with 100 or 10 microg of pcWNME developed high or moderate levels of neutralizing antibodies, respectively. These mice were protected from viremia and death after lethal challenge. Mice immunized with a mixture of 1 microg of pcWNME and a small amount (1/10 dose) of a commercial inactivated vaccine developed moderate levels of neutralizing antibodies, whereas immunization with pcWNME or the inactivated vaccine alone induced only low or undetectable levels: co-immunization with the DNA and protein vaccines synergistically increased their own immunogenicities. The synergism reduced the amount of DNA sufficient to induce neutralizing antibodies: a single immunization with doses as low as 0.1 microg induced a titer of 1:40 at a 90% plaque reduction 6 or 9 weeks after immunization. Both IgG1 and IgG2a antibodies were induced in mice by co-immunization with the DNA and protein vaccines.  相似文献   

11.
H7N9 influenza infection in humans would result in severe respiratory illness. Vaccination is the best way to prevent influenza virus. In this paper, we investigated the effect of early protection provided by inactivated whole-virion H7N9 influenza vaccine in a mouse model.Mice were immunized intramuscularly once with different doses of inactivated whole-virion H7N9 influenza vaccine alone or in combination with MF59 adjuvant. Specific IgM and IgG antibody titers in sera of mice were detected by ELISA 3, 5 and 7days after immunization. To evaluate the early protection provided by the vaccine, mice were challenged with lethal dose (40LD50) of homologous virus 3, 5 and 7 days after immunization respectively. The survival rate and body weight change of mice during 21 days after challenge and the residual lung virus titer on 3rd day after challenge were determined. The results demonstrated that mice could obtain effective protection 3 days after immunization with the vaccine at a high dose, and 5–7 days after immunization even at a low dose. Thus early immune responses induced by inactivated whole-virion H7N9 vaccine could provide effective protection.  相似文献   

12.
Previously we showed that mice immunized with a vaccinia virus vector expressing the herpes simplex virus type 1 (HSV-1) glycoprotein D (gD) gene (vaccinia/gD) were protected against both lethal and latent infections with HSV-1 for at least 6 weeks after immunization (K. J. Cremer, M. Mackett, C. Wohlenberg, A. L. Notkins, and B. Moss, Science 228:737-740, 1985). In the experiments described here, we examined long-term immunity to HSV following vaccinia/gD vaccination, the effect of revaccination with vaccinia/gD, and the impact of previous immunity to vaccinia virus on immunization with the gD recombinant. Mice immunized with vaccinia/gD showed 100, 100, and 80% protection against lethal infection with HSV-1 at 18, 44, and 60 weeks postimmunization, respectively. Protection against latent trigeminal ganglionic infection was 70, 50, and 31% at 6, 41, and 60 weeks postvaccination, respectively. To study the effect of reimmunization on antibody levels, mice vaccinated with vaccinia/gD were given a second immunization (booster dose) 3 months after the first. These mice developed a 10-fold increase in neutralizing-antibody titer (221 to 2,934) and demonstrated a significant increase in protection against lethal HSV-1 challenge compared with animals that received only one dose of vaccinia/gD. To determine whether preexisting immunity to vaccinia virus inhibited the response to vaccination with vaccinia/gD virus, mice were immunized with a recombinant vaccinia virus vector expressing antigens from either influenza A or hepatitis B virus and were then immunized (2 to 3 months later) with vaccinia/gD. These mice showed reduced titers of neutralizing antibody to HSV-1 and decreased protection against both lethal and latent infections with HSV-1 compared with animals vaccinated only with vaccinia/gD. We conclude that vaccination with vaccinia/gD produces immunity against HSV-1 that lasts over 1 year and that this immunity can be increased by a booster but that prior immunization with a vaccinia recombinant virus expressing a non-HSV gene reduces the levels of neutralizing antibody and protective immunity against HSV-1 challenge.  相似文献   

13.
A lyophilized subunit vaccine prepared from purified respiratory syncytial virus, which contained the envelope glycoproteins F and G and the nonglycosylated matrix protein VPM, was tested in SJL mice for its ability to protect the lungs of mice from intranasal viral challenge. Initially, the mice were injected subcutaneously with one, two, or three doses of 5 or 25 micrograms of vaccine in 50% complete Freund's adjuvant or with complete Freund's adjuvant or phosphate-buffered saline only. Although none of the mice produced neutralizing serum antibody, three doses of 25 micrograms elicited antibodies to F, G, and VPM. Despite the absence of detectable neutralizing antibodies, the lungs of 93% of the vaccinated mice were protected from intranasal viral challenge. Because the initial protocol did not elicit neutralizing antibodies and a few single-dose animals were not protected, a second vaccine trial was carried out. For these studies the priming dose was increased to 50 micrograms, which was followed, in half the vaccine recipients, by a second dose of 25 micrograms. Mice given the priming dose of vaccine produced antibody to G and showed no neutralizing activity, whereas the mice given two doses of vaccine produced antibodies to G, F, and VPM and also displayed neutralizing activity for respiratory syncytial virus. The lungs of 100% of the vaccine recipients in this trial were protected from intranasal challenge. Although the vaccine elicited antibody to VPM, this response did not correlate with protection. In addition, examination of the sera from unimmunized mice recovering from respiratory syncytial virus infection revealed a serum antibody profile similar to that noted for humans, lacking antibody to VPM. Thus, the data show that a combined glycoprotein subunit vaccine affords complete protection to viral challenge and offers an approach to develop a multivalent subunit vaccine.  相似文献   

14.
Human chorionic gonadotropin (hCG) has been used as an anti-fertility vaccine and as a target for cancer immunotherapy. We have explored the use of three copies of C3d in DNA vaccine as molecular adjuvant to improve the immunogenicity of this hormone in previous work and found that the immune response induced by pcDNA3-hCGbeta-C3d3 has been enhanced 243-fold compared with pcDNA3-hCGbeta following DNA immunization in BALB/c mice. In the present study, a new functionally active DNA vaccine of hCGbeta-C3d3 chimera based on pCMV4 vector has been described. We compared the expression efficiency of pCMV4 and pcDNA3 eukaryotic vectors for hCGbeta and hCGbeta-C3d3 fusion protein and the immune response of mice immunized with pcDNA3-hCGbeta, pCMV4-hCGbeta, pcDNA3-hCGbeta-C3d3 and pCMV4-hCGbeta-C3d3, respectively, at 25, 50 and 100 pmol dose, and further analyzed the levels of Th1 and Th2 cytokines produced by spleen lymphocytes of the immunized mice upon hCG restimulation in vitro. It was found that pCMV4 vector achieved 1.3-1.5-fold higher protein expression and raised 1.1-1.2 (primary) and 1.2-1.3 (booster) logs higher titer of anti-hCGbeta IgG than pcDNA3. Mice vaccinated with 50 pmol of hCGbeta-C3d3-DNAs elicited the highest titer of hCGbeta-specific antibody among the serial doses and the immune response induced by pCMV4-hCGbeta-C3d3 were, respectively, 1.3, 1.3 and 1.2 logs higher than that of pcDNA3-hCGbeta-C3d3 and 2.2, 2.9 and 2.4 logs higher than that of pCMV4-hCGbeta at week 2 following the booster immunization. Moreover, we observed that the production of IL-4 and IL-10 increased in mice vaccinated with hCGbeta-C3d3-DNAs and the ratio of IL-4/IFN-(gamma) showed a Th2 bias of immune response in the mice immunized with hCGbeta-C3d3-DNAs. These findings indicated that gene fusion of C3d3 to hCGbeta, as a means of harnessing the adjuvant potential of the innate immune system, may improve the antigen-specific Th2 humoral immune response of the hCGbeta DNA vaccine and the pCMV4 vector is a more ideal eukaryotic vector for DNA vaccine than pcDNA3.  相似文献   

15.
We used a murine model of Haemophilus influenzae type b (Hib) infection to analyze the immunologic response to two commercially available PRP conjugate vaccines (HbOC, PRP-T). The mortality rate in mice infected with a large dose of the bacteria after vaccination with HbOC or PRP-T at two and three doses was significantly lower than in non-vaccinated mice and mice vaccinated by one dose. Furthermore, for infections caused by a small bacterial dose, the mortality rate in mice vaccinated with one, two, or three doses was significantly lower than in non-vaccinated mice. The induction level of anti-PRP antibodies, especially IgG, in serum of mice vaccinated by two or three doses was higher than in those vaccinated with a single dose. Our results indicate that the dose of vaccine influences its efficacy in protecting against Hib infection. Our results also showed a lack of difference between two different PRP conjugate vaccines.  相似文献   

16.
For Japanese encephalitis (JE), we previously reported that recombinant vaccine-induced protection from disease does not prevent challenge virus replication in mice. Moreover, DNA vaccines for JE can provide protection from high challenge doses in the absence of detectable prechallenge neutralizing antibodies. In the present study, we evaluated the role of postchallenge immune responses in determining the outcome of JE virus infection, using mice immunized with a plasmid, pcDNA3JEME, encoding the JE virus premembrane (prM) and envelope (E) coding regions. In the first experiment, 10 mice were vaccinated once (five animals) or twice (remainder) with 100 micrograms of pcDNA3JEME. All of these mice showed low (6 of 10) or undetectable (4 of 10) levels of neutralizing antibodies. Interestingly, eight of these animals showed a rapid rise in neutralizing antibody following challenge with 10,000 50% lethal doses of JE virus and survived for 21 days, whereas only one of the two remaining animals survived. No unimmunized animals exhibited a rise of neutralizing antibody or survived challenge. Levels of JE virus-specific immunoglobulin M class antibodies were elevated following challenge in half of the unimmunized mice and in the single pcDNA3JEME-immunized mouse that died. In the second experiment, JE virus-specific primary cytotoxic T-lymphocyte (CTL) activity was detected in BALB/c mice immunized once with 100 micrograms of pcDNA3JEME 4 days after challenge, indicating a strong postchallenge recall of CTLs. In the third experiment, evaluation of induction of CTLs and antibody activity by plasmids containing portions of the prM/E cassette demonstrated that induction of CTL responses alone were not sufficient to prevent death. Finally, we showed that antibody obtained from pcDNA3JEME-immunized mice 4 days following challenge could partially protect recipient mice from lethal challenge. Taken together, these results indicate that neutralizing antibody produced following challenge provides the critical protective component in pcDNA3JEME-vaccinated mice.  相似文献   

17.
Vaccinia viruses defective in the essential gene coding for the enzyme uracil DNA glycosylase (UDG) do not undergo DNA replication and do not express late genes in wild-type cells. A UDG-deficient vaccinia virus vector carrying the tick-borne encephalitis (TBE) virus prM/E gene, termed vD4-prME, was constructed, and its potential as a vaccine vector was evaluated. High-level expression of the prM/E antigens could be demonstrated in infected complementing cells, and moderate levels were found under noncomplementing conditions. The vD4-prME vector was used to vaccinate mice; animals receiving single vaccination doses as low as 10(4) PFU were fully protected against challenge with high doses of virulent TBE virus. Single vaccination doses of 10(3) PFU were sufficient to induce significant neutralizing antibody titers. With the corresponding replicating virus, doses at least 10-fold higher were needed to achieve protection. The data indicate that late gene expression of the vaccine vector is not required for successful vaccination; early vaccinia virus gene expression induces a potent protective immune response. The new vaccinia virus-based defective vectors are therefore promising live vaccines for prophylaxis and cancer immunotherapy.  相似文献   

18.
Naked DNA vaccines expressing the prM and E genes of two tick-borne flaviviruses, Russian spring summer encephalitis (RSSE) virus and Central European encephalitis (CEE) virus were evaluated in mice. The vaccines were administered by particle bombardment of DNA-coated gold beads by Accell gene gun inoculation. Two immunizations of 0.5 to 1 microg of RSSE or CEE constructs/dose, delivered at 4-week intervals, elicited cross-reactive antibodies detectable by enzyme-linked immunosorbent assay and high-titer neutralizing antibodies to CEE virus. Cross-challenge experiments demonstrated that either vaccine induced protective immunity to homologous or heterologous RSSE or CEE virus challenge. The absence of antibody titer increases after challenge and the presence of antibodies to E and prM, but not NS1, both before and after challenge suggest that the vaccines prevented productive replication of the challenge virus. One vaccination with 0.5 microg of CEE virus DNA provided protective immunity for at least 2 months, and two vaccinations protected mice from challenge with CEE virus for at least 6 months.  相似文献   

19.
Immunogenicity and protective efficacy of recombinant Japanese encephalitis virus (JEV) NS1 proteins generated using DNA vaccines and recombinant viruses have been demonstrated to induce protection in mice against a challenge of JEV at a lethal dose. The West Nile virus NS1 region expressed in E. coli is recognized by these protective monoclonal antibodies and, in this study, we compare immunogenicity and protective immunity of the E. coli-synthesized NS1 protein with another protective immunogen, the envelope domain III (ED3). Pre-challenge, detectable titers of JEV-specific neutralizing antibody were detected in the immunized mice with E. coli-synthesized ED3 protein (PRNT50 = 1:28) and the attenuated JEV strain T1P1 (PRNT50 = 1:53), but neutralizing antibodies were undetectable in the immunized mice with E. coli-synthesized NS1 protein (PRNT50 < 1:10). However, the survival rate of the NS1-immunized mice against the JEV challenge was 87.5% (7/8), showing significantly higher levels of protection than the ED3-immunized mice, 62.5% (5/8) (P = 0.041). In addition, E. coli-synthesized NS1 protein induced a significant increase of anti-NS1 IgG1 antibodies, resulting in an ELISA titer of 100,1000 in the immunized sera before lethal JEV challenge. Surviving mice challenged with the virulent JEV strain Beijing-1 showed a ten-fold or greater rise in IgG1 and IgG2b titers of anti-NS1 antibodies, implying that the Th2 cell activation might be predominantly responsible for antibody responses and mice protection.  相似文献   

20.
We performed experiments to determine whether parenteral immunization with SA11 rotavirus can induce active protective immunity in a rabbit model of rotavirus infection. After one or two intramuscular injections of 1 ml of live or formalin-inactivated SA11 virus, we evaluated the mucosal and serologic immune response and protection from challenge with a high dose of live, virulent rabbit (Ala) rotavirus. Inactivated SA11 virus preparations, evaluated by enzyme-linked immunosorbent assay (ELISA) with a panel of VP4- and VP7-specific neutralizing and nonneutralizing monoclonal antibodies, did not show a loss of epitopes from the inactivation procedure compared with live virus. Administration of two doses of vaccine, one at zero days postvaccination (DPV) and a booster shot at 49 DPV, followed by challenge at 71 DPV with 3.5 x 10(5) PFU of Ala virus resulted in protection from challenge. None of the two-dose virus-vaccinated rabbits shed virus after challenge, while virus shedding was detected in all control rabbits (P = 0.001, Fisher's exact two-tailed test). Differences in total serum immunoglobulin (Ig) antirotavirus ELISA titers (P < 0.05, Wilcoxon's rank sum test) were observed between groups vaccinated with virus in aluminum phosphate or Freund's adjuvant but not between groups vaccinated with live or inactivated virus in either adjuvant. All rabbits given two doses of vaccine had detectable antirotavirus intestinal antibody of the IgG, but not IgA, isotype. After challenge, fourfold or greater increases in intestinal IgG antibody responses were observed in three rabbits, whereas all controls and all but one virus-vaccinated rabbit had an intestinal IgA antibody response. In contrast, vaccination of rabbits with one dose of SA11 followed by challenge at 21 DPV did not protect from challenge; no difference in the mean number of days of virus shedding between any of the vaccinated groups and controls was observed. A serologic, but not a mucosal, antibody response was observed after the one-dose vaccination regimen. Differences in serologic antibody titers were not observed between any of the one-dose virus-vaccinated groups. These data indicate that parenteral vaccination with two, but not one, doses of rotavirus in either Freund's adjuvant or aluminum phosphate can induce active protection from challenge.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号