首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experiment was conducted to study sour orange (Citrus aurantium L.) seedling root density, distribution, and morphological development under NaCl and polyethylene glycol (PEG) stresses in relation to shoot growth and stomatal conductance. Plants were treated with 2 stress levels (– 0.12 and – 0.24 MPa) of NaCl and PEG 4000 for 7 months. Root observation chambers were used to monitor root growth and distribution under stressed and non-stressed conditions. Seedlings receiving NaCl or PEG treatments produced fewer roots and shallower root systems with 46 to 65% of the roots occurring in the top portion of the soil. Fibrous root weight per unit length was increased by 24 to 30% by PEG but was not significantly increased by NaCl.Root growth rate usually alternated with shoot growth in a 2-month cycle. This alternating pattern was not shifted by NaCl and PEG stresses. In all NaCl and PEG treatments, growth was depressed and stomatal conductance was reduced. Compared to controls, plants that received NaCl or PEG had smaller shoot and root dry weights, fewer leaves, shorter height, and fewer roots. Sodium chloride usually caused less damage than PEG to sour orange seedlings suggesting that NaCl and PEG acted through different mechanisms.Florida Agricultural Experiment Station Journal Series No. 9941.  相似文献   

2.
The water relations responses to salt of several important citrus rootstocks such as Swingle citrumelo, sour orange, and Milam lemon have not been studied in detail before. Studies were set up to compare growth and root hydraulic properties of these rootstocks to other citrus rootstocks by exposing them to NaCl and polyethylene glycol (PEG) stresses. Seedlings of 7 citrus rootstocks were irrigated for 5 months with nutrient solutions containing NaCl or PEG that had been adjusted to osmotic potentials of -0.10, -0.20 or -0.35 MPa. The 7 rootstocks studied were sour orange (Citrus aurantium), Cleopatra mandarin (Citrus reticulata Blanco), Swingle citrumelo (C. paradisi x P. trifoliata), Carrizo citrange (C. sinensis x P. trifoliata), rough lemon (Citrus jambhiri Lush), Milam lemon (C. jambhiri hybrid), and trifoliate orange (Poncirus trifoliata [L.] Raf.). In both shoot and root growth, Cleopatra mandarin and sour orange were the least sensitive to salt, Milam and trifoliate orange were the most sensitive, and rough lemon, Swingle, and Carrizo were intermediate in sensitivity. Even though the roots were exposed to solutions of equal osmotic potentials, plant growth and root conductivity were reduced more by the PEG treatments than the corresponding NaCl treatments. At -0.10 and -0.20 MPa, shoot and root dry weights were reduced 16 to 55% by NaCl and 24 to 68% by PEG. Shoot root ratio was lowered at the higher concentrations, particularly by PEG. There was a major decrease in root conductivity caused by NaCl at -0.10 MPa (19 to 30% in sour orange and Cleopatra mandarin and 78 to 85% in trifoliate orange and Milam). Conductivity decreased more at -0.20 and -0.35 MPa, but not proportionally as much as at -0.10 MPa. Root weight per unit length increased at the higher salt levels, particularly in trifoliate orange. Water flow rate through root systems followed the same trend as root conductivity; salt affected sour orange and Cleopatra mandarin the least and trifoliate orange and Milam the most. However, reductions in fibrous root length by salt treatment differed. Root lengths of Swingle and Carrizo were least affected by salt while sour orange. Milam, and rough lemon were the most affected. Hence, even though sour orange and Cleopatra mandarin were more tolerant than the other rootstocks in terms of water flow rate or root conductivity, these 2 rootstocks showed a proportionally greater decrease in root length than Carrizo, Swingle, or trifoliate orange.  相似文献   

3.
We investigated the potential links between stomatal control of transpiration and the risk of embolism in root and shoot xylem of seedlings of three Mediterranean conifers (Cupressus sempervirens, Pinus halepensis and P. nigra) grown in a greenhouse under semi-controlled conditions. We measured the intrinsic vulnerability to embolism in roots and current year shoots by the air injection method. Root and shoot segments were subjected to increasing pressures, and the induced loss of hydraulic conductivity recorded. The three species displayed very different vulnerabilities in shoots, with P. nigra being much more vulnerable than P. halepensis and C. sempervirens. Roots were distinctly more vulnerable than shoots in C. sempervirens and P. halepensis (50% loss of conductivity induced at 3.0 MPa and 1.7 MPa higher xylem water potential in roots vs shoots). In P. nigra, no significant difference of vulnerability between shoots and roots was found. Seedlings were subjected to soil drought, and stomatal conductance, twig hydraulic conductivity and needle water potential were measured. The water potential resulting in almost complete stomatal closure (90%) was very close to the threshold water potential inducing loss of conductivity (10%) in twigs in P nigra, resulting in a very narrow safety margin between stomatal closure and embolism induction. The safety margin was larger in P. halepensis and greatest in C. sempervirens. Unexpectedly, this water potential threshold produced a 30–50% loss of conductivity in 3–5 mm diameter roots, depending on the species. The implications of this finding are discussed.  相似文献   

4.
Seedlings of the rootstocks Pineapple sweet orange (SwO), Carrizo citrange (CC), and sour orange (SO) were grown in low phosphorus (P) sandy soil and either inoculated with the vesicular-arbuscular mycorrhizal (VAM) fungus,Glomus intraradices, or were non-mycorrhizal (NM) and fertilized with P. VAM and NM seedings of similar shoot size and adequate P-status were selected for study of salinity and flooding stress. One-third of each of the VAM and NM plants were given 150 mM NaCl for a period of 24 days. One-third of the plants were placed into plastic bags and flooded for 21 days while the remaining third were non-stressed controls. In general, neither stress treatment affected mycorrhizal colonization. Salinity stress reduced the hydraulic conductivity of roots, leaf water potential, stomatal conductance and net assimilation of CO2 (ACO2) of mycorrhizal and non-mycorrhizal seedlings to a similar extent. VAM plants of CC and SO accumulated more Cl in leaves than NM plants. Cl was higher in non-mycorrhizal roots of SwO and CC than in mycorrhizal roots. Flooding the root zone for 3 weeks did not produce visible symptoms in the shoot but did influence plant water relations and reduce ACO2 of all 3 rootstocks. VAM and NM plants of each rootstock were affected similarly by flooding. Comparable reduction in nitrogen and P content of both mycorrhizal and non-mycorrhizal plants suggested that flooding stress was primarily affecting root rather than hyphal nutrient uptake. Florida Agricultural Experimental Station Journal Series No. 7773.  相似文献   

5.
Summary Rough lemon citrus seedlings were inoculated withFusarium solani and evaluated for changes in water relations of leaves, stems, and roots. Inoculated seedlings had decreased leaf stomatal conductance, lower leaf water potential, lower water content, and higher leaf osmotic values compared to healthy plants. Visible wilt symptoms occurred as early as 24 h after inoculation. Transpiration and root conductivity were lower in diseased plants but stem conductivity in diseased plants did not differ from the control. Thus, wilting appears to be due to the inability of roots to supply water to the leaves.  相似文献   

6.
Cytokinins can promote stomatal opening, stimulate shoot growth and decrease root growth. When soil is drying, natural cytokinin concentrations decrease in association with stomatal closure and a redirection of growth away from the shoots to the roots. We asked if decreased cytokinin concentrations mediate these adaptive responses by lessening water loss and promoting root growth thereby favouring exploration for soil water. Our approach was to follow the consequences for 12-d-old lettuce seedlings of inoculating the growing medium with cytokinin-producing bacteria under conditions of water sufficiency and deficit. Inoculation increased shoot cytokinins as assessed by immunoassay and mass spectrometry. Inoculation also promoted the accumulation of shoot mass and shortened roots while having a smaller effect on root mass. Inoculation did not raise stomatal conductance. The possible promoting effect of these cytokinins on stomatal conductance was seemingly hampered by increases in shoot ABA that inoculation also induced. Inoculation lowered root/shoot ratios by stimulating shoot growth. The effect was greater in non-droughted plants but remained sufficiently strong for shoot mass of inoculated droughted plants to exceed that of well-watered non-inoculated plants. We conclude that compensating for the loss of natural cytokinins in droughted plants interferes with the suppression of shoot growth and the enhancement of root elongation normally seen in droughted plants.  相似文献   

7.
Summary Flooding ofPlatanus occidentalis L. seedlings for up to 40 days induced several changes including early stomatal closure, greatly accelerated ethylene production by stems, formation of hypertrophied lenticels and adventitious roots on submerged portions of stems, and marked growth inhibition. Poor adaptation ofPlatanus occidentalis seedlings to soil inundation was shown in stomatal closure during the entire flooding period, inhibition of root elongation and branching, and death of roots. Some adaptation to flooding was indicated by (1) production of hypertrophied lenticels which may assist in exchange of dissolved gases in flood water and in release of toxic compounds, and (2) production of adventitious roots on stems which may increase absorption of water. These adaptations appeared to be associated with greatly stimulated ethylene production in stems of flooded plants. The greater reduction of root growth over shoot growth in flooded seedlings will result in decreased drought tolerance after the flood waters recede. The generally low tolerance to flooding of seedlings of species that are widely rated as highly flood tolerant is emphasized.  相似文献   

8.
Summary Bacteria, isolated from roots (xylem tissue) of healthy and Young Tree Decline (YTD, Blight)-affected citrus trees, and also from nursery seedlings, were screened for potential pathogenicity by the tobacco hypersensitive reaction (HR). A majority (>75%) of the HR positive strains were classified as nonfluorescent pseudomonads. These HR positive strains were subsequently inoculated into rough lemon (Citrus jambhiri Lush.) and sweet orange (C. sinsensis Osbeck) seedlings or into Valencia sweet orange budded on rough lemon root-stock. Many of the HR positive pseudomonads reduced fresh weights (up to 94%) of roots and shoots and some reduced xylem water conductance and caused scion dieback. There was no evidence of necrosis or root rot in inoculated roots. A few HR negative Pseudomonas and Enterobacter strains significantly, but less severely, inhibited (to 43%) root growth of sweet orange seedlings. HR negative mutants derived from HR positive strains were considerably less inhibitory. Postinoculation stresses (dark and cold) markedly decreased susceptibility of seedlings to bacterial-induced inhibition. Evidence of cultivar-specific effects was obtained in comparable inoculations of rough lemon and sweet orange seedlings. Soil application of a fluorescent pseudomonad, which alone was growth stimulatory, intensified inhibitory effects of nonfluorescent, growth inhibitory, psuedomonads. This study demonstrates that many rhizobacteria isolated from xylem tissue of roots have detrimental effects on citrus.  相似文献   

9.
Photosynthetic responses of citrus trees to soil flooding   总被引:1,自引:0,他引:1  
Continuous soil flooding reduced leaf photosynthetic rate, stomatal conductance to water vapor, chlorophyll concentration and activity of ribulose bisphosphate carboxylase-oxygenase (Rubisco, EC 4.1.1.39) of sweet orange [ Citrus sinensis (L.) Osbeck cv. Hamlin] trees, grafted onto rough lemon (RL; C. jambhiri Lush.) and sour orange (SO; C. aurantium L.) rootstocks. After 24 days of waterlogging, trees showed senescence, wilting and abscission of leaves, and these symptoms were more evident with flooded Hamlin/SO than Hamlin/RL. Reduction of leaf photosynthetic rate at day 24 was ca 94%, of stomatal conductance, 71%, of chlorophyll, 38% and of Rubisco, 62% for flooded Hamlin/SO, compared with 22, 5, 18 and 33%, respectively, for flooded Hamlin/RL. For both Hamlin/RL and Hamlin/SO, leaf photosynthetic rate and stomatal conductance to water vapor were closely correlated (r2= 0.87). Leaf internal CO2 concentration of flooded trees, however, was not decreased by reduced stomatal conductance. Dark respiration rates of fibrous roots of flooded trees were greatly reduced, but not in leaf tissues. Total nonstructural carbohydrate concentrations were higher in leaves (50 and 80% increases for Hamlin/SO and Hamlin/RL, respectively), but drastically reduced in roots (60 and 45% reductions for Hamlin/SO and Hamlin/RL, respectively), as a result of flooding. The data indicate that Hamlin grafted onto RL rootstocks was more tolerant to soil flooding than Hamlin grafted onto SO rootstocks.  相似文献   

10.
Paclobutrazol [(2RS,3RS)-1-(4-chlorophenyl)-4,4-dimethyl-2-(1,2,4-triazol-1-yl)pentan-3ol] was applied to soil at 0, 100, or 250 mg/3.78-liter pot containing seedlings of Swingle citrumelo, Carrizo citrange, Cleopatra mandarin, sour orange, rough lemon, and Sun Chu Sha. All cultivars were sensitive to paclobutrazol, which caused a proliferation of shorter/thicker roots, and top growth showed shorter internodes and lower dry weight. Induced changes resulted in greater root/shoot ratios, and paclobutrazol treatments showed higher concentrations of nitrogen, calcium, boron, iron, and manganese in the leaves of different cultivars. Paclobutrazol-treated seedlings did not show a greater ability to tolerate flooded soil for 60 continuous days under greenhouse conditions nor survive-6.7°C controlled freeze tests. Paclobutrazol is a potentially useful plant growth regulator to dwarf citrus, but it apparently is not a strong candidate for increasing flooding and freezing tolerance in citrus rootstock seedlings.Abbreviations PPFD photosynthetic photon flux density - ANOVA analysis of variance  相似文献   

11.
Potted two-year-old Fino lemon plants (Citrus limon (L.) Burm. fil.) grafted on two different rootstocks: sour orange (C. aurantium) (SO), and C. macrophylla (CM) were submitted to two different treatments: non-flooded (control) and flooded for 8 days, under field conditions. Lemon/CM plants had lower plant plus soil resistance to water flow (R(p+s)) values for both treatments. The decrease in leaf water potential (Ψl) and leaf turgor potential (Ψp) values, observed in the last part of the flooding period, in both flooded scion/rootstock combinations, can be related to the increase in the resistance to water flow. The maintenance in Ψl and Ψp values in flooded plants at values similar to those of the control plants, at the beginning of the flooding period and during the recovery period, can be ascribed to the stomatal control observed (decrease in leaf conductance (g1) values). The later g1 recovery in lemon/CM than in lemon/SO flooded plants, could explain the lower vegetative growth of lemon/CM plants by flooding effect. The observed g1 response to soil flooding suggested that porometry is a reliable indicator of the altered behaviour caused by flooding in lemon plant.  相似文献   

12.
In naturally infested soil containingPythium ultimum, P. acanthicum andPhytophthora megasperma, onlyP. ultimum was associated with root rot and damped-off seedlings. Damping-off was promoted by low soil temperatures and by flooding. Seedling stands were markedly reduced when seed was pre-incubated in soil at 12°C but not at 25°C or 35°C. Dusting carrot seed with metalaxyl significantly increased seedling stands in the field at rates from 1.5–6 g kg−1 seed and in both flooded and unflooded, naturally infested soil at 3.15 g kg−1. In greenhouse experiments using artifically infested soil,P. ultimum andP. paroecandrum caused damping-off of carrot seedlings andRhizoctonia solani reduced root and shoot weights.R. solani caused damping-off in nutrient-enriched soil.P. acanthicum andP. megasperma were not pathogenic to seedlings, although both fungi colonized roots. Soil populations of allPythium spp., particularlyP. ultimum, increased during growth of seedlings and population growth ofP. megasperma was promoted by periodic flooding. Infestation of soil withP. acanthicum did not reduce damping-off of carrot seedlings byP. ultimum orP. paroecandrum, but significantly increased root and shoot weights and decreased root colonization byR. solani P. acanthicum has potential as a biocontrol agent againstR. solani.  相似文献   

13.
Black spruce [ Picea mariana (Mill.) B.S.P.] and tamarack [ Larix laricina (Du Roi) K. Koch] are the predominant tree species in boreal peatlands. The effects of 34 days of flooding on morphological and physiological responses were investigated in the greenhouse for black spruce and tamarack seedlings in their second growing season (18 months old). Flooding resulted in reduced root hydraulic conductance, net assimilation rate and stomatal conductance and increased needle electrolyte leakage in both species. Flooded tamarack seedlings maintained a higher net assimilation rate and stomatal conductance compared to flooded black spruce. Flooded tamarack seedlings were also able to maintain higher root hydraulic conductance compared to flooded black spruce seedlings at a comparable time period of flooding. Root respiration declined in both species under flooding. Sugar concentration increased in shoots while decreasing in roots in both species under flooding. Needles of flooded black spruce appeared necrotic and electrolyte leakage increased over time with flooding and remained significantly higher than in flooded tamarack seedlings. No visible damage symptoms were observed in flooded tamarack seedlings. Flooded tamarack seedlings developed adventitious roots beginning 16 days after the start of flooding treatment. Adventitious roots exhibited significantly higher root hydraulic conductivity than similarly sized flooded tamarack roots. Flooded black spruce lacked any such morphological adaptation. These results suggest that tamarack is better able to adjust both morphologically and physiologically to prolonged soil flooding than black spruce seedlings.  相似文献   

14.
Lucero  D. W.  Grieu  P.  Guckert  A. 《Plant and Soil》2000,227(1-2):1-15
The combined effects of soil water deficit and above and below ground interspecific plant competition on the growth, water-use efficiency (WUE), and measured carbon isotopic composition (δ13C) values of white clover and ryegrass were studied. White clover and ryegrass were grown in specially designed crates 1) individually; 2) in shoot competition; or 3) in shoot + root competition and either well-watered or at a moderate or severe soil water deficit. The effects of shoot + root competition on shoot dry matter growth were substantial and benefited both white clover and ryegrass when well-watered or at a moderate soil water deficit, while severely reducing white clover shoot dry matter growth at severe soil water deficit. Plant competition did not affect the WUE of white clover or ryegrass. As soil water deficit increased, the WUE of white clover did not change whereas the WUE of ryegrass increased and was greater than that of white clover. This was attributed to the lower leaf water conductance of ryegrass which conserved water and maintained growth longer compared to white clover. A stronger correlation existed between soil water deficit and measured δ13C values for ryegrass at each plant competition level (P<0.001) than existed for white clover (individual: P<0.01; shoot + root: P<0.001; shoot: P<0.10). Unlike white clover, the relationship between measured δ13C values and shoot dry matter growth indicated that C assimilation for ryegrass was dependent on type of plant competition. That WUE remained constant for white clover while measured δ13C values increased as soil water deficit increased, suggests that the role below ground respiration rate played in determining δ13C values increased. The WUE of white clover appears to be independent of the nature of the competition between plants and the soil water deficit level at which it is grown, whereas for ryegrass, the addition of root competition to shoot competition should lead to increases in its WUE. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
Summary Stomatal conductance of unstrossed, soil drought, and previously drought (predrought) Gmelina arborea seedlings increased in the morning and decreased before or immediately after midday. In the unstressed and predrought seedlings, leaf water potential decreased with increases in transpiration. In soil drought seedlings, there was some evidence of decreased hydraulic conductivity from soil to the plant, as indicated by the shape in the slope of the water potential/transpiration relationship. Root growth of drought plants was greater than in their unstressed counterparts at the lowest soil segment of a pot. The partial recovery of predrought seedlings was attributed to this subtantial root growth in the lowest soil segment.In the second experiment, Gmelina arborea seedlings were partially waterlogged, by flooding the polyethylene bag to half its length, for a period of 23 days. Waterlogging induced stomatal closure and reduction in leaf water potential but there was some evidence of tolerance to waterlogging towards the end of treatment. Root growth, shoot and root dry weights were slightly reduced below those of controls. After 9 days of waterlogging, adventitious roots began to form which correlated with depletion of soluble sugars in the shoot but with an increase in the roots.It is suggested that the tolerance of Gmelina plants to either soil drought or waterlogging may partly be due to partitioning of the soluble sugars from shoot to roots for production of roots and formation of adventitious roots respectively which are likely to enhance the flow of water from the soils to the plant. Therefore the plant response is very similar under conditions of increased deficits and surplus of soil water.  相似文献   

16.
Hans ter Steege 《Oecologia》1994,100(4):356-367
Mora excelsa and M. gonggrijpii are well segregated along a soil hydrological gradient. M. excelsa is positively associated with soil hydromorphic characteristics such as gley, mottling and groundwater within 1.20 m, whereas M. gonggrijpii is negatively associated with these characteristics. Growth and mortality of artificially installed seedlings were studied in both species in occasionally flooded forest and dryer uphill forest. In a moderate year (1992, no pronounced flooding, no drought), there was no difference between the two species in growth or mortality in the two forest types. M. gonggrijpii was larger in both forest types. Flooding tolerance of seeds and seedlings were studied under controlled water regimes. Seeds of M. gonggrijpii appeared to be very intolerant to flooding, since germination in this species dropped to 50% after only 11 days of flooding. Seeds of M. excelsa floated and 80% of the seeds were viable after as much as 50 days of flooding. Artificially submerged seeds of the latter species had an intermediate survival response. Flooding in seedlings resulted in cessation of growth in both species. Mortality was nil in most treatments, but all M. gonggrijpii individuals died after a treatment of 8 weeks of continuous flooding. Drought tolerance of seedlings of M. excelsa and M. gonggrijpii was studied in a drying-out experiment. Seedlings of both species of approximately equal size differed widely in a number of characteristics: total leaf area, leaf dry weight, leaf thickness, leaf size and leaf area ratio (LAR) were all larger in M. gonggrijpii, while stomatal density and specific leaf area (SLA) were smaller in this species. Seedlings did not differ in stem hydraulic conductivity. M. excelsa showed lower osmotic potential at full hydration. Turgor potential loss points were not nearly approached in the forest during the middle of the dry season in either species. M. gonggrijpii had much lower stomatal conductance than M. excelsa, due to lower stomatal density. Boundary layer conductance was of the same magnitude as stomatal conductance, especially in the morning. In a drying-out experiment, total plant transpiration was higher in M. gonggrijpii, as the lower conductance observed in this species was compensated for by its larger leaf area. M. gonggrijpii was able to extract water from dryer soils than M. excelsa and may be able to utilize its higher leaf water content under moderate drought in the forest understorey.  相似文献   

17.
Root chilling has been shown to inhibit shoot photosynthesis yet the mechanism for such an action is not clearly understood. A study was designed to elucidate the mechanism by which root cooling may affect net photosynthesis. Roots of Artemisia tridentata seedlings were cooled from 20°C to 5°C while their shoot temperature remained at 20°C. This was conducted at two light levels (700 and 1300 μmol m?2 s?1). The time course of shoot net photosynthesis (A), stomatal conductance to water vapor (gs), intercellular CO2 concentration (Ci) and root respiration (Rs) were determined on a whole-plant basis. Root cooling caused a 25% reduction in A at high PPFD, which was preceded by more than 50% reduction of gs and about 10% reduction in Ci. A versus Ci curves for single branches showed no difference between cold and warm soil temperatures, although stomatal conductance was lower for the lower soil temperature. This suggests that a stomatal limitation may have been involved in the inhibition of A. Furthermore, a concomitant decrease of as much as 23% in leaf relative water content (RWC) indicated that root cooling affected stomatal closure due to decreased water supply to the foliage. At lower PPFD, root cooling did not cause a decrease in A of the whole plant despite a moderate drop in gs, Ci and RWC. Cold soil also led to a substantial and rapid reduction in root respiration rate (Rs) regardless of the light level.  相似文献   

18.
It has been suggested that abscisic acid (ABA) regulates a centralized response of plants to low soil resource availability that is characterized by decreased shoot growth relative to root growth, decreased photosynthesis and stomatal conductance, and decreased plant growth rate. The hypothesis was tested that an ABA-deficient mutant of tomato (flacca; flc) would not exhibit the same pattern of down-regulation of photosynthesis, conductance, leaf area and growth, as well as increased root/shoot partitioning, as its near isogenic wild-type in response to nitrogen or water deficiency, or at least not exhibit these responses to the same degree. Plants were grown from seed in acid-washed sand and exposed to control, nutrient stress, or water stress treatments. Additionally, exogenous ABA was sprayed onto the leaves of a separate group of flc individuals in each treatment. Growth analysis, based on data from frequent harvests of a few individuals, was used to assess the growth and partitioning responses of plants, and gas exchange characteristics were measured on plants throughout the experiment to examine the response of photosynthesis and stomatal conductance. Differences in growth, partitioning and gas exchange variables were found between flc and wild-type individuals, and both nutrient and water treatments caused significant reductions in relative growth rate (RGR) and changes in biomass partitioning. Only the nutrient treatment caused significant reductions in photosynthetic rates. However, flc and wild-type plants responded identically to nutrient and water stress for all but one of the variables measured. The exception was that flc showed a greater decrease in the relative change in leaf area per unit increase of plant biomass (an estimate of the dynamics of leaf area ratio) in response to nutrient stress—a result that is opposite to that predicted by the centralized stress response model. Furthermore, addition of exogenous ABA to flc did not significantly alter any of the responses to nutrient and water stress that we examined. Although it was clear that ABA regulated short-term stomatal responses, we found no evidence to support a pivotal role for ABA, at least absolute amounts of ABA, in regulating a centralized whole-plant response to low soil resource availability.  相似文献   

19.
Summary Effects of P fertilizers on growth of Douglas fir (Pseudotsuga menziesii var.menziesii (Mirb.) Franco.) seedlings were examined in pots and nursery beds. In pot experiments levels of P equivalent to 300 kg/ha were adequate for maximum growth over 14–18 weeks and resulted in available soil P levels of 80 ppm after 15 weeks' growth. Maximum growth in pots was obtained with shoot P concentrations of 0.18%–0.20%, with higher values at lower temperatures, but the optimum concentration for one-year old (1-0) nursery seedlings was 0.16% P. Growth of seedlings was greatly restricted at a soil temperature of 5°C and an air temperature of 12°C. At a soil temperature of 10°C and an air temperature of 14°C seedling P requirement was greater than at soil and air temperatures of 20°C.Comparison showed that monammonium phosphate was more effective than calcium superphosphate in stimulating growth in pots and nursery. Triple superphosphate was also effective in the nursery. Diammonium phosphate, potassium dihydrogen phosphate and phosphoric acid had no advantages as P sources in the nursery. Available P levels of 100–130 ppm, in the loamy sand and sandy loam nurseries studied, and needle P concentrations of 0.18%, when sampled in October, were associated with maximum growth of two-year old (2-0) seedlings.P fertilization decreased root/shoot ratio, but did not alter the allometric relationship of shoot to root. Improving P status from a low level increased root growth capacity in 2-0 seedlings and P fertilization of potted seedlings increased dry weight/height ratio. Uptakes per seed bed ha of 236 kg N, 31 kg P, 81 kg K and 73 kg Ca by 2-0 seedlings were comparable with, or greater than, uptake rates of agricultural crops. Recoveries of 6–11% of P from fertilizer were recorded in the nursery.  相似文献   

20.
Eucalyptus camaldulensis Dehnh. seedlings inoculated with Pisolithus tinctorius (Pers.) Coker & Couch and Thelephora terrestris Ehrl. per Fr. were grown in well watered soil (s –0.03 MPa) or subjected to a long-term soil water stress of up to –1.0 MPa over 13-week period in a glasshouse. After 13 weeks, all seedling containers were watered to field capacity and then water was withheld from the E. camaldulensis seedlings to induce a short-term drought. Diurnal measurements of seedling photosynthesis rate (A), leaf stomatal conductance (g) and leaf water potential (p) were completed before, during, and after the short term drought. Although they were growing in an equal soil volume, photosynthesis rate (A), leaf stomatal conductance and leaf water potential (p) of larger seedlings with P. tinctorius ectomycorrhizae were similar to those of smaller seedlings colonized with T. terrestris during the short-term drought period. Seedlings inoculated with Pisolithus tinctorius maintained higher photosynthesis rates over the course of the short-term drought. Thus, P. tinctorius ectomycorrhizae appear to be more efficient than those of T. terrestris in assisting seedlings to maintain gas exchange and photosynthesis under limited soil moisture conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号