首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Bacillus subtilis, the termination of DNA replication via polar fork arrest is effected by a specific protein:DNA complex formed between the replication terminator protein (RTP) and DNA terminator sites. We report the crystal structure of a replication terminator protein homologue (RTP.C110S) of B. subtilis in complex with the high affinity component of one of its cognate DNA termination sites, known as the TerI B-site, refined at 2.5 A resolution. The 21 bp RTP:DNA complex displays marked structural asymmetry in both the homodimeric protein and the DNA. This is in contrast to the previously reported complex formed with a symmetrical TerI B-site homologue. The induced asymmetry is consistent with the complex's solution properties as determined using NMR spectroscopy. Concomitant with this asymmetry is variation in the protein:DNA binding pattern for each of the subunits of the RTP homodimer. It is proposed that the asymmetric "wing" positions, as well as other asymmetrical features of the RTP:DNA complex, are critical for the cooperative binding that underlies the mechanism of polar fork arrest at the complete terminator site.  相似文献   

2.
The current models that have been proposed to explain the mechanism of replication termination are (i) passive arrest of a replication fork by the terminus (Ter) DNA-terminator protein complex that impedes the replication fork and the replicative helicase in a polar fashion and (ii) an active barrier model in which the Ter-terminator protein complex arrests a fork not only by DNA-protein interaction but also by mechanistically significant terminator protein-helicase interaction. Despite the existence of some evidence supporting in vitro interaction between the replication terminator protein (RTP) and DnaB helicase, there has been continuing debate in the literature questioning the validity of the protein-protein interaction model. The objective of the present work was two-fold: (i) to reexamine the question of RTP-DnaB interaction by additional techniques and different mutant forms of RTP, and (ii) to investigate if a common domain of RTP is involved in the arrest of both helicase and RNA polymerase. The results validate and confirm the RTP-DnaB interaction in vitro and suggest a critical role for this interaction in replication fork arrest. The results also show that the Tyr(33) residue of RTP plays a critical role both in the arrest of helicase and RNA polymerase.  相似文献   

3.
DNA replication fork arrest during the termination phase of chromosome replication in Bacillus subtilis is brought about by the replication terminator protein (RTP) bound to specific DNA terminator sequences (Ter sites) distributed throughout the terminus region. An attractive suggestion by others was that crucial to the functioning of the RTP-Ter complex is a specific interaction between RTP positioned on the DNA and the helicase associated with the approaching replication fork. In support of this was the behaviour of two site-directed mutants of RTP. They appeared to bind Ter DNA normally but were ineffective in fork arrest as ascertained by in vitro Escherichia coli DnaB helicase and replication assays. We describe here a system for assessing the fork-arrest behaviour of RTP mutants in a bona fide in vivo assay in B. subtilis. One of the previously studied mutants, RTP.Y33N, was non-functional in fork arrest in vivo, as predicted. But through extensive analyses, this RTP mutant was shown to be severely defective in binding to Ter DNA, contrary to expectation. Taken in conjunction with recent findings on the other mutant (RTP.E30K), it is concluded that there is as yet no substantive evidence from the behaviour of RTP mutants to support the RTP-helicase interaction model for fork arrest. In an extension of the present work on RTP.Y33N, we determined the dissociation rates of complexes formed by wild-type (wt) RTP and another RTP mutant with various terminator sequences. The functional wtRTP-TerI complex was quite stable (half-life of 182 minutes), reminiscent of the great stability of the E. coli Tus-Ter complex. More significant were the exceptional stabilities of complexes comprising wtRTP and an RTP double-mutant (E39K.R42Q) bound to some particular terminator sequences. From the measurement of in vivo fork-arrest activities of the various complexes, it is concluded that the stability (half-life) of the whole RTP-Ter complex is not the overriding determinant of arrest, and that the RTP-Ter complex must be actively disrupted, or RTP removed, by the action of the approaching replication fork.  相似文献   

4.
Termination of DNA replication in Bacillus subtilis involves the polar arrest of replication forks by a specific complex formed between the replication terminator protein (RTP) and DNA terminator sites. While determination of the crystal structure of RTP has facilitated our understanding of how a single RTP dimer interacts with terminator DNA, additional information is required in order to understand the assembly of a functional fork arrest complex, which requires an interaction between two RTP dimers and the terminator site. In this study, we show that the conformation of the major B.subtilis DNA terminator,TerI, becomes considerably distorted upon binding RTP. Binding of the first dimer of RTP to the B site of TerI causes the DNA to become slightly unwound and bent by approximately 40 degrees. Binding of a second dimer of RTP to the A site causes the bend angle to increase to approximately 60 degrees . We have used this new data to construct two plausible models that might explain how the ternary terminator complex can block DNA replication in a polar manner. In the first model, polarity of action is a consequence of the two RTP-DNA half-sites having different conformations. These different conformations result from different RTP-DNA contacts at each half-site (due to the intrinsic asymmetry of the terminator DNA), as well as interactions (direct or indirect) between the RTP dimers on the DNA. In the second model, polar fork arrest activity is a consequence of the different affinities of RTP for the A and B sites of the terminator DNA, modulated significantly by direct or indirect interactions between the RTP dimers.  相似文献   

5.
The effect of the tus protein-terB sequence complex of Escherichia coli on the movement of the SV40 large tumor antigen (T antigen)-mediated replication fork during SV40 DNA replication in vitro has been examined. In the monopolymerase and dipolymerase systems, the tus protein-terB complex efficiently blocked the replication fork movement in a polar fashion, as observed in prokaryotic replication systems. With crude cytosolic extracts of HeLa cells, the same polarity of fork arrest was observed, but the block of replication fork movement was inefficient. These results indicate that the structure of the prokaryotic tus protein-terB complex allows it to block replication fork movement in an orientation-dependent manner. We also show that the tus protein-terB complex blocks the 3'----5' helicase action of T antigen in a polar fashion, using substrates comprised of single-stranded M13 DNA with either a 52-base pair (bp) or 29-bp duplex containing the terB sequence. The tus protein-terB complex formed on the 52-bp duplex was less effective than the complex formed on the 29-bp duplex in blocking the helicase action of T antigen. With the 52-bp duplex substrate, T antigen movement was only partially (30%) blocked by the tus protein-terB sequence complex in the active orientation, whereas the E. coli dnaB helicase moving 5'----3' was blocked more than 90% by the complex in the active orientation. However, with the shorter 29-bp duplex substrate, the complex blocked the T antigen helicase activity about 75%, whereas the dnaB helicase activity was completely blocked. Altogether, these results suggest that the T antigen helicase activity, when coupled to DNA replication, is more susceptible to arrest by the tus protein-terB complex than the T antigen functioning as a helicase alone.  相似文献   

6.
The arrest of DNA replication in Escherichia coli is triggered by the encounter of a replisome with a Tus protein-Ter DNA complex. A replication fork can pass through a Tus-Ter complex when traveling in one direction but not the other, and the chromosomal Ter sites are oriented so replication forks can enter, but not exit, the terminus region. The Tus-Ter complex acts by blocking the action of the replicative DnaB helicase, but details of the mechanism are uncertain. One proposed mechanism involves a specific interaction between Tus-Ter and the helicase that prevents further DNA unwinding, while another is that the Tus-Ter complex itself is sufficient to block the helicase in a polar manner, without the need for specific protein-protein interactions. This review integrates three decades of experimental information on the action of the Tus-Ter complex with information available from the Tus-TerA crystal structure. We conclude that while it is possible to explain polar fork arrest by a mechanism involving only the Tus-Ter interaction, there are also strong indications of a role for specific Tus-DnaB interactions. The evidence suggests, therefore, that the termination system is more subtle and complex than may have been assumed. We describe some further experiments and insights that may assist in unraveling the details of this fascinating process.  相似文献   

7.
Two dimers of the replication terminator protein (RTP) of Bacillus subtilis bind to a chromosomal DNA terminator site to effect polar replication fork arrest. Cooperative binding of the dimers to overlapping half-sites within the terminator is essential for arrest. It was suggested previously that polarity of fork arrest is the result of the RTP dimer at the blocking (proximal) side within the complex binding very tightly and the permissive-side RTP dimer binding relatively weakly. In order to investigate this "differential binding affinity" model, we have constructed a series of mutant terminators that contain half-sites of widely different RTP binding affinities in various combinations. Although there appeared to be a correlation between binding affinity at the proximal half-site and fork arrest efficiency in vivo for some terminators, several deviated significantly from this correlation. Some terminators exhibited greatly reduced binding cooperativity (and therefore have reduced affinity at each half-site) but were highly efficient in fork arrest, whereas one terminator had normal affinity over the proximal half-site, yet had low fork arrest efficiency. The results show clearly that there is no direct correlation between the RTP binding affinity (either within the full complex or at the proximal half-site within the full complex) and the efficiency of replication fork arrest in vivo. Thus, the differential binding affinity over the proximal and distal half-sites cannot be solely responsible for functional polarity of fork arrest. Furthermore, efficient fork arrest relies on features in addition to the tight binding of RTP to terminator DNA.  相似文献   

8.
T Sahoo  B K Mohanty  I Patel    D Bastia 《The EMBO journal》1995,14(3):619-628
The termination of DNA replication at a sequence-specific replication terminus in Bacillus subtilis is catalyzed by a dimeric replication terminator protein (RTP) of subunit mol. wt 14,500. RTP has become an attractive protein with which to study the molecular mechanism of termination because its crystal structure has now been solved and the previous lack of an in vitro replication system has been largely overcome by our discovery that the protein terminates replication in vivo and in vitro in the well-studied Gram-negative Escherichia coli system. We have exploited the surrogate in vitro system to show that RTP acts as a polar contrahelicase to DnaB helicase of E. coli only when two RTP dimers are bound co-operatively to overlapping core and auxiliary sequences comprising the terminus. A core sequence by itself binds one dimer of RTP, but elicits no contrahelicase activity. Binding of two RTP dimers to a tandem head-to-tail core repeat also elicits no contrahelicase activity, thus suggesting that a specific stereochemical interaction between two RTP dimers and with the terminator site is essential for termination. RTP blocks unwinding of DNA substrates containing heteroduplex regions that include the terminus and are in the size range of approximately 50 to > 1000 bp in length. Thus, the protein blocks authentic helicase-catalyzed unwinding rather than just the translocation of the helicase on DNA.  相似文献   

9.
The coordinated termination of DNA replication is an important step in the life cycle of bacteria with circular chromosomes, but has only been defined at a molecular level in two systems to date. Here we report the structure of an engineered replication terminator protein (RTP) of Bacillus subtilis in complex with a 21 base pair DNA by X-ray crystallography at 2.5 A resolution. We also use NMR spectroscopic titration techniques. This work reveals a novel DNA interaction involving a dimeric 'winged helix' domain protein that differs from predictions. While the two recognition helices of RTP are in close contact with the B-form DNA major grooves, the 'wings' and N-termini of RTP do not form intimate contacts with the DNA. This structure provides insight into the molecular basis of polar replication fork arrest based on a model of cooperative binding and differential binding affinities of RTP to the two adjacent binding sites in the complete terminator.  相似文献   

10.
The interaction between the DNA replication terminator, IRI, of Bacillus subtilis and its cognate replication terminator protein (RTP) has been examined by the technique of missing nucleoside interference (MNI). IRI contains two adjacent binding sites (A and B) for RTP dimers. The B site is proximal to the replication fork arrest site. The present results have shown that nucleoside contacts with RTP in the two sites are very different. There are more extensive contacts of nucleosides in both strands of the B site with RTP compared with the A site. The data also strongly suggest that filling by RTP of the B site occurs first and is needed for subsequent co-operative filling of an overlapping A site. The A site alone binds RTP poorly. The findings are consistent with interaction occurring between RTP dimers bound to adjacent sites of IRI, which would explain why RTP bound to the B site alone cannot cause replication fork arrest.  相似文献   

11.
The Escherichia coli replication terminator TerB was inserted in its two alternate orientations into a Bacillus subtilis fork-arrest assay plasmid. After transferring these new plasmids into B. subtilis, which could overproduce the E. coli terminator protein Tus, it was shown that the E. coli Tus-TerB complex could cause polar replication fork arrest, albeit at a very low level, in B. subtilis. A new B. subtilis-E. coli shuttle plasmid was designed to allow the insertion of either the Terl (B. subtilis) or TerB (E. coli) terminator at the same site and in the active orientation in relation to the approaching replication fork generated in either organism. Fork-arrest assays for both terminator-containing plasmids replicating in both organisms which also produced saturating levels of either the B. subtilis terminator protein (RTP) or Tus were performed. The efficiency of the Tus-TerB complex in causing fork arrest was much higher in E. coli than in B. subtilis. The efficiency of the B. subtilis RTP-Terl complex was higher in B. subtilis than in E. coli, but the effect was significantly less. Evidently a specificity feature in E. coli operates to enhance appreciably the fork-arrest efficiency of a Tus-Ter complex. The specificity effect is of less significance for an RTP-Ter complex functioning in B. subtilis.  相似文献   

12.
Replication of genomic DNA is a universal process that proceeds in distinct stages, from initiation to elongation and finally to termination. Each stage involves multiple stable or transient interactions between protein subunits with functions that are more or less conserved in all organisms. In Escherichia coli, initiation of bidirectional replication at the origin (oriC) occurs through the concerted actions of the DnaA replication initiator protein, the hexameric DnaB helicase, the DnaC?helicase loading partner and the DnaG primase, leading to establishment of two replication forks. Elongation of RNA primers at each fork proceeds simultaneously on both strands by actions of the multimeric replicase, DNA polymerase III holoenzyme. The fork that arrives first in the terminus region is halted by its encounter with a correctly-oriented complex of the Tus replication terminator protein bound at one of several Ter sites, where it is trapped until the other fork arrives. We summarize current understanding of interactions among the various proteins that act in the different stages of replication of the chromosome of E. coli, and make some comparisons with the analogous proteins in Bacillus subtilis and the coliphages T4 and T7.  相似文献   

13.
14.
Joseph Germino  Deepak Bastia 《Cell》1981,23(3):681-687
The replication terminus of the drug resistance factor R6K has been cloned into the plasmid vectors pBR313 and pBR322. When the exogenously added DNA is replicated in vitro using cell extracts prepared from Escherichia coli, the plasmid replication terminus temporarily arrests the progression of the unidirectionally moving replication fork at or near the cloned terminator sequence. When the relative location of the terminator sequence is changed with respect to the replication origin, the point of arrest of the replication fork shifts correspondingly to the new location of the terminator. Termination of replication takes place in vitro regardless of whether the cell extracts used in the in vitro reaction are prepared from E. coli with a resident terminus sequence containing plasmid. From these observations we conclude that the termination of replication in vitro is identical or very similar to that observed in vivo, membrane association is not necessary for the activity of the replication terminus and the terminus sequence does not code for a transacting factor necessary for termination of replication. Therefore, any transacting factor which may be needed for the termination of replication must be coded by the host chromosome.  相似文献   

15.
Kaplan DL 《Current biology : CB》2006,16(17):R684-R686
The Tus-Ter protein-DNA complex of Escherichia coli blocks progression of DNA replication from only one direction at the replication terminus. As the replication fork helicase unwinds one side of Ter, a conserved cytosine flips out of the duplex and binds to Tus, thereby creating a locked complex that blocks the advancing helicase.  相似文献   

16.
We have examined a replication terminus (psiL1) located on the left arm of the chromosome of Bacillus subtilis and within the yxcC gene and at or near the left replication checkpoint that is activated under stringent conditions. The psiL1 sequence appears to bind to two dimers of the replication terminator protein (RTP) rather weakly and seems to possess overlapping core and auxiliary sites that have some sequence similarities with normal Ter sites. Surprisingly, the asymmetrical, isolated psiL1 site arrested replication forks in vivo in both orientations and independent of stringent control. In vitro, the sequence arrested DnaB helicase in both orientations, albeit more weakly than the normal Ter1 terminus. The key points of mechanistic interest that emerge from the present work are: (i) strong binding of a Ter (psiL1) sequence to RTP did not appear to be essential for fork arrest and (ii) polarity of fork arrest could not be correlated in this case with just symmetrical protein-DNA interaction at the core and auxiliary sites of psiL1. On the basis of the result it would appear that the weak RTP-L1Ter interaction cannot by itself account for fork arrest, thus suggesting a role for DnaB-RTP interaction.  相似文献   

17.
18.
The high-affinity binding of the Tus protein to specific 21-bp sequences, called Ter, causes site-specific, and polar, DNA replication fork arrest in E coli. The Tus-Ter complex serves to coordinate DNA replication with chromosome segregation in this organism. A number of recent and ongoing studies have demonstrated that Tus-Ter can be used as a heterologous tool to generate site-specific perturbation of DNA replication when reconstituted in eukaryotes. Here, we review these recent findings and explore the molecular mechanism by which Tus-Ter mediates replication fork (RF) arrest in the budding yeast, S. cerevisiae. We propose that Tus-Ter is a versatile, genetically tractable, and regulatable RF blocking system that can be utilized for disrupting DNA replication in a diverse range of host cells.  相似文献   

19.
The first stage in termination of chromosome replication in Bacillus subtilis involves arrest of the clockwise fork at the inverted repeat region (IRR), comprising the opposed IRI and IRII sequences, adjacent to the upstream region of the rtp gene, which encodes the replication terminator protein RTP. RTP binds to IRI and IRII. The ability of the IRR and its components to function as terminators, in conjunction with RTP, and their polarity of action have now been tested by the use of plasmids replicating in B. subtilis as unidirectional theta structures and into which potential terminator sequences were inserted in alternate orientations relative to fork movement. When the complete IRR was inserted into such plasmids and the new plasmids transferred into a B. subtilis strain overproducing RTP, it was able to block movement of a replication fork approaching from either direction. IRI and IRII were shown to function as polar terminators, each blocking movement of a fork when it approached from one particular direction but not the other. Furthermore, the polarity of action was in accordance with the IRR being able to operate as a replication fork trap. Thus, a fork approaching the IRR would pass through the first terminator encountered (IRI or IRII) and be halted by the second. The previously observed nonfunctioning of a particular orientation of chromosomal IRR as a fork arrest site probably reflects a limiting level of RTP in the cell. Interestingly, a 21 base-pair core sequence spanning a single RTP binding site within IRI (the 47 base-pair IRI contains 2 binding sites) was unable to arrest a fork approaching from either direction in the plasmid system. This suggests that both binding sites within an IR must be filled in order to function as an arrest site. It is possible that co-operative interaction between adjacent dimers within IRI or IRII provides the necessary conformation for causing fork arrest.  相似文献   

20.
The arrest of DNA replication in Escherichia coli is triggered by the encounter of a replisome with a Tus protein-Ter DNA complex. A replication fork can pass through a Tus-Ter complex when traveling in one direction but not the other, and the chromosomal Ter sites are oriented so replication forks can enter, but not exit, the terminus region. The Tus-Ter complex acts by blocking the action of the replicative DnaB helicase, but details of the mechanism are uncertain. One proposed mechanism involves a specific interaction between Tus-Ter and the helicase that prevents further DNA unwinding, while another is that the Tus-Ter complex itself is sufficient to block the helicase in a polar manner, without the need for specific protein-protein interactions. This review integrates three decades of experimental information on the action of the Tus-Ter complex with information available from the Tus-TerA crystal structure. We conclude that while it is possible to explain polar fork arrest by a mechanism involving only the Tus-Ter interaction, there are also strong indications of a role for specific Tus-DnaB interactions. The evidence suggests, therefore, that the termination system is more subtle and complex than may have been assumed. We describe some further experiments and insights that may assist in unraveling the details of this fascinating process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号