首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
3-Methylanthranilic acid (3MA) inhibits growth and causes derepression of the tryptophan biosynthetic enzymes in wild-type strains of Escherichia coli. Previous reports attributed this effect to an inhibition of the conversion of 1-(o-carboxyphenylamino)-1-deoxyribulose 5-phosphate to indole-3-glycerol phosphate and a consequent reduction in the concentration of endogenous tryptophan. Our studies have shown that 3MA-resistant mutants linked to the tryptophan operon have a feedback-resistant anthranilate synthetase; mutants with an altered indole-3-glycerol phosphate synthetase were not found. 3MA or 7-methylindole can be metabolized to 7-methyltryptophan, and 3MA, 7-methylindole, and 7-methyltryptophan lead to derepression of the tryptophan operon. Furthermore, 3MA-resistant mutants are also resistant to 7-methylindole derepression. These results strongly suggest that the primary cause of derepression by 3MA is through its conversion to 7-methyltryptophan, which can inhibit anthranilate synthetase, thereby decreasing the concentration of endogenous tryptophan. Unlike 5- or 6-methyltryptophan, 7-methyltryptophan does not appear to function as an active corepressor.  相似文献   

2.
3-Deoxy-d-arabinoheptulosonate 7-phosphate (DAHP) synthetase and anthranilate synthetase are key regulatory enzymes in the aromatic amino acid biosynthetic pathway. The DAHP synthetase activity of Hansenula polymorpha was subject to additive feedback inhibition by phenylalanine and tyrosine but not by tryptophan. The synthesis of DAHP synthetase in this yeast was not repressed by exogenous aromatic amino acids, singly or in combinations. The activity of anthranilate synthetase was sensitive to feedback inhibition by tryptophan, but exogenous tryptophan did not repress the synthesis of this enzyme. Nevertheless, internal repression of anthranilate synthetase probably exists, since the content of this enzyme in H. polymorpha strain 3-136 was double that in the wild-type and less sensitive 5-fluorotryptophan-resistant strains. The biochemical mechanism for the overproduction of indoles by the 5-fluorotryptophan-resistant mutants was due primarily to a partial desensitization of the anthranilate synthetase of these strains to feedback inhibition by tryptophan. These results support the concept that inhibition of enzyme activities rather than enzyme repression is more important in the regulation of aromatic amino acid biosynthesis in H. polymorpha.  相似文献   

3.
Mutant strains of Escherichia coli K-12 have been isolated in which the synthesis of 3-deoxy-d-arabinoheptulosonic acid-7-phosphate (DAHP) synthetase (trp) is partially constitutive. The mutation causing derepression is closely linked to aroH [the structural gene for DAHP synthetase (trp)] and occurs in a locus designated aroJ. The aroJ mutation is not recessive in an aroJ(+)/aroJ(-) diploid strain, as the synthesis of DAHP synthetase (trp) is still derepressed in this strain. On the basis of its close linkage to aroH and its continued expression in an aroJ(+)/aroJ(-) diploid, it is postulated that aroJ is an operator locus controlling the expression of the structural gene aroH. In support of this conclusion, the synthesis of anthranilate synthetase is still normally repressible in aroJ(-) strains, whereas, in trpR(-) strains, both DAHP synthetase (trp) and anthranilate synthetase are synthesized constitutively. The synthesis of DAHP synthetase (trp) remains repressible in an operator-constitutive mutant of the tryptophan operon. In two trpS mutants which possess defective tryptophanyl transfer ribonucleic acid synthetase enzymes, neither DAHP synthetase (trp) nor anthranilate synthetase derepress under conditions in which the defective synthetase causes a decrease in growth rate. On the other hand, an effect of the trpS mutant alleles on the level of anthranilate synthetase has been observed in strains which are derepressed for the synthesis of this enzyme, because of a mutation in the gene trpR. Possible explanations for this effect are presented.  相似文献   

4.
We have isolated a chorismate mutase bradytroph (leaky auxotroph) ofAnabaena sp. PCC 7119 (ATCC 29151) as a spontaneous 6-fluorotryptophan-resistant mutant. The decreased chorismate mutase activity resulted in the production of quantities of the phenylalanine and tyrosine that limited rate of growth. 3-Deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthase activity in the mutant was elevated more than twofold over the wild-type activity, suggesting derepression of this enzyme. The physiological deregulation of DAHP synthase and the genetic-based deficiency of chorismate mutase promoted an elevated level of intracellular chorismate, which then overwhelmed the competitive inhibition of anthranilate synthase by tryptophan, resulting in the overproduction of tryptophan and indoleglycerolphosphate. The presence of exogenous serine increased the production of tryptophan at the expense of indoleglycerolphosphate. This indicated that the endogenous potential for increasing the amount of serine available for increased tryptophan production is limited.  相似文献   

5.
Tryptophan- and indole-excreting prototrophic mutant of Escherichia coli   总被引:2,自引:0,他引:2  
Lim, P. G. (Massachusetts Institute of Technology, Cambridge), and R. I. Mateles. Tryptophan- and indole-excreting prototrophic mutant of Escherichia coli. J. Bacteriol. 87:1051-1055. 1964.-A mutant of Escherichia coli K-12, capable of excreting 350 mg of indole and 50 mg of tryptophan per liter when grown on minimal medium, was found to have a level of 3-deoxy-d-arabino-heptulosonic acid-7-phosphate (DAHP) synthetase 60% higher than the parent, and to have a 10- to 15-fold elevation of the levels of enzymes in the tryptophan branch of the pathway for aromatic amino acid biosynthesis. Contrary to what previous investigators found in E. coli W, the presence of a tyrosine-repressible component of DAHP synthetase sensitive to end-product inhibition by tyrosine could not be demonstrated in either strain K-12 or the mutant. The mutant strain is an example of a microorganism which excretes biosynthetic end products solely because of genetic derepression, as opposed to most previously reported amino acid accumulators which require a combination of genetic and physiological manipulation to achieve derepression.  相似文献   

6.
Tryptophan Synthetic Pathway and Its Regulation in Chromobacterium violaceum   总被引:13,自引:11,他引:2  
Extracts of Chromobacterium violaceum catalyzed all of the reactions involved in synthesizing tryptophan from chorismic acid. Tryptophan auxotrophs which had lost any of these activities did not produce the characteristic purple pigment, violacein, when grown on a medium in which tryptophan was limiting. Gel filtration of extracts allowed us to estimate molecular weights for the tryptophan enzymes. All of the enzymes appeared to have molecular weights below 100,000. No enzymes were observed to occur in aggregates. The specific activities of the enzymes of the tryptophan pathway did not change when mutants were grown under conditions of limiting or excess tryptophan. The first enzyme in the pathway, anthranilate synthetase, was subject to feedback control by the end product, tryptophan. Tryptophan acted as a noncompetitive inhibitor with respect to glutamine, one of the substrates for anthranilate synthetase, and as a competitive inhibitor of the reaction when chorismate, the other substrate, was varied. The nonlinearity observed in the Lineweaver-Burk plot in the latter case suggests that there may be more than one chorismate-binding site on anthranilate synthetase.  相似文献   

7.
A corn (Zea mays L.) mutant, blue fluorescent-1 (bf), is described that shows ultraviolet light induced blue fluorescence in young seedling leaves if homozygous for the mutant gene, and in anthers if either homozygous or heterozygous. The blue fluorescent compounds were extracted with acetone and separated by paper chromatography. Anthranilic acid was present and the beta-glucoside was also identified by paper chromatography and beta-glucosdase and acid treatment. A third major fluorescent compound was not identified, but it was convertible to anthranilic acid by acid treatment. Anthranilate synthetase from mutant plants was 3-40 times more active and was also more resistant to feedback inhibition by tryptophan than was the enzyme from normal plants. The high activity and feedback resistance would both lead to anthranilate accumulation. Anthranilate-phosphoribosylpyrophosphate phosphoribosyltransferase (PR transferase), the enzyme which usually utilizes anthranilate in the tryptophan pathway, was inhibited by the beta-glucoside of anthranilic acid in a noncompetitive manner and showed very little activity in the mutant plant extract. This inhibition of the enzyme which utilizes anthranilate would also lead to accumulation. Apparently the oversynthesis of anthranilate leads to the formation of the beta-glucoside, which inhibits anthranilate utilization. The fluorescent compounds are absent in seed, but form on germination. The levels decrease with age after 35 days postgermination, but are still present in leaves during grain filling.  相似文献   

8.
9.
The anthranilate synthetase of Clostridium butyricum is composed of two nonidentical subunits of unequal size. An enzyme complex consisting of both subunits is required for glutamine utilization in the formation of anthranilic acid. Formation of anthranilate will proceed in the presence of partially pure subunit I provided ammonia is available in place of glutamine. Partially pure subunit II neither catalyzes the formation of anthranilate nor possesses anthranilate-5-phosphoribosylpyrophosphate phosphoribosyltransferase activity. The enzyme complex is stabilized by high subunit concentrations and by the presence of glutamine. High KCl concentrations promote dissociation of the enzyme into its component subunits. The synthesis of subunits I and II is coordinately controlled with the synthesis of the enzymes mediating reactions 4 and 5 of the tryptophan pathway. When using gel filtration procedures, the molecular weights of the large (I) and small (II) subunits were estimated to be 127,000 and 15,000, respectively. Partially pure anthranilate synthetase subunits were obtained from two spontaneous mutants resistant to growth inhibition by 5-methyltryptophan. One mutant, strain mtr-8, possessed an anthranilate synthetase that was resistant to feedback inhibition by tryptophan and by three tryptophan analogues: 5-methyl-tryptophan, 4- and 5-fluorotryptophan. Reconstruction experiments carried out by using partially purified enzyme subunits obtained from wild-type, mutant mtr-8 and mutant mtr-4 cells indicate that resistance of the enzyme from mutant mtr-8 to feedback inhibition by tryptophan or its analogues was the result of an alteration in the large (I) subunit. Mutant mtr-8 incorporates [(14)C]tryptophan into cell protein at a rate comparable with wild-type cells. Mutant mtr-4 failed to incorporate significant amounts of [(14)C]tryptophan into cell protein. We conclude that strain mtr-4 is resistant to growth inhibition by 5-methyltryptophan because it fails to transport the analogue into the cell. Although mutant mtr-8 was isolated as a spontaneous mutant having two different properties (altered regulatory properties and an anthranilate synthetase with altered sensitivity to feedback inhibition), we have no direct evidence that this was the result of a single mutational event.  相似文献   

10.
Experiments concerned with the regulation of the tryptophan synthetic enzymes in anaerobes were carried out with a strain of Clostridium butyricum. Enzyme activities for four of the five synthetic reactions were readily detected in wild-type cells grown in minimal medium. The enzymes mediating reactions 3, 4, and 5 were derepressed 4- to 20-fold, and the data suggest that these enzymes are coordinately controlled in this anaerobe. The first enzyme of the pathway, anthranilate synthetase, could be derepressed approximately 90-fold under these conditions, suggesting that this enzyme is semicoordinately controlled. Mutants resistant to 5-methyl tryptophan were isolated, and two of these were selected for further analysis. Both mutants retained high constitutive levels of the tryptophan synthetic enzymes even in the presence of repressing concentrations of tryptophan. The anthranilate synthetase from one mutant was more sensitive to feedback inhibition by tryptophan than the enzyme from wild-type cells. The enzyme from the second mutant was comparatively resistant to feedback inhibition by tryptophan. Neither strain excreted tryptophan into the culture fluid. Tryptophan inhibits anthranilate synthetase from wild-type cells noncompetitively with respect to chorismate and uncompetitively with respect to glutamine. The Michaelis constants calculated for chorismate and glutamine are 7.6 x 10(-5)m and 6.7 x 10(-5)m, respectively. The molecular weights of the enzymes estimated by zonal centrifugation in sucrose and by gel filtration ranged from 24,000 to 89,000. With the possible exception of a tryptophan synthetase complex, there was no evidence for the existence of other enzyme aggregates. The data indicate that tryptophan synthesis is regulated by repression control of the relevant enzymes and by feedback inhibition of anthranilate synthetase. That this enzyme system more closely resembles that found in Bacillus than that found in enteric bacteria is discussed.  相似文献   

11.
Auxotrophs of Acinetobacter calcoaceticus blocked in each reaction of the synthetic pathway from chorismic acid to tryptophan were obtained after N-methyl-N'-nitro-N-nitrosoguanidine mutagenesis. One novel class was found to be blocked in both anthranilate and p-aminobenzoate synthesis; these mutants (trpG) require p-aminobenzoate or folate as well as tryptophan (or anthranilate) for growth. The loci of six other auxotrophic classes requiring only tryptophan were defined by growth, accumulation, and enzymatic analysis where appropriate. The trp mutations map in three chromosomal locations. One group contains trpC and trpD (indoleglycerol phosphate synthetase and phosphoribosyl transferase) in addition to trpG mutations; this group is closely linked to a locus conferring a glutamate requirement. Another cluster contains trpA and trpB, coding for the two tryptophan synthetase (EC 4.2.1.20) subunits, along with trpF (phosphoribosylanthranilate isomerase); this group is weakly linked to a his marker. The trpE gene, coding for the large subunit of anthranilate synthetase, is unlinked to any of the above. This chromosomal distribution of the trp genes has not been observed in other organisms.  相似文献   

12.
In a wild-type strain of Saccharomyces cerevisiae the tryptophan analogue dl-5-methyl-tryptophan (5MT) causes only a slight reduction of the growth rate. Uptake experiments indicate that the limited inhibition is partly due to low levels of 5MT inside the cell. On the other hand, this low concentration of 5MT leads to an increase in the activity of the tryptophan-biosynthetic enzymes. Evidence is presented that suggests that 5MT acts primarily through feedback inhibition of anthranilate synthase, the first enzyme of the pathway. A number of 5MT-sensitive mutants have been isolated, characterized, and assigned to one of the following three classes: class I, strains with altered activity and/or feedback sensitivity of anthranilate synthase; class II, strains with elevated uptake of 5MT; class III, mutants with altered regulation of the tryptophan-biosynthetic enzymes, which do not exhibit increases in activity in the presence of 5MT. This failure to exhibit increased enzyme activities in mutants of class III can also be observed after tryptophan starvation. Two mutants of class III show high sensitivity towards 3-amino-1,2,4-triazole. They can not exhibit derepression of some histidine- and arginine-biosynthetic enzymes under conditions that lead to an increase in these same enzymes in the wild-type strain.  相似文献   

13.
A spontaneous amber tyrR mutant has been isolated in which constitutive synthesis of 3-deoxy-d-arabinoheptulosonic acid 7-phosphate (DAHP) synthetase (tyr) and DAHP synthetase (phe) is suppressible by supC(-), supD(-), supF(-) and supU(-). This finding suggests the tyrR gene product is a protein. Derepression of DAHP synthetase (phe) in this and in seven other spontaneous tyrR mutants and in four Mu-1-induced tyrR mutants provides further evidence for the involvement of the tyrR gene product in phenylalanine biosynthesis. Evidence that the tyrR product is a component of repressor, rather than an enzyme involved in its synthesis or modification, comes from a study of a temperature-sensitive tyrR mutant. This mutant is of the thermolabile type, since derepression occurs rapidly and in the presence and absence of growth.  相似文献   

14.
In Brevibacterium flavum, prephenate dehydratase in the phenylalanine specific biosynthetic pathway was strongly inhibited by phenylalanine and activated by tyrosine. Furthermore. the inhibition by phenylalanine was completely reversed by tyrosine. Inhibition by tyrosine of prephenate dehydrogenase in the tyrosine specific pathway was very weak. Overall regulation mechanism of the aromatic amino acid biosynthesis in B. flavum was proposed on the bases of these results and the previous findings on 3-deoxy-D-arabino-heptulosonate-7- phosphate synthetase(DAHP synthetase*) of the common pathway and on anthranilate synthetase of the tryptophan specific pathway. Two types of m-fluorophenylalanine(mFP) resistant mutants which accumulated phenylalanine alone or both phenylalanine and tyrosine, respectively, were derived. The accumulation in the former mutants was inhibited by tyrosine, but that in the latter was affected neither by tyrosine nor by phenylalanine. DAHP synthetase of the latter mutants had been desensitized from the synergistic feedback inhibition by tyrosine and phenylalanine, while prephenate dehydratase of the former mutants had been desensitized in the feedback inhibition by phenylalanine. Tyrosine auxotroph accumulated phenylalanine under tyrosine limitation and its accumulation was inhibited by the excessive addition of tyrosine. Phenylalanine auxotroph accumulated tyrosine under phenylalanine limitation and its accumulation was inhibited by the excessive addition of phenylalanine. These results in vivo strongly supported the proposed regulation mechanism in which synthesis of phenylalanine in preference to tyrosine was assumed.  相似文献   

15.
Eighteen mutants (designated MT(s)), isolated in Escherichia coli K-12, showed increased sensitivity to inhibition of growth by 5-methyltryptophan. All mutants were also much more sensitive to 4-methyltryptophan and 7-azatryptophan but exhibited near normal sensitivity to 5-fluorotryptophan and 6-fluorotryptophan. All of the mutations were linked to the trp operon. Their locations within the trp operon were established by deletion mapping. There was good agreement between the map position of an MT(s) mutation and a lowered activity of one of the tryptophan pathway enzymes. Three mutants, one of which contained a mutation that mapped within the trpE gene, were deficient in their ability to use glutamine as an amino donor in the formation of anthranilic acid. Another trpE mutation led to the production of an anthranilate synthetase with an increased sensitivity to feedback inhibition by tryptophan.  相似文献   

16.
Prototrophic revertants of a trpD deletion mutant that lacks the glutamine amidotransferase domain of the bifunctional component II subunit of the anthranilate synthetase-phosphoribosyltransferase complex have been found to arise by the occurrence of sublethal missense mutations in either the pheA or tyrA loci. Such suppressor mutations were obtained directly by mutation of the wild-type pheA gene as well as indirectly by partial reversion of a variety of nonleaky pheA and tyrA mutations. The suppressor strains have only a portion of the normal level of the pheA or tyrA enzyme activity and thus experience a partial limitation in the synthesis of phenylalanine or tyrosine. This limitation leads to a relaxation of end-product regulation of the phenylalanine- or tyrosine-specific enzymes of the common aromatic pathway and to the overproduction of the branch point intermediate, chorismic acid, which is one of the substrates of the anthranilate synthetase reaction. It is proposed that the high intracellular level of chorismic acid acts to elevate the non-physiological NH3-dependent anthranilate synthetase activity of the component I subunit, thereby eliminating the need for the glutamine amidotransferase activity of the component II subunit. Consistent with this is the finding that phenylalanine and tyrosine are specific inhibitors of growth of the pheA and tyrA suppressor strains, respectively, causing a shutdown of the overproduction of chorismic acid by reestablishing normal end-product control of the common pathway.  相似文献   

17.
Potato cell suspension cultures (Solanum tuberosumL. cv. Merrimack) have been selected which are resistant to growth inhibition by D,L-5-methyltryptophan. Anthranilate synthetase activity in crude extracts from resistant cells was less sensitive to feedback inhibition by L-tryptophan and D,L-5-methyltryptophan than the activity from the sensitive line. This altered feedback control apparently accounts for the cell's resistance to growth inhibition since there is a 48-fold increase in free tryptophan in one of the resistant cell lines. Preparative polyacrylamide gel electro-phoresis separated feedback-sensitive and -resistant forms of anthranilate synthetase in extracts from both 5-methyltryptophan-susceptible and -resistant cells, with a predominance of the corresponding form in the respective cell type. The anthranilate synthetase activity from the 5-methyltryptophan-resistant line was inactivated more slowly by incubation of crude extracts at 50°C than the activity from the sensitive line. These results suggest the presence of two isoenzymes of anthranilate synthetase in cultured potato cells.  相似文献   

18.
In an analysis of the effects of various tryptophan and indole analogues in Saccharomyces cerevisiae we determined the mechanisms by which they cause growth inhibition: 4-Methyltryptophan causes a reduction in protein synthesis and a derepression of the tryptophan enzymes despite of the presence of high internal levels of tryptophan. This inhibition can only be observed in a mutant with increased permeability to the analogue. These results are consistent with but do not prove an interference of this analogue with the charging of tryptophan onto tRNA. 5-Methyltryptophan causes false feedback inhibition of anthranilate synthase, the first enzyme of the tryptophan pathway. This inhibits the further synthesis of tryptophan and results in results in tryptophan limitation, growth inhibition and derepression of the enzymes. Derepression eventually allows wild type cells to partially overcome the inhibitory effect of the analogue. 5-Fluoroindole is converted endogenously to 5-fluorotryptophan by tryptophan synthase. Both endogenous and externally supplied 5-fluorotryptophan are incorporated into protein. This leads to intoxication of the cells due to the accumulation of faulty proteins. 5-Fluorotryptophan also causes feedback inhibition of anthranilate synthase and reduces the synthesis of tryptophan which would otherwise compete with the analogues in the charging reaction. Indole acrylic acid inhibits the conversion of indole to tryptophan by tryptophan synthase. This results in a depletion of the tryptophan pool which, in turn, causes growth inhibition and derepression of the tryptophan enzymes.Abbreviations cpm counts per minute - OD optical density at 546 nm - TCA trichloro acetic acid - tRNA transfer ribonucleic acid; trp1 to trp5 refer to the structural genes for the corresponding tryptophan biosynthetic enzymes - trpl res. trp1± refer to mutant strains synthesizing completely resp. partially defective enzymes  相似文献   

19.
A marine bacterium, Vibrio MB22, has been studied to determine the pattern of feedback regulation of the first enzyme unique to the biosynthesis of the aromatic amino acids, 3-deoxy-d-arabino-heptulosonate 7-phosphate (DAHP) synthetase. The crude extract was used to study response of the enzyme to various salts as well as possible feedback inhibitors. Ethylenediaminetetraacetic acid was found to be inhibitory to enzyme activity, and only CoCl(2), of the salts tested, allowed full recovery as well as apparent stimulation of the DAHP synthetase activity. The DAHP synthetase activity was inhibited solely by the aromatic amino acids, tyrosine, tryptophan, and phenylalanine, of the possible effectors tested. Further work demonstrated the existence of three isozymes of DAHP synthetase, each primarily inhibited by one of the aromatic amino acids.  相似文献   

20.
Summary It would thus appear that in Saccharomyces cerevisiae there are two forms of histidine-mediated control on the tryptophan pathway. In some strains histidine increases anthranilate synthetase and indole glycerol phosphate synthetase activities, while tryptophan synthetase decreases. In other strains histidine affects coordinately all enzymatic activities involved in tryptophan biosynthesis. The two groups of strains also differ in the formation, during the growth of the enzymatic activities involved in tryptophan biosynthesis. This difference in the relative rates at which the two enzymes are formed may explain the accumulation of intermediates in the cultural media of some strains. The derepression of anthranilate synthetase and indole glycerol phosphate synthetase activities by histidine is particularly manifest in the auxotrophic his3 strains that show these activities very depressed in histidine starvation; large amounts of this amino acid stimulate them to a considerably greater extent than in prototrophic strains.Abbreviations IGP imidazole glycerol phosphate - InGP indole glycerol phosphate - ASase anthranilate synthetase - InGPase indole-3-glycerol phosphate synthetase - TSase tryptophan synthetase - Tris tris (hydroxymethyl)-aminomethane This investigation was supported by a research grant of C.N.R. (Consiglio Nazionale delle Ricerche, Roma).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号