首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
王梦汝  席威  李正军 《生物工程学报》2020,36(12):2695-2706
海生杆菌属首次于1997年鉴定,迄今包括18个物种,其中10个已完成全基因组序列测定。文中总结了海生杆菌属的菌种特征,并从碳源利用、聚羟基脂肪酸酯代谢和芳香族化合物降解三个方面对基因组测序数据进行了分析。研究发现,海生杆菌属具有完整的糖酵解途径和三羧酸循环,缺乏木糖利用基因。所有海生杆菌属菌种均含有Ⅰ型和Ⅲ型聚羟基脂肪酸酯合成酶的编码基因,表明该菌属可能具有普遍的聚羟基脂肪酸酯合成能力。海生杆菌属含有芳香族化合物的降解途径,苯、苯酚和苯甲酸可由不同的酶催化生成邻苯二酚,再由邻位断裂途径降解为3-酮己二酸,邻苯二酚也可由间位断裂途径降解为丙酮酸和乙酰辅酶A。基因组测序数据分析加深了对海生杆菌属代谢特征的认识,提示该菌属在聚羟基脂肪酸酯合成和海洋芳香族污染物治理方面有一定的应用前景。  相似文献   

2.

Background  

A significant problem in the study of mechanisms of an organism's development is the elucidation of interrelated factors which are making an impact on the different levels of the organism, such as genes, biological molecules, cells, and cell systems. Numerous sources of heterogeneous data which exist for these subsystems are still not integrated sufficiently enough to give researchers a straightforward opportunity to analyze them together in the same frame of study. Systematic application of data integration methods is also hampered by a multitude of such factors as the orthogonal nature of the integrated data and naming problems.  相似文献   

3.
4.
Many economically important crops have large and complex genomes that hamper their sequencing by standard methods such as whole genome shotgun (WGS). Large tracts of methylated repeats occur in plant genomes that are interspersed by hypomethylated gene‐rich regions. Gene‐enrichment strategies based on methylation profiles offer an alternative to sequencing repetitive genomes. Here, we have applied methyl filtration with McrBC endonuclease digestion to enrich for euchromatic regions in the sugarcane genome. To verify the efficiency of methylation filtration and the assembly quality of sequences submitted to gene‐enrichment strategy, we have compared assemblies using methyl‐filtered (MF) and unfiltered (UF) libraries. The use of methy filtration allowed a better assembly by filtering out 35% of the sugarcane genome and by producing 1.5× more scaffolds and 1.7× more assembled Mb in length compared with unfiltered dataset. The coverage of sorghum coding sequences (CDS) by MF scaffolds was at least 36% higher than by the use of UF scaffolds. Using MF technology, we increased by 134× the coverage of gene regions of the monoploid sugarcane genome. The MF reads assembled into scaffolds that covered all genes of the sugarcane bacterial artificial chromosomes (BACs), 97.2% of sugarcane expressed sequence tags (ESTs), 92.7% of sugarcane RNA‐seq reads and 98.4% of sorghum protein sequences. Analysis of MF scaffolds from encoded enzymes of the sucrose/starch pathway discovered 291 single‐nucleotide polymorphisms (SNPs) in the wild sugarcane species, S. spontaneum and S. officinarum. A large number of microRNA genes was also identified in the MF scaffolds. The information achieved by the MF dataset provides a valuable tool for genomic research in the genus Saccharum and for improvement of sugarcane as a biofuel crop.  相似文献   

5.
6.
Expanded genome/proteome databases and effective use of sequence alignment tools make it possible to trace the phylogeny of individual eukaryotic proteins and ultimately to identify the prokaryotes that contributed to the last eukaryotic common ancestor (LECA). I developed an application of reciprocal BLASTp that identifies (1) the prokaryotic lineages that have contributed to the nuclear genome and (2) the specific proteins acquired from prokaryotic ancestors. Eight complete eubacterial proteomes were analyzed: two free-living spirochetes, two clostridia, two actinobacteria, and two proteobacteria (one alpha and one gamma). The data reveal a spirochete genetic contribution to the eukaryotic genome including essential proteins involved in DNA binding and repair, cyclic nucleotide metabolism, acyltransferase, and signal transduction. My results, consistent with the sulfur syntrophy hypothesis that posits LECA evolved from a merger of spirochetes (eubacteria) with sulfidogenic eocytes (archaebacteria), confirm the contribution of mitochondrial genes from alpha-proteobacteria. A contribution from clostridia to eukaryote genomes was also detected whereas none was seen from either actinobacterium or Escherichia coli. The complete spirochete and clostridial genetic contributions to eukaryotes and those of other eu-and archaebacteria can be identified by this method.  相似文献   

7.
Towards the minimal eukaryotic parasitic genome   总被引:3,自引:0,他引:3  
Microsporidia are well-known to infect immunocompromised patients and are also responsible for clinical syndromes in immunocompetent individuals. In recent years, evidence has been obtained in support of a very close relationship between Microsporidia and Fungi. In some species, the compaction of the genome and genes is remarkable. Thus, a systematic sequencing project has been initiated for the 2.9 Mbp genome of Encephalitozoon cuniculi, which will be useful for future comparative genomic studies.  相似文献   

8.
We describe an open-source kPAL package that facilitates an alignment-free assessment of the quality and comparability of sequencing datasets by analyzing k-mer frequencies. We show that kPAL can detect technical artefacts such as high duplication rates, library chimeras, contamination and differences in library preparation protocols. kPAL also successfully captures the complexity and diversity of microbiomes and provides a powerful means to study changes in microbial communities. Together, these features make kPAL an attractive and broadly applicable tool to determine the quality and comparability of sequence libraries even in the absence of a reference sequence. kPAL is freely available at https://github.com/LUMC/kPAL.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0555-3) contains supplementary material, which is available to authorized users.  相似文献   

9.
The current state of knowledge concerning the unsolved problem of the huge interspecific eukaryotic genome size variations not correlating with the species phenotypic complexity (C-value enigma also known as C-value paradox) is reviewed. Characteristic features of eukaryotic genome structure and molecular mechanisms that are the basis of genome size changes are examined in connection with the C-value enigma. It is emphasized that endogenous mutagens, including reactive oxygen species, create a constant nuclear environment where any genome evolves. An original quantitative model and general conception are proposed to explain the C-value enigma. In accordance with the theory, the noncoding sequences of the eukaryotic genome provide genes with global and differential protection against chemical mutagens and (in addition to the anti-mutagenesis and DNA repair systems) form a new, third system that protects eukaryotic genetic information. The joint action of these systems controls the spontaneous mutation rate in coding sequences of the eukaryotic genome. It is hypothesized that the genome size is inversely proportional to functional efficiency of the anti-mutagenesis and/or DNA repair systems in a particular biological species. In this connection, a model of eukaryotic genome evolution is proposed.  相似文献   

10.
Genotyping‐by‐sequencing (GBS) and related methods are increasingly used for studies of non‐model organisms from population genetic to phylogenetic scales. We present GIbPSs, a new genotyping toolkit for the analysis of data from various protocols such as RAD, double‐digest RAD, GBS, and two‐enzyme GBS without a reference genome. GIbPSs can handle paired‐end GBS data and is able to assign reads from both strands of a restriction fragment to the same locus. GIbPSs is most suitable for population genetic and phylogeographic analyses. It avoids genotyping errors due to indel variation by identifying and discarding affected loci. GIbPSs creates a genotype database that offers rich functionality for data filtering and export in numerous formats. We performed comparative analyses of simulated and real GBS data with GIbPSs and another program, pyRAD. This program accounts for indel variation by aligning homologous sequences. GIbPSs performed better than pyRAD in several aspects. It required much less computation time and displayed higher genotyping accuracy. GIbPSs retained smaller numbers of loci overall in analyses of real GBS data. It nevertheless delivered more complete genotype matrices with greater locus overlap between individuals and greater numbers of loci sampled in all individuals.  相似文献   

11.

Background

Copy number variations (CNVs) confer significant effects on genetic innovation and phenotypic variation. Previous CNV studies in swine seldom focused on in-depth characterization of global CNVs.

Results

Using whole-genome assembly comparison (WGAC) and whole-genome shotgun sequence detection (WSSD) approaches by next generation sequencing (NGS), we probed formation signatures of both segmental duplications (SDs) and individualized CNVs in an integrated fashion, building the finest resolution CNV and SD maps of pigs so far. We obtained copy number estimates of all protein-coding genes with copy number variation carried by individuals, and further confirmed two genes with high copy numbers in Meishan pigs through an enlarged population. We determined genome-wide CNV hotspots, which were significantly enriched in SD regions, suggesting evolution of CNV hotspots may be affected by ancestral SDs. Through systematically enrichment analyses based on simulations and bioinformatics analyses, we revealed CNV-related genes undergo a different selective constraint from those CNV-unrelated regions, and CNVs may be associated with or affect pig health and production performance under recent selection.

Conclusions

Our studies lay out one way for characterization of CNVs in the pig genome, provide insight into the pig genome variation and prompt CNV mechanisms studies when using pigs as biomedical models for human diseases.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-593) contains supplementary material, which is available to authorized users.  相似文献   

12.
13.
The eukaryotic genome is a mosaic of eubacterial and archaeal genes in addition to those unique to itself. The mosaic may have arisen as the result of two prokaryotes merging their genomes, or from genes acquired from an endosymbiont of eubacterial origin. A third possibility is that the eukaryotic genome arose from successive events of lateral gene transfer over long periods of time. This theory does not exclude the endosymbiont, but questions whether it is necessary to explain the peculiar set of eukaryotic genes. We use phylogenetic studies and reconstructions of ancestral first appearances of genes on the prokaryotic phylogeny to assess evidence for the lateral gene transfer scenario. We find that phylogenies advanced to support fusion can also arise from a succession of lateral gene transfer events. Our reconstructions of ancestral first appearances of genes reveal that the various genes that make up the eukaryotic mosaic arose at different times and in diverse lineages on the prokaryotic tree, and were not available in a single lineage. Successive events of lateral gene transfer can explain the unusual mosaic structure of the eukaryotic genome, with its content linked to the immediate adaptive value of the genes its acquired. Progress in understanding eukaryotes may come from identifying ancestral features such as the eukaryotic splicesome that could explain why this lineage invaded, or created, the eukaryotic niche.  相似文献   

14.
Mapping and sequencing the rice genome   总被引:2,自引:0,他引:2       下载免费PDF全文
Burr B 《The Plant cell》2002,14(3):521-523
  相似文献   

15.
16.
M J Kelly 《Génome》1989,31(2):1027-1033
Mapping and sequencing the human genome will generate large amounts of data, which must be sorted, analyzed, and stored for rapid retrieval to complete this enormous task. Computers and their software programs provide the most important tool to the molecular biologist today. A discussion of current capabilities and future needs in computer hardware and software for the human genome project is the topic of this paper. The use of computer programs to generate restriction maps, manage clone libraries, manage sequence projects, and generate consensus sequences is presented. The use of computers to communicate useful information rapidly to scientific colleagues is also mentioned. The role of both GenBank and BIONET is central to the dissemination and analysis of sequence information. The capabilities of electronic communication worldwide for assisting this project is available on the BIONET National Computer Resource, using existing networks.  相似文献   

17.
Dawes H 《Current biology : CB》2002,12(16):R541-R543
GENOMES: With the DNA sequencing of most key model organisms finished or well on the way, one genomics institute is filling an important niche, using novel criteria to take on species from organisms that occupy a unique place in the evolutionary tree to others that have an ability to digest explosives.  相似文献   

18.
19.
20.

Background

Improvements in sequencing technology now allow easy acquisition of large datasets; however, analyzing these data for phylogenetics can be challenging. We have developed a novel method to rapidly obtain homologous genomic data for phylogenetics directly from next-generation sequencing reads without the use of a reference genome. This software, called SISRS, avoids the time consuming steps of de novo whole genome assembly, multiple genome alignment, and annotation.

Results

For simulations SISRS is able to identify large numbers of loci containing variable sites with phylogenetic signal. For genomic data from apes, SISRS identified thousands of variable sites, from which we produced an accurate phylogeny. Finally, we used SISRS to identify phylogenetic markers that we used to estimate the phylogeny of placental mammals. We recovered eight phylogenies that resolved the basal relationships among mammals using datasets with different levels of missing data. The three alternate resolutions of the basal relationships are consistent with the major hypotheses for the relationships among mammals, all of which have been supported previously by different molecular datasets.

Conclusions

SISRS has the potential to transform phylogenetic research. This method eliminates the need for expensive marker development in many studies by using whole genome shotgun sequence data directly. SISRS is open source and freely available at https://github.com/rachelss/SISRS/releases.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号