首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Currently, the majority of tools in synthetic biology have been designed and constructed for model organisms such as Escherichia coli and Saccharomyces cerevisiae. In order to broaden the spectrum of organisms accessible to such tools, we established a synthetic biological platform, called CoryneBrick, for gene expression in Corynebacterium glutamicum as a set of E. coli-C. glutamicum shuttle vectors whose elements are interchangeable with BglBrick standard parts. C. glutamicum is an established industrial microorganism for the production of amino acids, proteins, and commercially promising chemicals. Using the CoryneBrick vectors, we showed various time-dependent expression profiles of a red fluorescent protein. This CoryneBrick platform was also applicable for two-plasmid expression systems with a conventional C. glutamicum expression vector. In order to demonstrate the practical application of the CoryneBrick vectors, we successfully reconstructed the xylose utilization pathway in the xylose-negative C. glutamicum wild type by fast BglBrick cloning methods using multiple genes encoding for xylose isomerase and xylulose kinase, resulting in a growth rate of 0.11?±?0.004 h?1 and a xylose uptake rate of 3.35 mmol/gDW/h when 1 % xylose was used as sole carbon source. Thus, CoryneBrick vectors were shown to be useful engineering tools in order to exploit Corynebacterium as a synthetic platform for the production of chemicals by controllable expression of the genes of interest.  相似文献   

2.
Targeted gene replacement to generate knock-outs and knock-ins is a commonly used method to study the function of unknown genes. In the methylotrophic yeast Pichia pastoris, the importance of specific gene targeting has increased since the genome sequencing projects of the most commonly used strains have been accomplished, but rapid progress in the field has been impeded by inefficient mechanisms for accurate integration. To improve gene targeting efficiency in P. pastoris, we identified and deleted the P. pastoris KU70 homologue. We observed a substantial increase in the targeting efficiency using the two commonly known and used integration loci HIS4 and ADE1, reaching over 90% targeting efficiencies with only 250-bp flanking homologous DNA. Although the ku70 deletion strain was noted to be more sensitive to UV rays than the corresponding wild-type strain, no lethality, severe growth retardation or loss of gene copy numbers could be detected during repetitive rounds of cultivation and induction of heterologous protein production. Furthermore, we demonstrated the use of the ku70 deletion strain for fast and simple screening of genes in the search of new auxotrophic markers by targeting dihydroxyacetone synthase and glycerol kinase genes. Precise knock-out strains for the well-known P. pastoris AOX1, ARG4 and HIS4 genes and a whole series of expression vectors were generated based on the wild-type platform strain, providing a broad spectrum of precise tools for both intracellular and secreted production of heterologous proteins utilizing various selection markers and integration strategies for targeted or random integration of single and multiple genes. The simplicity of targeted integration in the ku70 deletion strain will further support protein production strain generation and synthetic biology using P. pastoris strains as platform hosts.  相似文献   

3.
Despite substantial progress in synthetic biology, we still lack the ability to engineer anything as complex as Nature has. One of the many reasons is that we lack the requisite tools for independently controlling the expression of multiple genes in parallel. While our toolbox is still spare, the situation is rapidly changing. This opinion discusses some recent approaches and open challenges in designing orthogonal regulators of gene expression in bacteria.  相似文献   

4.

Background

Synthetic biology aims to engineer biological systems for desired behaviors. The construction of these systems can be complex, often requiring genetic reprogramming, extensive de novo DNA synthesis, and functional screening.

Results

Herein, we present a programmable, multipurpose microfluidic platform and associated software and apply the platform to major steps of the synthetic biology research cycle: design, construction, testing, and analysis. We show the platform’s capabilities for multiple automated DNA assembly methods, including a new method for Isothermal Hierarchical DNA Construction, and for Escherichia coli and Saccharomyces cerevisiae transformation. The platform enables the automated control of cellular growth, gene expression induction, and proteogenic and metabolic output analysis.

Conclusions

Taken together, we demonstrate the microfluidic platform’s potential to provide end-to-end solutions for synthetic biology research, from design to functional analysis.
  相似文献   

5.
Adenovirus vectors for gene expression.   总被引:3,自引:0,他引:3  
Adenoviruses possess a combination of features that make them highly suitable as vectors for expression of heterologous genes. Non-conditional and non-defective adeno-vectors have been constructed to obtain high level expression of a number of foreign genes and some of them have been shown in animal models to exhibit excellent promise as vaccine candidates.  相似文献   

6.
Studies in the structural biology of the multicomponent protein complex, metabolic engineering, and synthetic biology frequently rely on the efficient over-expression of these subunits or enzymes in the same cell. As a first step, constructing the multiple expression cassettes will be a complicated and time-consuming job if the classic and conventional digestion and ligation based cloning method is used. Some more efficient methods have been developed, including (1) the employment of a multiple compatible plasmid expression system, (2) the rare-cutter-based design of vectors, (3) in vitro recombination (sequence and ligation independent cloning, the isothermally enzymatic assembly of DNA molecules in a single reaction), and (4) in vivo recombination using recombination-efficient yeast (in vivo assembly of overlapping fragments, reiterative recombination for the chromosome integration of foreign expression cassettes). In this review, we systematically introduce these available methods.  相似文献   

7.
Improved retroviral vectors for gene transfer and expression   总被引:320,自引:0,他引:320  
A D Miller  G J Rosman 《BioTechniques》1989,7(9):980-2, 984-6, 989-90
We describe a set of murine retrovirus-based vectors that include unique cloning sites for insertion of cDNAs such that the cDNA can be driven by either the retroviral long terminal repeat, the immediate early promoter of human cytomegalovirus, or the simian virus 40 early promoter. The vectors carry the neomycin phosphotransferase gene expressed from an alternate promoter as a selectable marker. These vectors have been constructed to prevent viral protein synthesis from the remaining viral sequences, to yield high-titer virus stocks after introduction into retrovirus packaging cells, and to eliminate homologous overlap with viral DNAs present in retrovirus packaging cells in order to prevent helper virus production. Methods for generating high-titer virus are described.  相似文献   

8.
9.
Alphavirus vectors for gene expression and vaccines.   总被引:10,自引:0,他引:10  
Alphavirus expression vectors are finding novel uses in research. They are showing increasing promise as vaccines and are being developed for diagnostic assays of other viruses. Some highlights over the past couple of years include improvements in packaging of replicons, targeting of Sindbis virus replicons, stable cell lines that can be induced to produce replicons, and the isolation of noncytopathic variants of Sindbis virus replicons. Reports that alphavirus vectors can efficiently infect neurons in rat hippocampal slices should increase their use in neurobiological studies.  相似文献   

10.
11.
The human cytomegalovirus and elongation factor 1?? promoters are constitutive promoters commonly employed by mammalian expression vectors. These promoters generally produce high levels of expression in many types of cells and tissues. To generate a library of synthetic promoters capable of generating a range of low, intermediate, and high expression levels, the TATA and CAAT box elements of these promoters were mutated. Other promoter variants were also generated by random mutagenesis. Evaluation using plasmid vectors integrated at a single site in the genome revealed that these various synthetic promoters were capable of expression levels spanning a 40-fold range. Retroviral vectors were equipped with the synthetic promoters and evaluated for their ability to reproduce the graded expression demonstrated by plasmid integration. A vector with a self-inactivating long terminal repeat could neither reproduce the full range of expression levels nor produce stable expression. Using a second vector design, the different synthetic promoters enabled stable expression over a broad range of expression levels in different cell lines.  相似文献   

12.
Improvements to vaccinia virus expression vectors continue to be made. In particular, there are new methods for the construction of recombinant viruses, ways of increasing the level of gene expression, and vectors that allow the inducible expression of selected genes.  相似文献   

13.
Insect baculoviruses: powerful gene expression vectors   总被引:5,自引:0,他引:5  
Baculovirus vectors have proven useful in producing high levels of biologically active eukaryotic proteins and providing cellular fractions which are enriched in the protein of interest. Expression occurs in infected insect cells which also provide a suitable environment for post-translational modification and folding of the protein product. Stable baculovirus vectors can be constructed rapidly with a minimum of viral manipulation.  相似文献   

14.
15.
We describe the current status of the gene expression database CIBEX (Center for Information Biology gene EXpression database, http://cibex.nig.ac.jp), with a data retrieval system in compliance with MIAME, a standard that the MGED Society has developed for comparing and data produced in microarray experiments at different laboratories worldwide. CIBEX serves as a public repository for a wide range of high-throughput experimental data in gene expression research, including microarray-based experiments measuring mRNA, serial analysis of gene expression (SAGE tags), and mass spectrometry proteomic data.  相似文献   

16.
17.
Lipophophoramidates constitute a class of synthetic vectors which were especially designed for gene delivery. In this family of compounds, the phosphorus functional group links two lipid chains to a spacer ended by a polar headgroup. Such vectors, which can readily be obtained, offer an alternative to the numerous examples of glycerolipid-based vectors that have been more exhaustively studied. Since the pioneering work describing this series of synthetic vectors, several chemical modifications have been proposed with the aim of correlating the molecular structure with the gene transfection efficacy. It has indeed been observed that some modifications which may be considered as minor at first glance, actually have important consequences on both the transfection efficacy and cytotoxic side effects. We herein discuss the modification of the structure of lipophosphoramidates, in particular of their lipidic part and of the nature of the cationic polar head which may be constituted by a trimethylammonium, trimethylphosphonium or trimethylarsonium motif. We also report that, as well as the in vitro transfection efficacy which governs the selection of the most promising vectors for in vivo studies, other aspects related to the synthetic pathway must be also considered for the development of new synthetic vectors (such as modularity of the synthesis, scaling-up).  相似文献   

18.
19.
Two expression vectors utilizing the inducible taurine promoter (tauAp) were developed. Plasmid pLMB51 is a stable low-copy vector enabling expression in the environment and in planta. The higher copy number pLMB509 enables BD restriction-independent cloning, expression, and purification of polyhistidine-tagged proteins.  相似文献   

20.
Just as synthetic organic chemistry once revolutionized the ability of chemists to build molecules (including those that did not exist in nature) following a basic set of design rules, cell-free synthetic biology is beginning to provide an improved toolbox and faster process for not only harnessing but also expanding the chemistry of life. At the interface between chemistry and biology, research in cell-free synthetic systems is proceeding in two different directions: using synthetic biology for synthetic chemistry and using synthetic chemistry to reprogram or mimic biology. In the coming years, the impact of advances inspired by these approaches will make possible the synthesis of nonbiological polymers having new backbone compositions, new chemical properties, new structures, and new functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号