首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Humans have evolved elaborate mechanisms to activate p53 in response to insults that lead to cancer, including the binding and inhibition of Hdm2 by the 60S ribosomal proteins (RPs) RPL5 and RPL11. This same mechanism appears to be activated upon impaired ribosome biogenesis, a risk factor for cancer initiation. As loss of RPL5/RPL11 abrogates ribosome biogenesis and protein synthesis to the same extent as loss of other essential 60S RPs, we reasoned the loss of RPL5 and RPL11 would induce a p53-independent cell cycle checkpoint. Unexpectedly, we found that their depletion in primary human lung fibroblasts failed to induce cell cycle arrest but strongly suppressed cell cycle progression. We show that the effects on cell cycle progression stemmed from reduced ribosome content and translational capacity, which suppressed the accumulation of cyclins at the translational level. Thus, unlike other tumor suppressors, RPL5/RPL11 play an essential role in normal cell proliferation, a function cells have evolved to rely on in lieu of a cell cycle checkpoint.  相似文献   

3.
Prostate cancer (PCa) is one of the most common malignancies in men. Ribosomal protein L22-like1 (RPL22L1), a component of the ribosomal 60 S subunit, is associated with cancer progression, but the role and potential mechanism of RPL22L1 in PCa remain unclear. The aim of this study was to investigate the role of RPL22L1 in PCa progression and the mechanisms involved. Bioinformatics and immunohistochemistry analysis showed that the expression of RPL22L1 was significantly higher in PCa tissues than in normal prostate tissues. The cell function analysis revealed that RPL22L1 significantly promoted the proliferation, migration and invasion of PCa cells. The data of xenograft tumour assay suggested that the low expression of RPL22L1 inhibited the growth and invasion of PCa cells in vivo. Mechanistically, the results of Western blot proved that RPL22L1 activated PI3K/Akt/mTOR pathway in PCa cells. Additionally, LY294002, an inhibitor of PI3K/Akt pathway, was used to block this pathway. The results showed that LY294002 remarkably abrogated the oncogenic effect of RPL22L1 on PCa cell proliferation and invasion. Taken together, our study demonstrated that RPL22L1 is a key gene in PCa progression and promotes PCa cell proliferation and invasion via PI3K/Akt/mTOR pathway, thus potentially providing a new target for PCa therapy.  相似文献   

4.
5.
6.
Papillary thyroid cancer (PTC) accounts for 80% of all thyroid cancers and seriously impacts the quality of people's lives. Long noncoding RNAs (lncRNAs) play an important role in PTC. In previous studies, thousands of lncRNAs were screened to study their potential relationships with PTC. The aim of this study was to investigate the effect of RPL34-AS1 in PTC and to explore its potential mechanisms. Bioinformatic analyses were performed to characterize the possible function and biological features of RPL34-AS1. Apoptosis, proliferation, and invasion were detected to assess the effect of RPL34-AS1. Cell proliferation was measured using a Cell Counting Kit-8 assay. Western blot analysis was used to assess the apoptosis proteins Bax and Bcl-2. Cell invasion was measured using a Transwell assay. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis was performed to examine RPL34-AS1, miR-3663-3P, and RGS4 expression. Dual-luciferase assay was performed to assess the binding of miR-3663-3P by RPL34-AS1. RIP experiment was used to verify the combination between miR-3663-3p and RGS4. We found that overexpression of RPL34-AS1 could inhibit proliferation and invasion while promoting apoptosis in PTC cell lines. Moreover, RPL34-AS1 could also competitively bind miR-3663-3p and exert its function by regulating the miR-3663-3p/RGS4 in PTC cell lines. We found a previously uncharacterized lncRNA, RPL34-AS1, and studied its function and mechanism in PTC. Our research will provide new insights into PTC and new clues for its clinical treatment.  相似文献   

7.
8.
Altered immune and/or inflammatory response plays an important role in cases of recurrent pregnancy loss (RPL) and repeated implantation failure (RIF). Exacerbation of the maternal immune response through increased NK cell activity and inflammatory cytokines can cause embryo rejection leading to abortion or embryo implantation failure. Immunosuppressors or immunomodulators can help or prevent this condition. Currently, lipid emulsion therapy (LET) has emerged as a treatment for RPL and RIF in women with abnormal NK cell activity, by decreasing the exacerbated immune response of the maternal uterus and providing a more receptive environment for the embryo. However, the mechanisms by which the intralipid acts to reduce NK cell activity are still unclear. In this review, we focus on the studies that conducted LET to treat patients with RPL and RIF with abnormal NK cell activity. We find that although some authors recommend LET as an effective intervention, more studies are necessary to confirm its effectiveness in restoring NK cell activity to normal levels and to comprehend the underlying mechanisms of the lipids action in ameliorating the maternal environment and improving the pregnancy rate.  相似文献   

9.
Colorectal cancer is the most common gastrointestinal cancer and causes severe damage to human health. PRDX2 is a member of the peroxiredoxin family reported to have a high level of expression in colorectal cancer. However, the mechanisms by which PRDX2 promotes the proliferation of colorectal cancer are still unclear. Here, the results indicated that PRDX2 expression was upregulated in colorectal cancer and closely correlated with poor prognosis. Functionally, PRDX2 promoted the proliferation of colorectal cancer cells. Mechanistically, PRDX2 could bind RPL4, reducing the interaction between RPL4 and MDM2. These findings demonstrate that the oncogenic property of PRDX2 may be attributed to its regulation of the RPL4-MDM2-p53 pathway, leading to p53 ubiquitinated degradation.Subject terms: Colorectal cancer, Colorectal cancer  相似文献   

10.
Ribosomes play an integral part in plant growth, development, and defence responses. We report here the role of ribosomal protein large (RPL) subunit QM/RPL10 in nonhost disease resistance. The RPL10-silenced Nicotiana benthamiana plants showed compromised disease resistance against nonhost pathogen Pseudomonas syringae pv. tomato T1. The RNA-sequencing analysis revealed that many genes involved in defence and protein translation mechanisms were differentially affected due to silencing of NbRPL10. Arabidopsis AtRPL10 RNAi and rpl10 mutant lines showed compromised nonhost disease resistance to P. syringae pv. tomato T1 and P. syringae pv. tabaci. Overexpression of AtRPL10A in Arabidopsis resulted in reduced susceptibility against host pathogen P. syringae pv. tomato DC3000. RPL10 interacts with the RNA recognition motif protein and ribosomal proteins RPL30, RPL23, and RPS30 in the yeast two-hybrid assay. Silencing or mutants of genes encoding these RPL10-interacting proteins in N. benthamiana or Arabidopsis, respectively, also showed compromised disease resistance to nonhost pathogens. These results suggest that QM/RPL10 positively regulates the defence and translation-associated genes during nonhost pathogen infection.  相似文献   

11.

Background

Disruption of the nucleolus often leads to activation of the p53 tumor suppressor pathway through inhibition of MDM2 that is mediated by a limited set of ribosomal proteins including RPL11 and RPL5. The effects of ribosomal protein loss in cultured mammalian cells have not been thoroughly investigated. Here we characterize the cellular stress response caused by depletion of ribosomal protein S9 (RPS9).

Methodology/Principal Findings

Depletion of RPS9 impaired production of 18S ribosomal RNA and induced p53 activity. It promoted p53-dependent morphological differentiation of U343MGa Cl2:6 glioma cells as evidenced by intensified expression of glial fibrillary acidic protein and profound changes in cell shape. U2OS osteosarcoma cells displayed a limited senescence response with increased expression of DNA damage response markers, whereas HeLa cervical carcinoma cells underwent cell death by apoptosis. Knockdown of RPL11 impaired p53-dependent phenotypes in the different RPS9 depleted cell cultures. Importantly, knockdown of RPS9 or RPL11 also markedly inhibited cell proliferation through p53-independent mechanisms. RPL11 binding to MDM2 was retained despite decreased levels of RPL11 protein following nucleolar stress. In these settings, RPL11 was critical for maintaining p53 protein stability but was not strictly required for p53 protein synthesis.

Conclusions

p53 plays an important role in the initial restriction of cell proliferation that occurs in response to decreased level of RPS9. Our results do not exclude the possibility that other nucleolar stress sensing molecules act upstream or in parallel to RPL11 to activate p53. Inhibiting the expression of certain ribosomal proteins, such as RPS9, could be one efficient way to reinitiate differentiation processes or to induce senescence or apoptosis in rapidly proliferating tumor cells.  相似文献   

12.
Yang H  Henning D  Valdez BC 《The FEBS journal》2005,272(15):3788-3802
RNA helicase II/Gu(alpha) is a multifunctional nucleolar protein involved in ribosomal RNA processing in Xenopus laevis oocytes and mammalian cells. Downregulation of Gu(alpha) using small interfering RNA (siRNA) in HeLa cells resulted in 80% inhibition of both 18S and 28S rRNA production. The mechanisms underlying this effect remain unclear. Here we show that in mammalian cells, Gu(alpha) physically interacts with ribosomal protein L4 (RPL4), a component of 60S ribosome large subunit. The ATPase activity of Gu(alpha) is important for this interaction and is also necessary for the function of Gu(alpha) in the production of both 18S and 28S rRNAs. Knocking down RPL4 expression using siRNA in mouse LAP3 cells inhibits the production of 47/45S, 32S, 28S, and 18S rRNAs. This inhibition is reversed by exogenous expression of wild-type human RPL4 protein but not the mutant form lacking Gu(alpha)-interacting motif. These observations have suggested that the function of Gu(alpha) in rRNA processing is at least partially dependent on its ability to interact with RPL4.  相似文献   

13.
Wu Q  Gou Y  Wang Q  Jin H  Cui L  Zhang Y  He L  Wang J  Nie Y  Shi Y  Fan D 《PloS one》2011,6(10):e26401
Our previous study revealed that human ribosomal protein L6 (RPL6) was up-regulated in multidrug-resistant gastric cancer cells and over-expression of RPL6 could protect gastric cancer from drug-induced apoptosis. It was further demonstrated that up-regulation of RPL6 accelerated growth and enhanced in vitro colony forming ability of GES cells while down-regulation of RPL6 exhibited the opposite results. The present study was designed to investigate the potential role of RPL6 in therapy of gastric cancer for clinic. The expression of RPL6 and cyclin E in gastric cancer tissues and normal gastric mucosa was evaluated by immunohistochemisty. It was found that RPL6 and cyclin E were expressed at a higher level in gastric cancer tissues than that in normal gastric mucosa and the two were correlative in gastric cancer. Survival time of postoperative patients was analyzed by Kaplan- Meier analysis and it was found that patients with RPL6 positive expression showed shorter survival time than patients that with RPL6 negative expression. RPL6 was then genetically down-regulated in gastric cancer SGC7901 and AGS cell lines by siRNA. It was demonstrated that down-regulation of RPL6 reduced colony forming ability of gastric cancer cells in vitro and reduced cell growth in vivo. Moreover, down-regulation of RPL6 could suppress G1 to S phase transition in these cells. Further, we evidenced that RPL6 siRNA down-regulated cyclin E expression in SGC7901 and AGS cells. Taken together, these data suggested that RPL6 was over-expressed in human gastric tissues and caused poor prognosis. Down-regulation of RPL6 could suppress cell growth and cell cycle progression at least through down-regulating cyclin E and which might be used as a novel approach to gastric cancer therapy.  相似文献   

14.
Our previous study revealed that human ribosomal protein L6 (RPL6) was upregulated in multidrug-resistant gastric cancer cells and over-expression of RPL6 could protect gastric cancer cells from drug-induced apoptosis. The present study was designed to explore the role of RPL6 in tumorigenesis and development of gastric cancer. The expression of RPL6 in gastric cancer tissues and normal gastric mucosa was evaluated by immunohistochemical staining. It was found RPL6 was expressed at a higher level in gastric cancer tissues than that in normal gastric mucosa. RPL6 was then genetically overexpressed or knocked down in human immortalized gastric mucosa epithelial GES cells. It was demonstrated that upregulation of RPL6 accelerated the growth and enhanced in vitro colony forming ability of GES cells whereas downregulation of RPL6 showed adverse effects. Moreover, over-expression of RPL6 could promote G1 to S phase transition of GES cells. It was further evidenced that upregulation of RPL6 resulted in elevated cyclin E expression while downregulation of RPL6 caused decreased cyclin E expression in GES cells. Taken together, these data indicated that RPL6 was overexpressed in human gastric cancer and its over-expression could promote cell growth and cell cycle progression at least through upregulating cyclin E expression.  相似文献   

15.
16.
17.
从羊驼皮肤eDNA文库中筛选到冗P£34的克隆,经PCR鉴定并测序得知:一种克隆的大小为270bp(命名为尺P躬4,),另一种克隆的大小为470bp(命名为RPL34Ⅱ)。序列分析发现,RPL34Ⅰ和Ⅱ在核苷酸水平上,5’UTR区不具有同源性,3’UTR区具有同源性;在氨基酸水平上,部分具有高度同源性;分子进化树分析表明二者具有不同的进化速率。此外,RPL34Ⅰ和Ⅱ对应于不同的转录本。通过以上结果分析,认为RPL34Ⅰ和RPL34Ⅱ二者同时在羊驼皮肤中表达,可能是RPIJ34的两个剪接体,发挥不同的生物学功能。  相似文献   

18.
Using a variety of approaches, we have examined the expression of the heparin/heparan sulfate (Hp/HS) interacting protein/ribosomal protein L29 (HIP/RPL29) in mouse uteri during the estrous cycle and early pregnancy. HIP/RPL29 selectively binds heparin and HS and may promote HS-dependent embryo adhesion. HIP/RPL29 was prominently expressed in both luminal and glandular epithelia under almost all conditions, including the phase of embryo attachment. In contrast, differences were noted in HIP/RPL29 expression in the stromal compartment both during the estrous cycle and during early pregnancy. Most notably, HIP/RPL29 accumulated in decidua, where it displayed a pattern complementary to that of pericellular deposition of the HS proteoglycan, perlecan. HIP/RPL29 protein was detected in implanted embryos at both initial and later stages of implantation; however, embryonic HIP/RPL29 mRNA accumulation was more pronounced at later stages (Day 7.5 postcoitum). In situ hybridization revealed similar spatial changes for HIP/RPL29 mRNA during these different physiological states. Whereas differences in the spatial pattern of HIP/RPL29 protein and mRNA expression were demonstrable, little change was detected in the level of HIP/RPL29 mRNA or protein in total endometrial extracts. Mouse blastocysts attached, but did not outgrow, on surfaces coated with recombinant murine HIP/RPL29. Surprisingly, soluble glycosaminoglycans including heparin, low molecular weight heparin, or chondroitin sulfate were not able to inhibit embryo attachment to HIP/RPL29-coated surfaces. These latter observations indicate that embryonic cell surface components other than HS proteoglycans can promote binding to HIP/RPL29 expressed by uterine cells.  相似文献   

19.
Antarctic ice alga Chlamydomonas sp. ICE-L can endure extreme low temperature and high salinity stress under freezing conditions. To elucidate the molecular acclimation mechanisms using gene expression analysis, the expression stabilities of ten housekeeping genes of Chlamydomonas sp. ICE-L during freezing stress were analyzed. Some discrepancies were detected in the ranking of the candidate reference genes between geNorm and NormFinder programs, but there was substantial agreement between the groups of genes with the most and the least stable expression. RPL19 was ranked as the best candidate reference genes. Pairwise variation (V) analysis indicated the combination of two reference genes was sufficient for qRT-PCR data normalization under the experimental conditions. Considering the co-regulation between RPL19 and RPL32 (the most stable gene pairs given by geNorm program), we propose that the mean data rendered by RPL19 and GAPDH (the most stable gene pairs given by NormFinder program) be used to normalize gene expression values in Chlamydomonas sp. ICE-L more accurately. The example of FAD3 gene expression calculation demonstrated the importance of selecting an appropriate category and number of reference genes to achieve an accurate and reliable normalization of gene expression during freeze acclimation in Chlamydomonas sp. ICE-L.  相似文献   

20.
Ribosomal protein L10 (RPL10) is a ubiquitous protein that participates in joining the 40S and 60S ribosomal subunits into a functional 80S ribosome; however, increasing evidence indicates that RPL10 from various organisms has multiple extra-ribosomal functions, besides being a constituent of ribosome and its role in translation. Arabidopsis thaliana contains in its genome three genes encoding RPL10, named RPL10A, RPL10B and RPL10C. Previously, we found that in maize and in A. thaliana, UV-B induces a reduction in protein biosynthesis, probably as a consequence of ribosomal damage; however, cellular recovery occurs in the absence of UV-B. Here, we show that RPL10s are differentially regulated by UV-B in a dosage and time dependent manner: RPL10C is induced, RPL10B is downregulated at high UV-B intensity and RPL10A is not UV-B regulated. In addition, by co-immunoprecipitation studies using RPL10 antibodies and proteins from control and UV-B irradiated Arabidopsis plants, we demonstrate that RPL10 associates with different proteins under the two different conditions, including nuclear proteins, suggesting that at least one isoform may have extra-ribosomal roles.Key words: UV-B exposure, translation, ribosomal protein, co-immunoprecipitation  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号