首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary The region of the phage lambda chromosome containing the attachment site (P · P) and the genes int and xis, excised by the action of endonuclease R.EcoRI, has been inserted into the unique site for that enzyme on the promiscuous conjugative plasmid, RP4, generating the recombinant plasmid RP4att. Transformants containing the hybrid plasmid were recognised by their ability to allow efficient lysogenization by phage b2 (Weil and Signer, 1968; Echols et al., 1968) containing the mutant attachment site · P. The construction and properties of the hybrid plasmid RP4att are described.  相似文献   

2.
Summary We present evidence for the existence of a conservative site-specific recombination system in Archaea by demonstrating integrative recombination of Sulfolobus shibatae virus SSV1 DNA with the host chromosome, catalysed by the SSVI-encoded integrase in vitro. The putative int gene of SSV1 was expressed in Escherichia coli yielding a protein of about 39 kDa. This protein alone efficiently recombined linear DNA substrates containing chromosomal (attA) and viral (attP) attachment sites; recombination with either negatively or positively supercoiled SSV1 DNA was less efficient. Intermolecular attA × attA and attP × attP recombination was also promoted by the SSV integrase. The invariant 44 by common attachment core present in all att sites contained sufficient information to allow recombination, whilst the flanking sequences effected the efficiency. These features clearly distinguish the SSV1 — encoded site — specific recombination system from others and make it suitable for the study of regulatory mechanisms of SSV1 genome — host chromosome interaction and investigations of the evolution of the recombination machinery.  相似文献   

3.
Summary Fragments of DNA of the temperate phage P2, generated by treatment with the restriction enzyme PstI, have been cloned into the plasmid pBR322. One such fragment, which has its endpoints within phage genes T and C, carries the structural P2 int gene as well as its promoter and the phage att site. When introduced into a suitable bacterial host, the cloned fragment mediates the integration and excision of int - mutants of P2 and recombination within the phage att site in mixed infection. All these activities are independent of the orientation of the fragment within the plasmid.When introduced into minicells, the fragment produces, in addition to the products of genes D and U, a protein of 35–37,000 daltons identified as the int protein. A study of the map location of two amber int mutants, together with the sizes of the polypeptides they produce, indicates that the P2 int gene is transcribed from right to left on the P2 map, i.e. starting near gene C and proceeding toward att.  相似文献   

4.
H I Miller  M A Mozola  D I Friedman 《Cell》1980,20(3):721-729
The mutation int-h3 maps in the int gene of coliphage λ and results in the synthesis of an integrase with enhanced activity, which is manifested by an ability to support λ site-specific recombination relatively efficiently under conditions where the wild-type integrase functions inefficiently. The level of site-specific recombination seen in the presence of the int+ integrase in himA? hosts is greatly reduced, as measured by lysogen formation, intramolecular site-specific integration and excision, and excision of a cryptic λ prophage. In contrast, the int-h3 integrase shows relatively high levels of activities under these conditions. Int-h3 is also more active in other host mutants (himB and hip) that reduce λ site-specific recombination. In the absence of the normal attB site, the frequency of lysogen formation (at secondary sites) by λ int+ is reduced 200 fold. Although λ int-h3 will integrate preferentially at the attB site if it is present, the mutant phage forms lysogens at a high frequency in attB-deleted hosts. λ int-h3 requires himA function for integration at secondary sites. The fact that the int-h3 integrase uses the same att sites as well as the same host functions as the int+ integrase suggests that the mutation results in a quantitative rather than a qualitative change in integrase activity; that is, the int-h3 integrase is more active. The mutant integrase supports site-specific recombination with att sites that carry the att24 mutation. We propose that the int-h3 integrase is endowed with an enhanced ability to recognize att sequences, including some that are not effectively recognized by wild-type integrase.  相似文献   

5.
K Bidwell  A Landy 《Cell》1979,16(2):397-406
Integration of bacteriophage λ DNA into the chromosome of its E. coli host proceeds via a site-specific recombination between specific loci (att sites) on the phage and bacterial chromosomes. Infection of an E. coli host deleted for the primary bacterial att site results in λ integration with reduced efficiency at a number of different “secondary att sites” scattered around the E. coli chromosome. The first DNA sequence analysis of such a secondary att site, that occurring in the galT gene, is reported here, and several features pertinent to the mechanism of int-dependent site-specific recombination are discussed.Previous studies have shown that the crossover in int-dependent recombination must be somewhere within a 15 bp sequence (core region) common to the phage and primary bacterial att sites, as well as to the left and right prophage att sites which are at the junctures between prophage and host DNA. Comparison of the galT secondary prophage att sites with the primary prophage att sites allows determination of the analogous “core” region in the galT secondary att site. The 15 bp sequence thus identified shows an interrupted homology (8 out of 15) with the wild-type core. The extent and arrangement of nonhomologous bases allow precise placement of the crossover point for this recombination to the +4–+5 internucleotide bond of the core region.Sequences flanking the core region show no obvious homology with analogous sequences of the phage or primary bacterial att sites. Comparison of the galT left prophage att site with the analogous wild-type site is of particular interest and is discussed in relation to binding studies with purified int protein.  相似文献   

6.
Summary A genetic map of phage 186 has been constructed, using the frequency of marker rescue from 186 mutant prophages for genes to the left of att, and int promoted recombination for genes to its right. At the left end of the genome lie 7 genes involved in the formation of the phage head, followed to the right by the lysis gene P, a gene (O) of unknown function, and a group of 11 genes involved in the formation of the phage tail. Gene B, the late control gene, lies to the right of this group but to the left of the phage attachment site. To the right of the att site lie the non-essential genes (cI and cII) involved in lysogen formation and the gene (A) required for 186 DNA synthesis.  相似文献   

7.
The integration of phage λ occurs by a reciprocal genetic exchange, promoted by the product of phage int gene, at specific sites on the phage and bacterial genomes (att's). Lysogenic bacteria thus contain two att's which bracket the inserted prophage. Genetically, the phage, bacterial and prophage att's differ from each other, indicating that each site has specific elements which segregate during recombination.In hosts that lack the bacterial att, phage integration occurs at about 0.5% the normal frequency. It results from Int-promoted recombination between the phage att and any one of many secondary sites in the bacterial genome. To analyze these sites, we measured Int-promoted recombination at the secondary prophage att's. We found that they differed from the normal prophage att's and from the phage att. The secondary sites, therefore, do not appear to carry any of the specific elements of the phage or bacterial att's.The transducing phage isolated from secondary site lysogens integrate at two loci. In the absence of helper, they insert via homology with the bacterial DNA. Co-infection with helper results in their integration at the normal bacterial att.  相似文献   

8.
Three mutations previously mapped to the common core region of the bacteriophage lambda att site have been sequenced. All were found to be due to the deletion of a T residue from a string of six T residues within the 15 base-pair core, the region of homology between the recombining sites. As judged by DNAase I protection experiments, binding of the Int protein is the same in the mutant and wild-type core sites. However, a difference in the Int binding to mutant cores is observed when the small neocarzinostatin molecule is used as a nuclease probe. The differences between mutant and wild type lead to the suggestion that Int is interacting with sequences at the core-arm junctions. Accordingly, the mutants are proposed to be defective in the spacing of Int monomers bound at two recognition sequences spanning the core-arm junctions. The anomalous electrophoretic mobility of wild-type att fragments and, more specifically, the effect of the single base core deletion on electrophoretic mobility are discussed in the text and in the Appendix. The mutant att2501, defective in both att and int functions, was sequenced and found to be a 335 base-pair deletion removing the coding region for 25 amino acids from the carboxy-terminal end of Int, as well as the entire att site. The postulated origin of the 501 mutation is also consistent with the model of two juxtaposed Int recognition sites.  相似文献   

9.
Staphylococcus aureus pathogenicity islands (SaPIs) are a group of related 15–17 kb mobile genetic elements that commonly carry genes for superantigen toxins and other virulence factors. The key feature of their mobility is the induction of SaPI excision and replication by certain phages and their efficient encapsidation into specific small‐headed phage‐like infectious particles. Previous work demonstrated that chromosomal integration depends on the SaPI‐encoded recombinase, Int. However, although involved in the process, Int alone was not sufficient to mediate efficient SaPI excision from chromosomal sites, and we expected that SaPI excision would involve an Xis function, which could be encoded by a helper phage or by the SaPI, itself. Here we report that the latter is the case. In vivo recombination assays with plasmids in Escherichia coli demonstrate that SaPI‐coded Xis is absolutely required for recombination between the SaPI attL and attR sites, and that both sites, as well as their flanking SaPI sequences, are required for SaPI excision. Mutational analysis reveals that Xis is essential for efficient horizontal SaPI transfer to a recipient strain. Finally, we show that the master regulator of the SaPI life cycle, Stl, blocks expression of int and xis by binding to inverted repeats present in the promoter region, thus controlling SaPI excision.  相似文献   

10.
The site-specific recombination systems of bacteriophages λ and HK022 share the same mechanism and their integrase proteins show strong homology. Nevertheless the integrase protein of each phage can only catalyze recombination between its own att sites. Previous work has shown that the specificity determinants in the att sites are located within the sequences that bind the integrase to the core of att. DNA fragments that carry attL and attR sites of each phage were challenged with each of the two integrases and the DNA-protein complexes were examined by the gel- retardation technique. The results show that each integrase can form higher-order DNA-protein complexes only with its cognate att sites, suggesting that differences in the mode of binding to the core are responsible for the specificity difference between the two integrases. Received: 16 November 1999 / Accepted: 26 January 2000  相似文献   

11.
Summary The genome segment carrying the activities int and xis, responsible for integration and excision of phage 16-3, have been identified and cloned. Mutants were isolated, permitting the investigation of int, xis and att sites (attP, attR, attB) in trans arrangements. The efficiency and role of int- and xis-promoted reactions and of homologous recombination in the formation of lysogenic cells are established. The possible use of the cloned int-attP chromosomal segment in the manipulation of Rhizobium meliloti is discussed.  相似文献   

12.
The gene encoding the wild type Integrase protein of coliphage HK022 was integrated chromosomally and expressed in Arabidopsis thaliana plants. Double-transgenic plants cloned with the int gene as well as with a T-DNA fragment carrying the proper att sites in a tandem orientation showed that Int catalyzed a site-specific integration reaction (attP × attB) as well as a site-specific excision reaction (attL × attR). The reactions took place without the need to provide any of the accessory proteins that are required by Int in the bacterial host. When expressed in tobacco plants a GFP-Int fusion exhibits a predominant nuclear localization.These authors contributed equally to this work  相似文献   

13.
Summary Mutants of phage P2 unable by themselves to be integrated as prophages have been isolated. These mutants (int) are complemented by the wild type allele and may then yield stable lysogenic strains carrying an int prophage at location I in Escherichia coli C. These lysogens produce either no phage or little phage, depending on the int mutant used. All int mutants isolated appear to belong to a single complementation group.Exceptional lysogens carrying two or more int prophages may be obtained: they may produce spontaneously even more phage than normal lysogens, and they segregate out defective, singly lysogenic clones at low frequency. These exceptional lysogens carry both prophages in location I, presumably in tandem.Strains carrying two or more int prophages but defective in phage production were also isolated. One of these carries its prophages at two different, not closely linked, chromosomal locations.  相似文献   

14.
This study evaluated the ability of five serine phage integrases, from phages A118, U153, Bxb1, φFC1, and φRV1, to mediate recombination in mammalian cells. Two types of recombination were investigated, including the ability of an integrase to mediate recombination between its own phage att sites in the context of a mammalian cell and the ability of an integrase to perform genomic integration pairing a phage att site with an endogenous mammalian sequence. We demonstrated that the A118 integrase mediated precise intra-molecular recombination of a plasmid containing its attB and attP sites at a frequency of ∼ 50% in human cells. The closely related U153 integrase also performed efficient recombination in human cells on a plasmid containing the attB and attP sites of A118. The integrases from phages Bxb1, φFC1, and φRV1 carried out such recombination at their attB and attP sites at frequencies ranging from 11 to 75%. Furthermore, the A118 integrase mediated recombination between its attP site on a plasmid and pseudo attB sites in the human genome, i.e. native sequences with partial identity to attB. Fifteen such A118 pseudo att sites were analyzed, and a consensus recognition site was identified. The other integrases did not mediate integration at genomic sequences at a frequency above background. These site-specific integrases represent valuable new tools for manipulating eukaryotic genomes.  相似文献   

15.
Phage integrases catalyze site-specific, unidirectional recombination between two short att recognition sites. Recombination results in integration when the att sites are present on two different DNA molecules and deletion or inversion when the att sites are on the same molecule. Here we demonstrate the ability of the φC31 integrase to integrate DNA into endogenous sequences in the mouse genome following microinjection of donor plasmid and integrase mRNA into mouse single-cell embryos. Transgenic early embryos and a mid-gestation mouse are reported. We also demonstrate the ability of the φC31, R4, and TP901-1 phage integrases to recombine two introduced att sites on the same chromosome in human cells, resulting in deletion of the intervening material. We compare the frequencies of mammalian chromosomal deletion catalyzed by these three integrases in different chromosomal locations. The results reviewed here introduce these bacteriophage integrases as tools for site-specific modification of the genome for the creation and manipulation of transgenic mammals.  相似文献   

16.
The site-specific integration of the phage CTX genome, which carries the gene for a pore-forming cytotoxin, into the Pseudomonas aeruginosa chromosome was analysed. The 1,167 by integrase gene, int, located immediately upstream of the attachment site, attP, was characterized using plasmid constructs, harbouring the integration functions, and serving as an integration probe in both P. aeruginosa and Escherichia coli. The attP plasmids p1000/p400 in the presence of the int plasmid pIBH and attP-int plasmids pINT/pINTS can be stably integrated into the P. aeruginosa chromosome. Successful recombination between the attP plasmid p1000 and the attB plasmid p5.1, in the presence of the int plasmid pIBH in E. coli HB101 showed that the int gene is active in trans in E. coli. The int gene product was detected as a 43 kDa protein in E. coli maxicells harbouring pINT. Proposed integration arm regions downstream of attP are not necessary for the integration process. pINT and phage CTX could be integrated together into P. aeruginosa chromosomal DNA, yielding double integrates.  相似文献   

17.
The positions of the endonucleolytic cleavages promoted by the integrase protein (Int) of coliphage HK022 within its attB site were determined. The protein catalyses a staggered cut, which defines an overlap sequence of 7 by within the core site. The overlap region is at the center of symmetry of a palindromic sequence which appears in all four putative att core binding sites for Int. We confirm that the order of strand exchange is similar to that in phage .  相似文献   

18.
The Streptomyces bacteriophage, φC31, uses a site-specific integrase enzyme to perform efficient recombination. The recombination system uses specific sequences to integrate exogenous DNA from the phage into a host. The sequences are known as the attP site in the phage and the attB site in the host. The system can be used as a genetic manipulation tool. In this study it has been applied to the transformation of cultured BmN cells and the construction of transgenic Bombyx mori individuals. A plasmid, pSK-attB/Pie1-EGFP/Zeo-PASV40, containing a cassette designed to express a egfp-zeocin fusion gene, was co-transfected into cultured BmN cells with a helper plasmid, pSK-Pie1/NLS-Int/NSL. Expression of the egfp-zeocin fusion gene was driven by an ie-1 promoter, downstream of a φC31 attB site. The helper plasmid encoded the φC31 integrase enzyme, which was flanked by two nuclear localization signals. Expression of the egfp-zeocin fusion gene could be observed in transformed cells. The two plasmids were also transferred into silkworm eggs to obtain transgenic silkworms. Successful integration of the fusion gene was indicated by the detection of green fluorescence, which was emitted by the silkworms. Nucleotide sequence analysis demonstrated that the attB site had been cut, to allow recombination between the attB and endogenous pseudo attP sites in the cultured silkworm cells and silkworm individuals.  相似文献   

19.
Insertion and excision of the chromosome of phage λ occurs by recombination at special regions of the phage and bacterial chromosomes known as attachment sites (alt's). We have isolated att mutants which display reduced recombination frequencies. The mutations are cis-dominant, trans-recessive, and can be crossed into a phage, bacterial or prophage att. These results suggest that the att's, although different over-all, include the same DNA sequence as part of their structure, and that the mutations reside in these sequences. Crosses between mutant and wild-type att's occasionally yield heterozygotes. This result suggests that recombination of the att's generates complementary single-strands via staggered nicks in these common sequences. Recombinant att's are then formed by the interannealing of single-strands of different att's followed by ligation.  相似文献   

20.
    
Summary rev is a hybrid lambdoid phage formed by recombination between and a defective lambdoid prophage (Rac) present in most E. coli K12 derivatives. We show here that three independently derived Rac- E. coli K12 strains are specifically deleted for the entire Rac prophage consistent with loss of Rac by excisive recombination between hybrid attachment sites that flank the prophage (c.f. excision of a prophage). rev, in which int and PP of have been replaced by integrative recombination genes and an attachment site derived from Rac (Gottesman et al. 1974), integrates site-specifically and in the correct orientation at the preferential attachment site generated by Rac excision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号