首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
重组羧肽酶原B的复性方法研究   总被引:1,自引:0,他引:1  
构建的羧肽酶原B表达质粒在大肠杆菌中获得高表达。但目的蛋白是以包涵体的形式存在。为了获得活性羧肽酶B,必须对其包涵体进行变复性。首先利用稀释复性确定了羧肽酶原B复性的最佳缓冲液;在凝胶过滤复性中,研究了柱长和洗脱流速对羧肽酶原B复性效率的影响;另外对比了稀释复性、透析复性、凝胶层析复性和Ni2 亲合层析法等四种方法对羧肽酶原B的复性效果。结果发现,这4种方法的复性效果有以下顺序:凝胶过滤复性>稀释复性>Ni2 亲合层析>透析复性。  相似文献   

2.
A DNA encoding the 6-kDa early secretory antigenic target (ESAT-6) of Mycobacterium tuberculosis was inserted into a bacterial expression vector of pQE30 resulting in a 6x His-esat-6 fusion gene construction. This plasmid was transformed into Escherichia coli strain M15 and effectively expressed. The expressed fusion protein was found almost entirely in the insoluble form (inclusion bodies) in cell lysate. The inclusion bodies were solubilized with 8M urea or 6M guanidine-hydrochloride at pH 7.4, and the recombinant protein was purified by Ni-NTA column. The purified fusion protein was refolded by dialysis with a gradient of decreasing concentration of urea or guanidine hydrochloride or by the size exclusion protein refolding system. The yield of refolded protein obtained from urea dialysis was 20 times higher than that from guanidine-hydrochloride. Sixty-six percent of recombinant ESAT-6 was successfully refolded as monomer protein by urea gradient dialysis, while 69% of recombinant ESAT-6 was successfully refolded as monomer protein by using Sephadex G-200 size exclusion column. These results indicate that urea is more suitable than guanidine-hydrochloride in extracting and refolding the protein. Between the urea gradient dialysis and the size exclusion protein refolding system, the yield of the monomer protein was almost the same, but the size exclusion protein refolding system needs less time and reagents.  相似文献   

3.
ATPase and peptide-binding activity of recombinant human heat shock proteins HSP70A1B and HSC70 and two hybrid proteins derived from them was investigated. UV-spectral recorded data were used to characterize conformational rearrangements induced by domain replacement or HSP70-peptide interaction. It was shown that the N-terminal domain dramatically affects the substrate specificity of the C-terminal peptide-binding domain, which puts forward a new hypothesis for HSP70 chaperone machinery. On the other hand, the peptide-binding domain affected the ATPase activity of the recombinant proteins. There was a linear relationship between the ATPase activity and the peptide complex percentage. This connection can be used for quantification of HSP70 complexes with unlabeled peptides.  相似文献   

4.
Protein folding liquid chromatography (PFLC) is a powerful tool for simultaneous refolding and purification of recombinant proteins in inclusion bodies. Urea gradient size exclusion chromatography (SEC) is a recently developed protein refolding method based on the SEC refolding principle. In the presented work, recombinant human granulocyte colony-stimulating factor (rhG-CSF) expressed in Escheriachia coli (E. coli) in the form of inclusion bodies was refolded with high yields by this method. Denatured/reduced rhG-CSF in 8.0 mol.L(-1) urea was directly injected into a Superdex 75 column, and with the running of the linear urea concentration program, urea concentration in the mobile phase and around the denatured rhG-CSF molecules was decreased linearly, and the denatured rhG-CSF was gradually refolded into its native state. Aggregates were greatly suppressed and rhG-CSF was also partially purified during the refolding process. Effects of the length and the final urea concentration of the urea gradient on the refolding yield of rhG-CSF by using urea gradient SEC were investigated respectively. Compared with dilution refolding and normal SEC with a fixed urea concentration in the mobile phase, urea gradient SEC was more efficient for rhG-CSF refolding--in terms of specific bioactivity and mass recovery, the denatured rhG-CSF could be refolded at a larger loading volume, and the aggregates could be suppressed more efficiently. When 500 microL of solubilized and denatured rhG-CSF in 8.0 mol.L(-1) urea solution with a total protein concentration of 2.3 mg.mL(-1) was loaded onto the SEC column, rhG-CSF with a specific bioactivity of 1.0 x 10(8) IU.mg(-1) was obtained, and the mass recovery was 46.1%.  相似文献   

5.
The most abundant mitochondrial homolog of Hsp70, Ssc1p, is involved in the import and folding of mitochondrial proteins. We have developed an easy and efficient method for purifying Ssc1p. Following a first step of anion exchange at pH 6.6, a column of Mge1(His)(6) immobilized on Ni(2+)-agarose provides an efficient second dimension that results in highly purified protein. The strong and specific interaction between Ssc1p and its cofactor protein, Mge1, ensures that primarily functional protein is isolated. Ssc1p purified by this method hydrolyzed ATP with a turnover rate of 0.3/min. The ATP hydrolysis was enhanced slightly by Mge1, about 5 times by Mdj1, and 12 times by both cofactors together. The CD spectrum of Ssc1p had a pattern and temperature dependence similar to those shown for other hsp70 homologs, with a midpoint of the major transition at approximately 70 degrees C.  相似文献   

6.
Misawa S  Kumagai I 《Biopolymers》1999,51(4):297-307
Overexpression of cloned or synthetic genes in Escherichia coli often results in the formation of insoluble protein inclusion bodies. Within the last decade, specific methods and strategies have been developed for preparing active recombinant proteins from these inclusion bodies. Usually, the inclusion bodies can be separated easily from other cell components by centrifugation, solubilized by denaturants such as guanidine hydrochloride (Gdn-HCl) or urea, and then renatured through a refolding process such as dilution or dialysis. Recent improvements in renaturation procedures have included the inhibition of aggregation during refolding by application of low molecular weight additives and matrix-bound renaturation. These methods have made it possible to obtain high yields of biologically active proteins by taking into account process parameters such as protein concentration, redox conditions, temperature, pH, and ionic strength.  相似文献   

7.
huGM-CSF(9-127)-IL-6(29-184)融合蛋白的复性及纯化研究   总被引:1,自引:0,他引:1  
利用Q Sepharose H.P.离子交换柱层析在8mol/L尿素变性条件下对huGM-CSF(9-127)-IL-6(29-184)融合蛋白进行初步纯化,然后再利用Sephacryl S-200分子筛柱层析复性及纯化后获得目的蛋白,其纯度达到95%以上。该纯化方案成功地解决了稀释复性或透析复性产物在进行Q Sepharose H.P.离子交换柱层析时目的蛋白不稳定而沉积于柱上的问题,获得了较好的复性效果,复性率达到80%以上。使用该纯化方案,1天内便可基本完成重组蛋白的复性及纯化过程,而且也便于扩大。  相似文献   

8.
Bacterially expressed recombinant proteins are widely used for producing specific antibodies. Unfortunately, many recombinant proteins are recovered as insoluble materials, so-called inclusion bodies. Inclusion bodies are rather advantageous from a point of view of immunogens because fairly pure proteins can be feasibly extracted from the inclusion bodies. However, we encounter a problem with an insoluble protein when we make an antigen-immobilized column for affinity purification of antibodies because we need a soluble protein in usual immobilization methods. Histidine-tagged proteins can be bound to Ni(2+)-resins in buffer containing 6M guanidine-HCl, in which most insoluble proteins are solubilized. Taking advantage of this feature, we have successfully purified antigen-specific antibodies by directly using Ni(2+)-resins onto which denatured proteins are bound.  相似文献   

9.
A size exclusion chromatography (SEC) process, in the presence of denaturant in the refolding buffer was developed to refold recombinant human interferon-γ (rhIFN-γ) at a high concentration. The rhIFN-γ was overexpressed inE. coli, resulting in the formation of inactive inclusion bodies (IBs). The IBs were first solubilized in 8 M urea as the denaturant, and then the refolding process performed by decreasing the urea concentration on the SEC column to suppress protein aggregation. The effects of the urea concentration, protein loading mode and column height during the refolding step were investigated. The combination of the bufferexchange effect of SEC and a moderate urea concentration in the refolding buffer resulted in an efficient route for producing correctly folded rhIFN-γ, with protein recovery of 67.1% and specific activity up to 1.2×107 IU/mg.  相似文献   

10.
We previously reported the set up of an automated test for screening the refolding of recombinant proteins expressed as inclusion bodies in Escherichia coli[1]. The screen used 96 refolding buffers and was validated with 24 proteins, 70% of which remained soluble in at least one buffer. In the present paper, we have analyzed in more detail these experimental data to see if the refolding process can be driven by general rules. Notably, we found that proteins with an acidic isoelectric point (pI) refolded in buffers the average pH of which was alkaline and conversely. In addition, the number of refolding buffers wherein a protein remained soluble increased with the difference between its pI and the average pH of the buffers in which it refolded. A trend analysis of the other variables (ionic strength, detergents, etc.) was also performed. On the basis of this analysis, we devised and validated a new refolding screen made of a single buffer for acidic proteins and a single buffer for alkaline proteins.  相似文献   

11.
The Andean potato weevil, Premnotrypes vorax, an insect of the order Coleoptera, is a major cause of damage to potato crops in the Andean regions of South America. The insecticidal Cry proteins from Bacillus thuringiensis are useful biological pesticides, and some are toxic to Coleopteran insects. We overexpressed recombinant, histidine-tagged Cry3Aa protein in Escherichia coli host cells. The recombinant protein was solubilized at high pH with urea, purified using Ni(2+)-nitrilo-triacetic acid affinity resin, and dialysed to lower pH and remove urea. Bioassays were performed with an insect media whose surface was spread with 70 microgram/mL purified native or recombinant toxins. First instar larvae exposed to toxin treated media for 5 days exhibited mortalities from 57% (native Cry3Aa) to 52% (recombinant Cry3Aa). Purified native and recombinant Cry3Aa proteins appeared to be equally toxic to the Andean potato weevil.  相似文献   

12.
Vascular leak syndrome (VLS) is the major dose-limiting toxicity of immunotoxin therapy. In our previous study, a modified PE38KDEL, denoted PE38KDELKQK, was engineered to eliminate VLS. The PE38KDELKQK-based immunotoxin has been proved to retain potent anti-tumor activity but with a remarkable attenuation in VLS. In the present study, we have constructed and expressed a recombinant immunotoxin CD25-PE38KDELKQK containing humanized anti-CD25 single-chain antibody (scFv) genetically fused to PE38KDELKQK in Escherichia coli. After washing with buffer containing 2 M urea, the purity of inclusion body was about 82%. The denatured inclusion bodies were refolded on-column in Tris buffer (pH 8.0) containing 4mM of GSH and 1 mM of GSSG using a gradient of decreasing urea. We found that the presence of GSH/GSSG (4:1) in the on-column refolding buffer was important for efficient refolding. In addition, slow flow rate was another important factor could increase refolding. Under these conditions, the activity of the refolded protein could reach about 90% of that of the native protein. The refolded proteins were purified to homogeneity ( approximately 95% purity) by a combination of His-Ni(2+) metal affinity chromatography and gel filtration chromatography. The in vitro cytotoxicity assay indicated the purified immunotoxin CD25-PE38KDELKQK had specific cytotoxicity to CD25-positive leukemic cells comparable to wild-type CD25-PE38KDEL (wt). In contrast, CD25-PE38KDELKQK was shown to be much weaker in inducing VLS in mice than wt. The protein expression, purification, and refolding system established in this paper is important for further study on immunotoxin CD25-PE38KDELKQK.  相似文献   

13.
Yang Z  Zhang L  Zhang Y  Zhang T  Feng Y  Lu X  Lan W  Wang J  Wu H  Cao C  Wang X 《PloS one》2011,6(7):e22981
The production of recombinant proteins in a large scale is important for protein functional and structural studies, particularly by using Escherichia coli over-expression systems; however, approximate 70% of recombinant proteins are over-expressed as insoluble inclusion bodies. Here we presented an efficient method for generating soluble proteins from inclusion bodies by using two steps of denaturation and one step of refolding. We first demonstrated the advantages of this method over a conventional procedure with one denaturation step and one refolding step using three proteins with different folding properties. The refolded proteins were found to be active using in vitro tests and a bioassay. We then tested the general applicability of this method by analyzing 88 proteins from human and other organisms, all of which were expressed as inclusion bodies. We found that about 76% of these proteins were refolded with an average of >75% yield of soluble proteins. This "two-step-denaturing and refolding" (2DR) method is simple, highly efficient and generally applicable; it can be utilized to obtain active recombinant proteins for both basic research and industrial purposes.  相似文献   

14.
Yan F  Qian M  Yang F  Cai F  Yuan Z  Lai S  Zhao X  Gou L  Hu Z  Deng H 《Biochemistry. Biokhimii?a》2007,72(6):664-671
Human PNAS-4 was identified as a novel pro-apoptotic protein in mammalian cells. Here we report the cloning, expression, purification, and antibody production of a PNAS-4 homolog (named xPNAS-4) from Xenopus laevis, an extensively used model organism in exploring gene functions during embryonic development. Recombinant histidine-tagged xPNAS-4 protein was expressed in Escherichia coli as insoluble inclusion bodies. The inclusion bodies were subsequently dissolved in 8 M urea and purified to near homogeneity by Ni2+ affinity chromatography. The resulting denatured protein was refolded by stepwise dilution of urea concentration via dialysis. This procedure yielded about 4 mg refolded protein per liter of E. coli culture with a purity of 95%. The purified protein was identified by liquid chromatography-electrospray ionization-quadrupole-time of flight-mass spectrometry (LC-ESI-Q-TOF-MS) and used to raise anti-xPNAS-4 polyclonal antibodies that were suitable for detecting the expression of PNAS-4 in X. laevis embryos by Western blotting. The availability of recombinant protein and specific polyclonal antibodies will provide a valuable tool in studying apoptotic mechanisms of this protein. To our knowledge, this is the first report to demonstrate the presence of PNAS-4 in X. laevis.  相似文献   

15.
We investigated ATP-ase and peptide-binding activity of recombinant human heat shock protein HSP70(A1B), HSC70, and two hybrid proteins derived from those. The UV-spectral recorded data was used to characterize conformational rearrangements, which were induced by domain replacement or HSP70-peptide interaction. We have shown that N-terminal domain dramatically affect substrate specificity of C-terminal peptide-binding domain. This proposes new hypothesis for HSP70 chaperone machinery. The linear dependence between ATP-ase activity and peptide complex ratio was found. This relationship could be used for unlabeled peptide-HSP70 complex quantification.  相似文献   

16.
人源溶菌酶(Human lysozyme,HLZ)是一种糖苷水解酶,具有抗菌消炎的作用,其作为抗生素的替代品,已经被广泛应用于食品业、畜牧业和医疗等领域。如何获得高产量、高活性、高纯度的人源溶菌酶一直是亟待解决的技术问题。优化人源溶菌酶编码基因密码子,提高其在大肠杆菌中的适应度和表达量;将优化的基因克隆至大肠杆菌表达质粒pET21a,并将其在大肠杆菌表达菌株BL21(DE3)中诱导表达;利用8 mol/L尿素溶液对包涵体进行溶解变性后,探究一步透析、梯度透析和梯度稀释3种复性方式以及复性液中谷胱甘肽氧化还原对(GSSG/GSH)、精氨酸、甘油等复性物的浓度对重组人源溶菌酶复性的效果,获得最佳的复性方案。研究结果表明:37℃诱导温度下,利用0.5 mmol/L IPTG成功诱导了分子量约为14.7 kD的重组人源溶菌酶的表达,包涵体表达量约为380 mg/L(湿重)。包涵体经一步透析、梯度透析和梯度稀释3种复性方式复性后,测得比活力值分别为147 U/mg、335 U/mg、176 U/mg,表明最佳复性方法为梯度透析复性法。进一步探索了复性液中GSSG/GSH比值、精氨酸浓度、甘油浓度对人源溶菌酶复性效果的影响,表明当复性液中同时添加浓度比为1∶2的GSSG/GSH、4 mmol/L精氨酸和6%甘油时,复性后人源溶菌酶的最佳比活力值为1170 U/mg,显著高于3种复性物均不加时溶菌酶335 U/mg的比活力值,但低于溶菌酶标准品1732 U/mg的比活力值。成功地将人源溶菌酶基因在大肠杆菌中表达,并通过包涵体复性体系成功获得高活性重组人源溶菌酶。  相似文献   

17.
Mature prion protein (PrP) is a 208-residue polypeptide that contains a single disulfide bond. We report an alternative method to purify recombinant mouse PrP produced in Escherichia coli. Bacterial inclusion bodies were solubilized in a buffer containing 2 M urea at pH 12.5. The solubilized protein was rapidly purified on a nickel affinity column without a chaotrope gradient, followed by ion-exchange chromatography. The yield and purity of PrP produced by this alternative approach was similar to that obtained using a conventional solubilization and on-column refolding protocol. Recombinant PrP produced using the non-reducing purification protocol is properly folded, as determined by circular dichroism, and a competent substrate for amyloid fibril formation, as determined by Thoflavin-T dye binding assays. In summary, this report describes a rapid method for producing properly folded recombinant PrP without reducing agents or a chaotrope gradient.  相似文献   

18.
利用原核表达系统表达人源抑菌蛋白Reg3A,经包涵体的复性和纯化获得有体外抑菌功能的活性抑菌蛋白,并对其体外抑菌功能进行初步研究。构建Reg3A原核表达载体PET-32a-Reg3A转化补充稀缺tRNA基因的表达菌株大肠杆菌BL21-Codonplus,阳性重组子采用诱导培养基诱导5h后,采用超声破碎的方法提取包涵体蛋白,经包涵体蛋白的纯化和透析复性后通过Ni-NTA亲和层析交换柱,获得纯度达95%的蛋白质。Western blot鉴定显示在15 kD处有特异性条带。使用纯化后的蛋白进一步进行抑菌圈实验和抑菌活性实验,对获得蛋白的体外抑菌活性进行评估,从而为进一步进行Reg3A蛋白功能的评估及应用奠定基础。  相似文献   

19.
The lactose-binding lectin from Bothrops jararacussu venom (BJcuL) is a homodimer belonging to group VII of the c-type animal lectins. BJcuL has also been shown to serve as an interesting tool for combating tumor progression by inhibiting cancer and endothelial cell growth. However, detailed structural studies of BJcuL and its biological mechanisms of cytotoxicity are yet to be reported, perhaps because of the non-availability of recombinant proteins in necessary quantities. Intending to increase the present information about structural and consequently the understating of biological studies, the cDNA coding for BJcuL from a venom gland has been cloned and sequenced. The mature protein-coding region was amplified by PCR with specific oligonucleotides, and subcloned into the pET-15b vector to express the recombinant BJcuL in Escherichia coli BL21 (DE3). The deduced amino acid sequence exhibits a high degree of sequence identity with c-type lectins (CTLs) and c-type lectin-like domains (CTLDs). An insoluble and inactive 18.5-kDa protein was overexpressed after 1.0mM IPTG induction. The recombinant BJcuL was recovered and denatured in a buffer with 6M urea and purified on a nickel-affinity column. Protein refolding was carried out on this column, during procedure purification, followed by dialysis against CTBS and then by gel filtration for separation of the active dimmer. The refolding process of rBJcuL and the analysis of its structure were confirmed by biological assay, circular dichroism, and MALDI-TOF.  相似文献   

20.
Protein refolding is still a puzzle in the production of recombinant proteins expressed as inclusion bodies (IBs) in Escherichia coli. Gradient size exclusion chromatography (SEC) is a recently developed method for refolding of recombinant proteins in IBs. In this study, we used a decreasing urea gradient SEC for the refolding of recombinant human interferon ??-2a (rhIFN??-2a) which was overexpressed as IBs in E. coli. In chromatographic process, the denatured rhIFN??-2a would pass along the 8.0?C3.0 M urea gradient and refold gradually. Several operating conditions, such as final concentration of urea along the column, gradient length, the ratio of reduced to oxidized glutathione and flow rate were investigated, respectively. Under the optimum conditions, 1.2 × 108 IU/mg of specific activity and 82% mass recovery were obtained from the loaded 10 ml of 1.75 mg/ml denatured protein, and rhIFN??-2a was also purified during this process with the purity of higher than 92%. Compared with dilution method, urea gradient SEC was more efficient for the rhIFN??-2a refolding in terms of specific activity and mass recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号