首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nuclei transplanted into unactivated amphibian eggs are known to condense into metaphase chromosomes whereas those transplanted into activated eggs decondense and enlarge. We have made cell-free cytoplasmic preparations from Rana pipiens eggs which can induce demembranated Xenopus laevis sperm to undergo changes similar to those seen in intact eggs. Sperm chromatin which is incubated for 3 hr in unactivated egg preparations made using a buffer containing 3 mM EGTA is induced to form metaphase chromosomes. However, decondensed interphase nuclei are formed when chromatin is incubated in unactivated egg preparations made without EGTA as well as in activated egg preparations. When Ca2+ ions are added to unactivated egg preparations made with EGTA, the preparations lose the ability to induce metaphase chromosome formation and become capable of decondensing sperm chromatin. Once the ability to decondense chromatin has developed, either in unactivated or activated egg preparations, it cannot be suppressed by the addition of EGTA. However, decondensation of sperm chromatin in activated egg preparations can be suppressed by the addition of unactivated egg preparations made with EGTA. In this case, the incubated sperm chromatin is induced to form metaphase chromosomes. These results may indicate that the chromosome condensation activity of unactivated egg cytoplasm can be sustained in cell-free preparations when Ca2+ ion levels are kept low, but when Ca2+ ion levels increase this activity is lost and replaced by a new activity which can decondense chromatin. Since this change in cytoplasmic activities is comparable to that occurring in the intact egg following fertilization, these results suggest that Ca2+ ions play a crucial role during activation in altering the cytoplasmic activities which control nuclear behavior.  相似文献   

2.
Liu XL  Shen Y  Chen EJ  Zhai ZH 《Cell research》2000,10(2):127-137
Incubation of dinoflagellate Crythecodinium cohnii chromosomes in cytoplasmic extracts of unfertilized Xenopus laevis eggs resulted in chromosomes decondensation and recondensation,nuclear envelope assembly,and nuclear reconstitution.Dinoflagellate Crythecodinium cohnii is a kind of primitive eukaryote which possesses numerous permanently condensed chromosomes and discontinuous double-layered nuclear membrane throughout the cell cycle.The assembled nuclei,being surrounded by a continuous double membrane containing nuclear pores and the uniformly dispersed chromatin fibers are morphologically distinguishable from that of Dinoflagellate Crythecodinium cohnii.However,incubation of dinoflagellate Cyrthecodinium cohnii chromosomes in the extracts from dinoflagellate Crythecodinium cohnii cells does not induce nuclear reconstitution.  相似文献   

3.
Cell-free extracts from animal Xenopus laevis egg could induce chromatin decondensation and pronuclear formation from demembranated plant (Orychophragmus violaceus) sperm. When incubated with Xenopus egg extracts, the demembranated sperm began to swell and then gradually decondensed. The assembly of the nuclear envelope in the reconstituted nuclei was visualized by means of electron microscopy and fluorescence microscopy. Membrane vesicles fused to form the double envelope around the periphery of the decondensed chromatin. The morphology of the newly formed nuclei, with a double membrane, was similar to that of nuclei after fertilization. The electron micrograph of the whole-mount prepared nuclear matrix--lamina showed the reconstituted nucleus to be filled with a dense network.  相似文献   

4.
Sperm decondensation in Xenopus egg cytoplasm is mediated by nucleoplasmin   总被引:25,自引:0,他引:25  
A Philpott  G H Leno  R A Laskey 《Cell》1991,65(4):569-578
At fertilization, sperm chromatin decondenses in two stages, which can be mimicked in extracts of Xenopus eggs. Rapid, limited decondensation is followed by slower, membrane-dependent decondensation and swelling. Nucleoplasmin, an acidic nuclear protein, occurs at high concentration in Xenopus eggs and has a histone-binding role in nucleosome assembly. Immunodepleting nucleoplasmin from egg extracts inhibits the initial rapid stage of sperm decondensation, and also the decondensation of myeloma nuclei, relative to controls of mock depletion and TFIIIA depletion. Readdition of purified nucleoplasmin recues depleted extracts. A physiological concentration of purified nucleoplasmin alone decondenses both sperm and myeloma nuclei. We conclude that nucleoplasmin is both necessary and sufficient for the first stage of sperm decondensation in Xenopus eggs.  相似文献   

5.
《The Journal of cell biology》1996,135(5):1207-1218
Xenopus egg extracts initiate DNA replication specifically at the dihydrofolate reductase (DHFR) origin locus with intact nuclei from late G1-phase CHO cells as a substrate, but at nonspecific sites when purified DNA is assembled by the extract into an embryonic nuclear structure. Here we show that late G1-phase CHO nuclei can be cycled through an in vitro Xenopus egg mitosis, resulting in the assembly of an embryonic nuclear envelope around G1-phase chromatin. Surprisingly, replication within these chimeric nuclei initiated at a novel specific site in the 5' region of the DHFR structural gene that does not function as an origin in cultured CHO cells. Preferential initiation at this unusual site required topoisomerase II-mediated chromosome condensation during mitosis. Nuclear envelope breakdown and reassembly in the absence of chromosome condensation resulted in nonspecific initiation. Introduction of condensed chromosomes from metaphase- arrested CHO cells directly into Xenopus egg extracts was sufficient to elicit assembly of chimeric nuclei and preferential initiation at this same site. These results demonstrate clearly that chromosome architecture can determine the sites of initiation of replication in Xenopus egg extracts, supporting the hypothesis that patterns of initiation in vertebrate cells are established by higher order features of chromosome structure.  相似文献   

6.
Chromosome condensation is required for the physical resolution and segregation of sister chromatids during cell division, but the precise role of higher order chromatin structure in mitotic chromosome functions is unclear. Here, we address the role of the major condensation machinery, the condensin complex, in spindle assembly and function in Xenopus laevis egg extracts. Immunodepletion of condensin inhibited microtubule growth and organization around chromosomes, reducing the percentage of sperm nuclei capable of forming spindles, and causing dramatic defects in anaphase chromosome segregation. Although the motor CENP-E was recruited to kinetochores pulled poleward during anaphase, the disorganized chromosome mass was not resolved. Inhibition of condensin function during anaphase also inhibited chromosome segregation, indicating its continuous requirement. Spindle assembly around DNA-coated beads in the absence of kinetochores was also impaired upon condensin inhibition. These results support an important role for condensin in establishing chromosomal architecture necessary for proper spindle assembly and chromosome segregation.  相似文献   

7.
The structural basis of mitotic condensation of chromosomes is one of the problems of cell biology yet to be elucidated. A variety of approaches have been used to study this problem and a large number of hypotheses have been proposed to explain the different levels of compaction of chromatin. Xenopus egg extracts, now widely used to study various aspects of cell biology, provide a valuable tool to study mitotic condensation of chromosomes. No detailed study has however yet been reported on the submicroscopic organization of condensed chromosomes in vitro in egg extracts. We present here the results of our electron microscopic studies on the organization of condensed chromosomes in vitro, using demembranated sperm nuclei and mitotic (CSF-arrested) extracts of Xenopus laevis eggs, clarified by high speed centrifugation. Upon introduction of sperm nuclei in egg extracts, the nuclei swell and the chromatin undergoes a rapid decondensation; at this stage the chromatin is formed of 10 nm fibrils. After longer incubation, the chromatin condenses, and by 2 h chromosomal structures can be visualized by staining with DAPI or Hoechst 33258. Our results on the organization of chromosomes in different stages of condensation are discussed in relation to the different hypotheses proposed to explain the process of mitotic condensation of chromosomes. Finally, this study demonstrates the feasibility of high-resolution analysis of the process of chromosome condensation.  相似文献   

8.
《The Journal of cell biology》1984,98(4):1222-1230
A cell-free cytoplasmic preparation from activated Rana pipiens eggs could induce in demembranated Xenopus laevis sperm nuclei morphological changes similar to those seen during pronuclear formation in intact eggs. The condensed sperm chromatin underwent an initial rapid, but limited, dispersion. A nuclear envelope formed around the dispersed chromatin and the nuclei enlarged. The subcellular distribution of the components required for these changes was examined by separating the preparations into soluble (cytosol) and particulate fractions by centrifugation at 150,000 g for 2 h. Sperm chromatin was incubated with the cytosol or with the particulate material after it had been resuspended in either the cytosol, heat-treated (60 or 100 degrees C) cytosol or buffer. We found that the limited dispersion of chromatin occurred in each of these ooplasmic fractions, but not in the buffer alone. Nuclear envelope assembly required the presence of both untreated cytosol and particulate material. Ultrastructural examination of the sperm chromatin during incubation in the preparations showed that membrane vesicles of approximately 200 nm in diameter, found in the particulate fraction, flattened and fused together to contribute the membranous components of the nuclear envelope. The enlargement of the sperm nuclei occurred only after the nuclear envelope formed. The pronuclei formed in the cell-free preparations were able to incorporate [3H]dTTP into DNA. This incorporation was inhibited by aphidicolin, suggesting that the DNA synthesis by the pronuclei was dependent on DNA polymerase-alpha. When sperm chromatin was incubated greater than 3 h, the chromatin of the pronuclei often recondensed to form structures resembling mitotic chromosomes within the nuclear envelope. Therefore, it appeared that these ooplasmic preparations could induce, in vitro, nuclear changes resembling those seen during the first cell cycle in the zygote.  相似文献   

9.
A cell-free preparation obtained from extracts of activated Xenopus laevis eggs induced chromatin decondensation and nuclear formation from demembranated Xenopus sperm nuclei.Electron microscopy revealed that the reassembled nucleus had a double-layered nuclear memblane,nuclear pore complexes,and decondensed chromatin etc.Indirect immunofluorescence analysis demonstrated the presence of lamina in newly assembled nuclei.Western-blotting results showed that lamin LII was present in egg extracts and in lamina of the reassembled nuclei which were previously reported to contain only egg derived lamin LIII.  相似文献   

10.
Cell-free extracts of Xenopus eggs cause cyclic change in permeabilized sperm nucleus, nuclear envelope breakdown, chromosome condensation, and reformation of nuclei. In this study, the ability of cell-free extracts to cause similar changes in zebrafish sperm was examined. When lysolecithin-treated sperm from zebrafish were incubated in Xenopus egg extracts, a series of changes in sperm nuclear morphology were observed periodically. These changes correlated with maturation-promoting factor (MPF) activity. Furthermore, sperm nuclei of zebrafish replicated DNA during reconstitution in Xenopus egg extracts. These results showed that cell-free extracts of Xenopus egg possess the ability to cause cell-cycle-dependent changes in zebrafish sperm, implying the possibility of generating transgenic zebrafish in a similar way to transgenic Xenopus. Received October 21, 1999; accepted July 18, 2000.  相似文献   

11.
利用非洲爪蟾精子染色质和卵提取物在体外重建细胞核   总被引:1,自引:0,他引:1  
曲健  张传茂 《动物学报》1995,41(2):196-200
应用非洲爪蟾去膜精子染色质和卵提取物成功地进行了细胞核本外重建。当精子染色质加入卵提取物后,首先发生染色质去浓缩作用,染色质整体结构膨胀;膜泡在膨胀的染色质外周聚集并逐渐彼此融合成双层膜;核孔复合体以某种未知方式组装入双层膜而形成核膜结构,并逐渐完全覆盖膨大的染色质,最终形成典型的间期核结构。  相似文献   

12.
The Aurora family kinases contribute to accurate progression through several mitotic events. ZM447439 ("ZM"), the first Aurora family kinase inhibitor to be developed and characterized, was previously found to interfere with the mitotic spindle integrity checkpoint and chromosome segregation. Here, we have used extracts of Xenopus eggs, which normally proceed through the early embryonic cell cycles in the absence of functional checkpoints, to distinguish between ZM's effects on the basic cell cycle machinery and its effects on checkpoints. ZM clearly had no effect on either the kinetics or amplitude in the oscillations of activity of several key cell cycle regulators. It did, however, have striking effects on chromosome morphology. In the presence of ZM, chromosome condensation began on schedule but then failed to progress properly; instead, the chromosomes underwent premature decondensation during mid-mitosis. ZM strongly interfered with mitotic spindle assembly by inhibiting the formation of microtubules that are nucleated/stabilized by chromatin. By contrast, ZM had little effect on the assembly of microtubules by centrosomes at the spindle poles. Finally, under conditions where the spindle integrity checkpoint was experimentally induced, ZM blocked the establishment, but not the maintenance, of the checkpoint, at a point upstream of the checkpoint protein Mad2. These results show that Aurora kinase activity is required to ensure the maintenance of condensed chromosomes, the generation of chromosome-induced spindle microtubules, and activation of the spindle integrity checkpoint.  相似文献   

13.
The GTPase Ran is known to regulate transport of proteins across the nuclear envelope. Recently, Ran has been shown to promote microtubule polymerization and spindle assembly around chromatin in Xenopus mitotic extracts and to stimulate nuclear envelope assembly in Xenopus or HeLa cell extracts. However, these in vitro findings have not been tested in living cells and do not necessarily describe the generalized model of Ran functions. Here we present several lines of evidence that Ran is indispensable for correct chromosome positioning and nuclear envelope assembly in C. elegans. Embryos deprived of Ran by RNAi showed metaphase chromosome misalignment and aberrant chromosome segregation, while astral microtubules seemed unaffected. Depletion of RCC1 or RanGAP by RNAi resulted in essentially the same defects. The immunofluorescent staining showed that Ran localizes to kinetochore regions of metaphase and anaphase chromosomes, suggesting the role of Ran in linking chromosomes to kinetochore microtubules. Ran was shown to localize to the nuclear envelope at telophase and during interphase in early embryos, and the depletion of Ran resulted in failure of nuclear envelope assembly. Thus, Ran is crucially involved in chromosome positioning and nuclear envelope assembly in C. elegans.  相似文献   

14.
As rapid divisions without growth generate progressively smaller cells within an embryo, mitotic chromosomes must also decrease in size to permit their proper segregation, but this scaling phenomenon is poorly understood. We demonstrated previously that nuclear and spindle size scale between egg extracts of the related frog species Xenopus tropicalis and Xenopus laevis, but show here that dimensions of isolated mitotic sperm chromosomes do not differ. This is consistent with the hypothesis that chromosome scaling does not occur in early embryonic development when cell and spindles sizes are large and anaphase B segregates chromosomes long distances. To recapitulate chromosome scaling during development, we combined nuclei isolated from different stage Xenopus laevis embryos with metaphase-arrested egg extracts. Mitotic chromosomes derived from nuclei of cleaving embryos through the blastula stage were similar in size to replicated sperm chromosomes, but decreased in area approximately 50% by the neurula stage, reproducing the trend in size changes observed in fixed embryos. Allowing G2 nuclei to swell in interphase prior to mitotic condensation did not increase mitotic chromosome size, but progression through a full cell cycle in egg extract did, suggesting that epigenetic mechanisms determining chromosome size can be altered during DNA replication. Comparison of different sized mitotic chromosomes assembled in vitro provides a tractable system to elucidate underlying molecular mechanisms.  相似文献   

15.
We have investigated the role of topoisomerase II (topo II) in mitotic chromosome assembly and organization in vitro using Xenopus egg extracts. When sperm chromatin was incubated with mitotic extracts, the highly compact chromatin rapidly swelled and concomitantly underwent local condensation. Further incubation induced the formation of entangled thin chromatin fibers that eventually resolved into highly condensed individual chromosomes. This in vitro system made it possible to manipulate mitotic chromosomes in their assembly condition without any isolation or stabilization steps. Two complementary approaches, immunodepletion and antibody blocking, demonstrated that topo II activity is required for chromosome assembly and condensation. Once condensation was completed, however, blocking of topo II activity had little effect on the chromosome morphology. Immunofluorescent studies showed that topo II was uniformly distributed throughout the condensed chromosomes and was not restricted to the chromosomal axis. Surprisingly, all detectable topo II molecules were easily extracted from the chromosomes under mild conditions where the shape of chromosomes was well preserved. Our results show that topo II is essential for mitotic chromosome assembly, but does not play a scaffolding role in the structural maintenance of chromosomes assembled in vitro. We also present evidence that changes of DNA topology affect the distribution of topo II in mitotic chromosomes in our system.  相似文献   

16.
Hannak E  Heald R 《Nature protocols》2006,1(5):2305-2314
Extracts from Xenopus laevis eggs provide a powerful system for the study of cell division processes in vitro through biochemical reconstitution and manipulation, and microscopic analysis. We provide protocols for the preparation of metaphase-arrested extracts and in vitro assays to examine the following pathways of spindle assembly: 1) Sperm nuclei added to meiotic extracts, supporting the formation of half-spindles and bipolar spindle structures around unreplicated chromosomes; 2) sperm nuclei added to extracts that cycle through interphase and form spindles that are capable of undergoing anaphase and chromosome segregation; and 3) spindle formation around chromatin-coated beads. Finally, we describe methods to inhibit a specific protein by immunodepletion or addition of an inhibitor such as a dominant-negative construct. These techniques can be used to analyze the mitotic function of a given protein. It takes approximately 1.5 h to prepare the extract, 1-3 h for spindle-assembly experiments and an additional 1-3 h if immunodepletion is performed.  相似文献   

17.
The cell-free preparation derived from Nicotiana tabaccum ovules induced chromatin decondensation and pronuclear formation from demembranated Xenopus laevis sperm nuclei. Fluorescent microscope and phase-contrast microscope visualization of assembly intermediates indicated that 95.6% of X. leavis sperm changed their tadpole-like shape to circular shape or elliptical shape after over 1.5 h of incubation. Transmission electron microscope visualization showed that nuclear membrane was assembled around the periphery of the dispersed chromatin. Nuclear envelope of most reassembled nuclei was composed of a double membrane inlaid with a little single membrane. Nucleosome assembly was verified by means of micrococcal nuclease digestion. After 2 to 5 h of incubation, digestion of the product of nuclear assembly with micrococcal nuclease produced at least six nucleosome fragments of about 250 bp each.  相似文献   

18.
Our objective was to examine the ability of nucleate and anucleate fragments of artificially activated mouse eggs to transform sperm nucleus into male pronucleus. To this end, zona-free oocytes in metaphase II were activated by ethanol and bisected into halves (one with the spindle, the other anucleate) either within 10 to 20 min (series A) or 3 or 5 hr later (series B). In series A, the fragments were inseminated 3,5, and 8 h after activation, and in series B. 3 and 5 h after activation. Both nucleate and anucleate fragments lose the capability of transforming sperm nucleus into fully formed pronucleus sometime between 3 and 5 h after activation. In 8 h old parthenogenetic fragments, the majority of sperm nuclei remain unchanged or begin decondensation but never reach the stage of an early pronucleus. In over 1/3 of anucleate fragments of this age group, sperm nuclei develop defectively: chromatin decondenses inside the persisting nuclear envelope. In other experimental groups, the incidence of these abnormal sperm nuclei varies between 0 and 10%. In general, the anuclcate fragments retain the capability to transform sperm nuclei (fully or partially) longer than their nuclear counterparts. This difference may be accounted for by a different level of substances required for pronuclcar growth (extrachromosomal constituents of the germinal vesicle and nuclear lamins): high and constant in the cytoplasm of anucleate egg halves and low and progressively decreasing in the nucleate halves because of their putative uptake by the female pronucleus. However, the cytoplasmic factors responsible for the initial stages of transformation (nuclear envelope breakdown, chromatin decondensation) become eventually inactivated both in the presence and in the absence of a female pronucleus.  相似文献   

19.
Cell-free extracts prepared from Xenopus eggs support chromosome decondensation and pronuclear formation on demembranated sperm heads. 32P-dCTP pulse-labelling studies demonstrate that DNA synthesis occurs in multiple bursts of 30-40 min in extracts containing pronuclei, each burst being followed by a period of 20-50 min during which no synthesis occurs. Density substitution with bromodeoxyuridine indicates that the synthesis in each burst is semiconservative and results from new initiations, and that, following multiple bursts of synthesis, reinitiation events can occur. Changes in nuclear morphology have been characterized in the extract by phase-contrast microscopy and by fluorescence microscopy following pulse labelling with biotin-11-dUTP and staining with anti-lamin antibodies. Lamin accumulation occurs as DNA decondenses and parallels the acquisition of membrane structures. Biotin-11-dUTP incorporation is first observed in small nuclei having decondensed DNA and an extensive lamina. While DNA synthesis is occurring nuclei remain relatively small, but rapid swelling accompanied by chromosome condensation occurs when biotin incorporation ceases. Nuclear swelling and chromatin condensation is followed by nuclear membrane breakdown, lamin dispersal and chromosome formation. Mitosis lasts for approximately 20 min. Nuclear reassembly is recognized by the appearance of membrane vesicles around small pieces of decondensed DNA, which parallels the appearance of lamin islands within a chromatin mass. These 'islands' incorporate biotin, indicating that DNA synthesis is occurring, and apparently fuse as larger S-phase nuclei are formed. Extensive protein synthesis occurs for at least 4 h in most extracts. This synthesis is required for the initiation of mitotic events and the reinitiation of DNA synthesis.  相似文献   

20.
Mitotic spindle assembly by two different pathways in vitro   总被引:24,自引:14,他引:10       下载免费PDF全文
We have used Xenopus egg extracts to study spindle morphogenesis in a cell-free system and have identified two pathways of spindle assembly in vitro using methods of fluorescent analogue cytochemistry. When demembranated sperm nuclei are added to egg extracts arrested in a mitotic state, individual nuclei direct the assembly of polarized microtubule arrays, which we term half-spindles; half-spindles then fuse pairwise to form bipolar spindles. In contrast, when sperm nuclei are added to extracts that are induced to enter interphase and arrested in the following mitosis, a single sperm nucleus can direct the assembly of a complete spindle. We find that microtubule arrays in vitro are strongly biased towards chromatin, but this does not depend on specific kinetochore-microtubule interactions. Indeed, although we have identified morphological and probably functional kinetochores in spindles assembled in vitro, kinetochores appear not to play an obligate role in the establishment of stable, bipolar microtubule arrays in either assembly pathway. Features of the two pathways suggest that spindle assembly involves a hierarchy of selective microtubule stabilization, involving both chromatin-microtubule interactions and antiparallel microtubule-microtubule interactions, and that fundamental molecular interactions are probably the same in both pathways. This in vitro reconstitution system should be useful for identifying the molecules regulating the generation of asymmetric microtubule arrays and for understanding spindle morphogenesis in general.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号