首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The three-dimensional structure of thymidine phosphorylase from Escherichia coli has been determined at 2.8 A resolution using multiple-isomorphous-replacement techniques. The amino acid sequence deduced from the deoA DNA sequence is also reported. Thymidine phosphorylase exists in the crystal as an S-shaped dimer in which the subunits are related by a crystallographic 2-fold axis. Each subunit is composed of a small alpha-helical domain of six helices and a large alpha/beta domain. The alpha/beta domain includes a six-stranded mixed beta-sheet and a four-stranded antiparallel beta-sheet. The active site has been identified by difference Fourier analyses of the binding of thymine and thymidine and lies in a cavity between the small and large domains. The central beta-sheet is splayed open to accommodate a putative phosphate-binding site which is probably occupied by a sulfate ion in the crystal.  相似文献   

2.
Cholesterol oxidase (3 beta-hydroxysteroid oxidase, EC 1.1.3.6) is an FAD-dependent enzyme that carries out the oxidation and isomerization of steroids with a trans A : B ring junction. The crystal structure of the enzyme from Brevibacterium sterolicum has been determined using the method of isomorphous replacement and refined to 1.8 A resolution. The refined model includes 492 amino acid residues, the FAD prosthetic group and 453 solvent molecules. The crystallographic R-factor is 15.3% for all reflections between 10.0 A and 1.8 A resolution. The structure is made up of two domains: an FAD-binding domain and a steroid-binding domain. The FAD-binding domain consists of three non-continuous segments of sequence, including both the N terminus and the C terminus, and is made up of a six-stranded beta-sheet sandwiched between a four-stranded beta-sheet and three alpha-helices. The overall topology of this domain is very similar to other FAD-binding proteins. The steroid-binding domain consists of two non-continuous segments of sequence and contains a six-stranded antiparallel beta-sheet forming the "roof" of the active-site cavity. This large beta-sheet structure and the connections between the strands are topologically similar to the substrate-binding domain of the FAD-binding protein para-hydroxybenzoate hydroxylase. The active site lies at the interface of the two domains, in a large cavity filled with a well-ordered lattice of 13 solvent molecules. The flavin ring system of FAD lies on the "floor" of the cavity with N-5 of the ring system exposed. The ring system is twisted from a planar conformation by an angle of approximately 17 degrees, allowing hydrogen-bond interactions between the protein and the pyrimidine ring of FAD. The amino acid residues that line the active site are predominantly hydrophobic along the side of the cavity nearest the benzene ring of the flavin ring system, and are more hydrophilic on the opposite side near the pyrimidine ring. The cavity is buried inside the protein molecule, but three hydrophobic loops at the surface of the molecule show relatively high temperature factors, suggesting a flexible region that may form a possible path by which the substrate could enter the cavity. The active-site cavity contains one charged residue, Glu361, for which the side-chain electron density suggests a high degree of mobility for the side-chain. This residue is appropriately positioned to act as the proton acceptor in the proposed mechanism for the isomerization step.  相似文献   

3.
Three-dimensional structure of rat acid phosphatase.   总被引:3,自引:2,他引:1       下载免费PDF全文
G Schneider  Y Lindqvist    P Vihko 《The EMBO journal》1993,12(7):2609-2615
The crystal structure of recombinant rat prostatic acid phosphatase was determined to 3 A resolution with protein crystallographic methods. The enzyme subunit is built up of two domains, an alpha/beta domain consisting of a seven-stranded mixed beta-sheet with helices on both sides of the sheet and a smaller alpha domain. Two disulfide bridges between residues 129-340 and 315-319 were found. Electron density at two of the glycosylation sites for parts of the carbohydrate moieties was observed. The dimer of acid phosphatase is formed through two-fold interactions of edge strand 3 from one subunit with strand 3 from the second subunit, thus extending the beta-sheet from seven to 14 strands. Other subunit-subunit interactions involve conserved residues from loops between helices and beta-strands. The fold of the alpha/beta domain is similar to the fold observed in phosphoglycerate mutase. The active site is at the carboxy end of the parallel strands of the alpha/beta domain. There is a strong residual electron density at the phosphate binding site which probably represents a bound chloride ion. Biochemical properties and results from site-directed mutagenesis experiments of acid phosphatase are correlated to the three-dimensional structure.  相似文献   

4.
Actinomadura sp. R39 produces an exocellular DD-peptidase/penicillin-binding protein (PBP) whose primary structure is similar to that of Escherichia coli PBP4. It is characterized by a high beta-lactam-binding activity (second order rate constant for the acylation of the active site serine by benzylpenicillin: k2/K = 300 mm(-1) s(-1)). The crystal structure of the DD-peptidase from Actinomadura R39 was solved at a resolution of 1.8 angstroms by single anomalous dispersion at the cobalt resonance wavelength. The structure is composed of three domains: a penicillin-binding domain similar to the penicillin-binding domain of E. coli PBP5 and two domains of unknown function. In most multimodular PBPs, additional domains are generally located at the C or N termini of the penicillin-binding domain. In R39, the other two domains are inserted in the penicillin-binding domain, between the SXXK and SXN motifs, in a manner similar to "Matryoshka dolls." One of these domains is composed of a five-stranded beta-sheet with two helices on one side, and the other domain is a double three-stranded beta-sheet inserted in the previous domain. Additionally, the 2.4-angstroms structure of the acyl-enzyme complex of R39 with nitrocefin reveals the absence of active site conformational change upon binding the beta-lactams.  相似文献   

5.
The three-dimensional structure of class pi glutathione S-transferase from pig lung, a homodimeric enzyme, has been solved by multiple isomorphous replacement at 3 A resolution and preliminarily refined at 2.3 A resolution (R = 0.24). Each subunit (207 residues) is folded into two domains of different structure. Domain I (residues 1-74) consists of a central four-stranded beta-sheet flanked on one side by two alpha-helices and on the other side, facing the solvent, by a bent, irregular helix structure. The topological pattern resembles the bacteriophage T4 thioredoxin fold, in spite of their dissimilar sequences. Domain II (residues 81-207) contains five alpha-helices. The dimeric molecule is globular with dimensions of about 55 A x 52 A x 45 A. Between the subunits and along the local diad, is a large cavity which could possibly be involved in the transport of nonsubstrate ligands. The binding site of the competitive inhibitor, glutathione sulfonate, is located on domain I, and is part of a cleft formed between intrasubunit domains. Glutathione sulfonate is bound in an extended conformation through multiple interactions. Only three contact residues, namely Tyr7, Gln62 and Asp96 are conserved within the family of cytosolic glutathione S-transferases. The exact location of the binding site(s) of the electrophilic substrate is not clear. Catalytic models are discussed on the basis of the molecular structure.  相似文献   

6.
Fujii T  Maeda M  Mihara H  Kurihara T  Esaki N  Hata Y 《Biochemistry》2000,39(6):1263-1273
Escherichia coli CsdB, a NifS homologue with a high specificity for L-selenocysteine, is a pyridoxal 5'-phosphate (PLP)-dependent dimeric enzyme that belongs to aminotransferases class V in fold-type I of PLP enzymes and catalyzes the decomposition of L-selenocysteine into selenium and L-alanine. The crystal structure of the enzyme has been determined by the X-ray crystallographic method of multiple isomorphous replacement and refined to an R-factor of 18.7% at 2.8 A resolution. The subunit structure consists of three parts: a large domain of an alpha/beta-fold containing a seven-stranded beta-sheet flanked by seven helices, a small domain containing a four-stranded antiparallel beta-sheet flanked by three alpha-helices, and an N-terminal segment containing two alpha-helices. The overall fold of the subunit is similar to those of the enzymes belonging to the fold-type I family represented by aspartate aminotransferase. However, CsdB has several structural features that are not observed in other families of the enzymes. A remarkable feature is that an alpha-helix in the lobe extending from the small domain to the large domain in one subunit of the dimer interacts with a beta-hairpin loop protruding from the large domain of the other subunit. The extended lobe and the protruded beta-hairpin loop form one side of a limb of each active site in the enzyme. The most striking structural feature of CsdB lies in the location of a putative catalytic residue; the side chain of Cys364 on the extended lobe of one subunit is close enough to interact with the gamma-atom of a modeled substrate in the active site of the subunit. Moreover, His55 from the other subunit is positioned so that it interacts with the gamma- or beta-atom of the substrate and may be involved in the catalytic reaction. This is the first report on three-dimensional structures of NifS homologues.  相似文献   

7.
8.
The maturation of [NiFe] hydrogenases includes formation of the nickel metallocenter, proteolytic processing of the metal center carrying large subunit, and its assembling with other hydrogenase subunits. The hydrogenase maturating enzyme HYBD from Escherichia coli, a protease of molecular mass 17.5 kDa, specifically cleaves off a 15 amino acid peptide from the C terminus of the precursor of the large subunit of hydrogenase 2 in a nickel-dependent manner. Here we report the crystal structure of HYBD at 2.2 A resolution. It consists of a twisted five-stranded beta-sheet surrounded by four and three helices, respectively, on each side. A cadmium ion from the crystallization buffer binds to the proposed nickel-binding site and is penta-coordinated by Glu16, Asp62, His93, and a water molecule in a pseudo-tetragonal arrangement. HYBD is topologically related to members of the metzincins superfamily of zinc endoproteinases, sharing the central beta-sheet and three helices. In contrast to the metzincins, the metal-binding site of HYBD is localized at the C-terminal end of the beta-sheet. Three helical insertions unique to HYBD pack against one side of the sheet, build up the active site cleft, and provide His93 as ligand to the metal. From this structure, we derive molecular clues into how the protease HYBD is involved in the hydrogenase maturation process.  相似文献   

9.
BACKGROUND: Thiamin pyrophosphokinase (TPK) catalyzes the transfer of a pyrophosphate group from ATP to vitamin B1 (thiamin) to form the coenzyme thiamin pyrophosphate (TPP). Thus, TPK is important for the formation of a coenzyme required for central metabolic functions. TPK has no sequence homologs in the PDB and functions by an unknown mechanism. The TPK structure has been determined as a significant step toward elucidating its catalytic action. RESULTS: The crystal structure of Saccharomyces cerevisiae TPK complexed with thiamin has been determined at 1.8 A resolution. TPK is a homodimer, and each subunit consists of two domains. One domain resembles a Rossman fold with four alpha helices on each side of a 6 strand parallel beta sheet. The other domain has one 4 strand and one 6 strand antiparallel beta sheet, which form a flattened sandwich structure containing a jelly-roll topology. The active site is located in a cleft at the dimer interface and is formed from residues from domains of both subunits. The TPK dimer contains two compound active sites at the subunit interface. CONCLUSIONS: The structure of TPK with one substrate bound identifies the location of the thiamin binding site and probable catalytic residues. The structure also suggests a likely binding site for ATP. These findings are further supported by TPK sequence homologies. Although possessing no significant sequence homology with other pyrophospokinases, thiamin pyrophosphokinase may operate by a mechanism of pyrophosphoryl transfer similar to those described for pyrophosphokinases functioning in nucleotide biosynthesis.  相似文献   

10.
Asparagine synthetase B catalyzes the assembly of asparagine from aspartate, Mg(2+)ATP, and glutamine. Here, we describe the three-dimensional structure of the enzyme from Escherichia colidetermined and refined to 2.0 A resolution. Protein employed for this study was that of a site-directed mutant protein, Cys1Ala. Large crystals were grown in the presence of both glutamine and AMP. Each subunit of the dimeric protein folds into two distinct domains. The N-terminal region contains two layers of antiparallel beta-sheet with each layer containing six strands. Wedged between these layers of sheet is the active site responsible for the hydrolysis of glutamine. Key side chains employed for positioning the glutamine substrate within the binding pocket include Arg 49, Asn 74, Glu 76, and Asp 98. The C-terminal domain, responsible for the binding of both Mg(2+)ATP and aspartate, is dominated by a five-stranded parallel beta-sheet flanked on either side by alpha-helices. The AMP moiety is anchored to the protein via hydrogen bonds with O(gamma) of Ser 346 and the backbone carbonyl and amide groups of Val 272, Leu 232, and Gly 347. As observed for other amidotransferases, the two active sites are connected by a tunnel lined primarily with backbone atoms and hydrophobic and nonpolar amino acid residues. Strikingly, the three-dimensional architecture of the N-terminal domain of asparagine synthetase B is similar to that observed for glutamine phosphoribosylpyrophosphate amidotransferase while the molecular motif of the C-domain is reminiscent to that observed for GMP synthetase.  相似文献   

11.
Carbamoyl-phosphate synthetase catalyzes the production of carbamoyl phosphate through a reaction mechanism requiring one molecule of bicarbonate, two molecules of MgATP, and one molecule of glutamine. The enzyme from Escherichia coli is composed of two polypeptide chains. The smaller of these belongs to the Class I amidotransferase superfamily and contains all of the necessary amino acid side chains required for the hydrolysis of glutamine to glutamate and ammonia. Two homologous domains from the larger subunit adopt conformations that are characteristic for members of the ATP-grasp superfamily. Each of these ATP-grasp domains contains an active site responsible for binding one molecule of MgATP. High resolution x-ray crystallographic analyses have shown that, remarkably, the three active sites in the E. coli enzyme are connected by a molecular tunnel of approximately 100 A in total length. Here we describe the high resolution x-ray crystallographic structure of the G359F (small subunit) mutant protein of carbamoyl phosphate synthetase. This residue was initially targeted for study because it resides within the interior wall of the molecular tunnel leading from the active site of the small subunit to the first active site of the large subunit. It was anticipated that a mutation to the larger residue would "clog" the ammonia tunnel and impede the delivery of ammonia from its site of production to the site of utilization. In fact, the G359F substitution resulted in a complete change in the conformation of the loop delineated by Glu-355 to Ala-364, thereby providing an "escape" route for the ammonia intermediate directly to the bulk solvent. The substitution also effected the disposition of several key catalytic amino acid side chains in the small subunit active site.  相似文献   

12.
X Ji  P Zhang  R N Armstrong  G L Gilliland 《Biochemistry》1992,31(42):10169-10184
The crystal structure of a mu class glutathione S-transferase (EC 2.5.1.18) from rat liver (isoenzyme 3-3) in complex with the physiological substrate glutathione (GSH) has been solved at 2.2-A resolution by multiple isomorphous replacement methods. The enzyme crystallized in the monoclinic space group C2 with unit cell dimensions of a = 87.98 A, b = 69.41 A, c = 81.34 A, and beta = 106.07 degrees. Oligonucleotide-directed site-specific mutagenesis played an important role in the solution of the structure in that the cysteine mutants C86S, C114S, and C173S were used to help locate the positions of mercuric ion sites in nonisomorphous derivatives with ethylmercuric phosphate and to align the sequence with the model derived from MIR phases. A complete model for the protein was not obtained until part of the solvent structure was interpreted. The dimer in the asymmetric unit refined to a crystallographic R = 0.171 for 19,298 data and I > or = 1.5 sigma (I). The final model consists of 4150 atoms, including all non-hydrogen atoms of 434 amino acid residues, two GSH molecules, and oxygen atoms of 474 water molecules. The dimeric enzyme is globular in shape with dimensions of 53 x 62 x 56 A. Crystal contacts are primarily responsible for conformational differences between the two subunits which are related by a noncrystallographic 2-fold axis. The structure of the type 3 subunit can be divided into two domains separated by a short linker, a smaller alpha/beta domain (domain I, residues 1-82), and a larger alpha domain (domain II, residues 90-217). Domain I contains four beta-strands which form a central mixed beta-sheet and three alpha-helices which are arranged in a beta alpha beta alpha beta beta alpha motif. Domain II is composed of five alpha-helices. Domain I can be considered the glutathione binding domain, while domain II seems to be primarily responsible for xenobiotic substrate binding. The active site is located in a deep (19-A) cavity which is composed of three relatively mobile structural elements: the long loop (residues 33-42) of domain I, the alpha 4/alpha 5 helix-turn-helix segment, and the C-terminal tail. GSH is bound at the active site in an extended conformation at one end of the beta-sheet of domain I with its backbone facing the cavity and the sulfur pointing toward the subunit to which it is bound.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The proline iminopeptidase from Xanthomonas campestris pv. citri is a serine peptidase that catalyses the removal of N-terminal proline residues from peptides with high specificity. We have solved its three-dimensional structure by multiple isomorphous replacement and refined it to a crystallographic R-factor of 19.2% using X-ray data to 2.7 A resolution. The protein is folded into two contiguous domains. The larger domain shows the general topology of the alpha/beta hydrolase fold, with a central eight-stranded beta-sheet flanked by two helices and the 11 N-terminal residues on one side, and by four helices on the other side. The smaller domain is placed on top of the larger domain and essentially consists of six helices. The active site, located at the end of a deep pocket at the interface between both domains, includes a catalytic triad of Ser110, Asp266 and His294. Cys269, located at the bottom of the active site very close to the catalytic triad, presumably accounts for the inhibition by thiol-specific reagents. The overall topology of this iminopeptidase is very similar to that of yeast serine carboxypeptidase. The striking secondary structure similarity to human lymphocytic prolyl oligopeptidase and dipeptidyl peptidase IV makes this proline iminopeptidase structure a suitable model for the three-dimensional structure of other peptidases of this family.  相似文献   

14.
BACKGROUND: Cell walls of the starchy endosperm and young vegetative tissues of barley (Hordeum vulgare) contain high levels of (1-->3,1-->4)-beta-D-glucans. The (1-->3,1-->4)-beta-D-glucans are hydrolysed during wall degradation in germinated grain and during wall loosening in elongating coleoptiles. These key processes of plant development are mediated by several polysaccharide endohydrolases and exohydrolases. RESULTS:. The three-dimensional structure of barley beta-D-glucan exohydrolase isoenzyme ExoI has been determined by X-ray crystallography. This is the first reported structure of a family 3 glycosyl hydrolase. The enzyme is a two-domain, globular protein of 605 amino acid residues and is N-glycosylated at three sites. The first 357 residues constitute an (alpha/beta)8 TIM-barrel domain. The second domain consists of residues 374-559 arranged in a six-stranded beta sandwich, which contains a beta sheet of five parallel beta strands and one antiparallel beta strand, with three alpha helices on either side of the sheet. A glucose moiety is observed in a pocket at the interface of the two domains, where Asp285 and Glu491 are believed to be involved in catalysis. CONCLUSIONS: The pocket at the interface of the two domains is probably the active site of the enzyme. Because amino acid residues that line this active-site pocket arise from both domains, activity could be regulated through the spatial disposition of the domains. Furthermore, there are sites on the second domain that may bind carbohydrate, as suggested by previously published kinetic data indicating that, in addition to the catalytic site, the enzyme has a second binding site specific for (1-->3, 1-->4)-beta-D-glucans.  相似文献   

15.
1-Deoxy-d-xylulose-5-phosphate reductoisomerase (DXR) is the second enzyme in the non-mevalonate pathway of isoprenoid biosynthesis. The structure of the apo-form of this enzyme from Zymomonas mobilis has been solved and refined to 1.9-A resolution, and that of a binary complex with the co-substrate NADPH to 2.7-A resolution. The subunit of DXR consists of three domains. Residues 1-150 form the NADPH binding domain, which is a variant of the typical dinucleotide-binding fold. The second domain comprises a four-stranded mixed beta-sheet, with three helices flanking the sheet. Most of the putative active site residues are located on this domain. The C-terminal domain (residues 300-386) folds into a four-helix bundle. In solution and in the crystal, the enzyme forms a homo-dimer. The interface between the two monomers is formed predominantly by extension of the sheet in the second domain. The adenosine phosphate moiety of NADPH binds to the nucleotide-binding fold in the canonical way. The adenine ring interacts with the loop after beta1 and with the loops between alpha2 and beta2 and alpha5 and beta5. The nicotinamide ring is disordered in crystals of this binary complex. Comparisons to Escherichia coli DXR show that the two enzymes are very similar in structure, and that the active site architecture is highly conserved. However, there are differences in the recognition of the adenine ring of NADPH in the two enzymes.  相似文献   

16.
The HflX‐family is a widely distributed but poorly characterized family of translation factor‐related guanosine triphosphatases (GTPases) that interact with the large ribosomal subunit. This study describes the crystal structure of HflX from Sulfolobus solfataricus solved to 2.0‐Å resolution in apo‐ and GDP‐bound forms. The enzyme displays a two‐domain architecture with a novel “HflX domain” at the N‐terminus, and a classical G‐domain at the C‐terminus. The HflX domain is composed of a four‐stranded parallel β‐sheet flanked by two α‐helices on either side, and an anti‐parallel coiled coil of two long α‐helices that lead to the G‐domain. The cleft between the two domains accommodates the nucleotide binding site as well as the switch II region, which mediates interactions between the two domains. Conformational changes of the switch regions are therefore anticipated to reposition the HflX‐domain upon GTP‐binding. Slow GTPase activity has been confirmed, with an HflX domain deletion mutant exhibiting a 24‐fold enhanced turnover rate, suggesting a regulatory role for the HflX domain. The conserved positively charged surface patches of the HflX‐domain may mediate interaction with the large ribosomal subunit. The present study provides a structural basis to uncover the functional role of this GTPases family whose function is largely unknown. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

17.
The three-dimensional structure of the heme-containing fungal catalase fromPenicillium vitale (m.m. 2,80,000) has been studied by X-ray analysis at 2.0 A resolution. The molecule is tetramer, each subunit contains 670 aminoacid residues identified to construct “X-ray” primary structure. The subunit is built of three compact domains and their connections. The first domain of about 350 residues contains aβ-barrel flanked by helices, the second domain of 70 residues is formed by four helices and the third one is composed of 150 residues and is topologically similar to flavodoxin. The active site including heme is deeply buried near theβ-barrel. A comparison of the structure of catalase fromPenicillium vitale with that of beef liver catalase revealed very close structural homology of the first and the second domain, but the third domain is entirely absent in beef liver catalase. A catalase from thermophillic bacteriaThermus thermophilus (m.m. 2,10,000) has been first isolated, crystallized and studied by X-ray analysis. Crystals are cubic, space group is P213, a = 133.4 Å. The molecule is a hexamer with trigonal symmetry 32. The electron density map at 3 Å resolution made it possible to trace the polypeptide chain. The main structural motif is formed by four near parallel helices. There is no heme inThermus thermophilus catalase, the active site is between the four helices and contains two manganese ions.  相似文献   

18.
Ca(2+)-ATPase is responsible for active transport of calcium ions across the sarcoplasmic reticulum membrane. This coupling involves an ordered sequence of reversible reactions occurring alternately at the ATP site within the cytoplasmic domains, or at the calcium transport sites within the transmembrane domain. These two sites are separated by a large distance and conformational changes have long been postulated to play an important role in their coordination. To characterize the nature of these conformational changes, we have built atomic models for two reaction intermediates and postulated the mechanisms governing the large structural changes. One model is based on fitting the X-ray crystallographic structure of Ca(2+)-ATPase in the E1 state to a new 6 A structure by cryoelectron microscopy in the E2 state. This fit indicates that calcium binding induces enormous movements of all three cytoplasmic domains as well as significant changes in several transmembrane helices. We found that fluorescein isothiocyanate displaced a decavanadate molecule normally located at the intersection of the three cytoplasmic domains, but did not affect their juxtaposition; this result indicates that our model likely reflects a native E2 conformation and not an artifact of decavanadate binding. To explain the dramatic structural effect of calcium binding, we propose that M4 and M5 transmembrane helices are responsive to calcium binding and directly induce rotation of the phosphorylation domain. Furthermore, we hypothesize that both the nucleotide-binding and beta-sheet domains are highly mobile and driven by Brownian motion to elicit phosphoenzyme formation and calcium transport, respectively. If so, the reaction cycle of Ca(2+)-ATPase would have elements of a Brownian ratchet, where the chemical reactions of ATP hydrolysis are used to direct the random thermal oscillations of an innately flexible molecule.  相似文献   

19.
The structure of the Gla-domainless form of the human anticoagulant enzyme activated protein C has been solved at 2.8 A resolution. The light chain is composed of two domains: an epidermal growth factor (EGF)-like domain modified by a large insert containing an additional disulfide, followed by a typical EGF-like domain. The arrangement of the long axis of these domains describes an angle of approximately 80 degrees. Disulfide linked to the light chain is the catalytic domain, which is generally trypsin-like but contains a large insertion loop at the edge of the active site, a third helical segment, a prominent cationic patch analogous to the anion binding exosite I of thrombin and a trypsin-like Ca[II] binding site. The arrangement of loops around the active site partially restricts access to the cleft. The S2 and S4 subsites are much more polar than in factor Xa and thrombin, and the S2 site is unrestricted. While quite open and exposed, the active site contains a prominent groove, the surface of which is very polar with evidence for binding sites on the primed side, in addition to those typical of the trypsin class found on the non-primed side.  相似文献   

20.
The solution structure of the N-terminal domain of the actin-severing protein villin has been determined by multidimensional heteronuclear resonance spectroscopy. Villin is a member of a family of actin-severing proteins that regulate the organization of actin in the eukaryotic cytoskeleton. Members of this family are built from 3 or 6 homologous repeats of a structural domain of approximately 130 amino acids that is unrelated to any previously known structure. The N-terminal domain of villin (14T) contains a central beta-sheet with 4 antiparallel strands and a fifth parallel strand at one edge. This sheet is sandwiched between 2 helices on one side and a 2-stranded parallel beta-sheet with another helix on the other side. The strongly conserved sequence characteristic of the protein family corresponds to internal hydrophobic residues. Calcium titration experiments suggest that there are 2 binding sites for Ca2+, a stronger site near the N-terminal end of the longest helix, with a Kd of 1.8 +/- 0.4 mM, and a weaker site near the C-terminal end of the same helix, with a Kd of 11 +/- 2 mM. Mutational and biochemical studies of this domain in several members of the family suggest that the actin monomer binding site is near the parallel strand at the edge of the central beta-sheet.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号