首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Recombinant Escherichia coli fadR atoC(Con) mutants containing the polyhydroxyalkanoate (PHA) biosynthesis genes from Alcaligenes eutrophus are able to incorporate significant levels of 3-hydroxyvalerate (3HV) into the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)]. We have used E. coli fadR (FadR is a negative regulator of fatty acid oxidation) and E. coli atoC(Con) (AtoC is a positive regulator of fatty acid uptake) mutants to demonstrate that either one of these mutations alone can facilitate copolymer synthesis but that 3HV levels in single mutant strains are much lower than in the fadR atoC(Con) strain. E. coli atoC(Con) mutants were used alone and in conjunction with atoA and atoD mutants to determine that the function of the atoC(Con) mutation is to increase the uptake of propionate and that this uptake is mediated, at least in part, by atoD+. Similarly, E. coli fadR mutants were used alone and in conjunction with fadA, fadB, and fadL mutants to show that the effect of the fadR mutation is dependent on fadB+ and fadA+ gene products. Strains that were mutant in the fadB or fadA locus were unable to complement a PHA biosynthesis pathway that was mutant at the phaA locus (thiolase), but a strain containing a fadR mutation and which was fadA+ fadB+ was able to complement the phaA mutation and incorporated 3HV into P(3HB-co-3HV) to a level of 29 mol%.  相似文献   

3.
4.
A 13.6-kilobase (kb) Sau3AI restriction endonuclease fragment of Clostridium acetobutylicum DNA cloned into pBR322 enabled Escherichia coli ato mutants to grow on butyrate as a sole carbon source (But+). Complementation of the ato defect by the recombinant plasmid pJC6 was due to expression of the genes for phosphotransbutyrylase (PTB) and butyrate kinase (BK). Both genes were efficiently expressed in E. coli, as their products were readily detected by sodium dodecyl sulfate-polyacrylamide gel electrophoresis of whole-cell extracts. PTB was found to have a polypeptide subunit molecular weight of approximately 31,000, while that of BK was approximately 39,000. Deletion analysis and Tn5 mutagenesis of plasmid pJC7 (a But+ subclone containing a 4.4-kb BamHI fragment from the insert of pJC6) localized the PTB and BK genes within a region spanning approximately 2.9 kb. Preliminary evidence suggests that the two genes may form an operon that is transcribed as a single unit from a promoter of clostridial origin within the 4.4-kb insert of pJC7.  相似文献   

5.
6.
Antizyme, long known to be a non-competitive inhibitor of ornithine decarboxylase, is encoded by the atoC gene in Escherichia coli. The present study reveals another role for AtoC, that of a response regulator of the AtoS-AtoC two component system regulating the expression of the atoDAEB operon upon acetoacetate induction. This operon encodes enzymes involved in short-chain fatty acid catabolism in E. coli. Evidence is presented to show that AtoS is a sensor kinase that together with AtoC constitutes a two-component signal transduction system. AtoS is a membrane protein which can autophosphorylate and then transfer that phosphoryl group to AtoC. This process can also be reproduced in vitro. AtoC contains in its amino acid sequence a conserved aspartic acid (D55), which is the putative phosphorylation site, as well as an unexpected "H box" consensus sequence (SHETRTPV), common to histidine kinases, with the histidine contained therein (H73) being a second potential target for phosphorylation. Substitution of either D55 or H73 in His10-AtoC diminished but did not abrogate AtoC phosphorylation suggesting that either both residues can be phosphorylated independently or that the phosphate group can be transferred between them. However, the D55 mutation in comparison to H73 had a more pronounced effect in vivo, on the activation of atoDAEB promoter after acetoacetate induction, although it was the presence of both mutations that rendered AtoC totally unresponsive to induction. These data provide evidence that the gene products of atoS and atoC constitute a two-component signal transduction system, with some unusual properties, involved in the regulation of the atoDAEB operon.  相似文献   

7.
8.
The folylpolyglutamate synthetase-dihydrofolate synthetase gene (folC) in Escherichia coli was deleted from the bacterial chromosome and replaced by a selectable Kmr marker. The deletion strain required a complementing gene expressing folylpolyglutamate synthetase encoded on a plasmid for viability, indicating that folC is an essential gene in E. coli. The complementing folC gene was cloned into the vector pPM103 (pSC101, temperature sensitive for replication), which segregated spontaneously at 42 degrees C in the absence of selection. This complementing plasmid was replaced in the folC deletion strain by compatible pUC plasmids containing folC genes with mutations generated in vitro, producing strains which express only mutant folylpolyglutamate synthetase. Mutant folC genes expressing insufficient enzyme activity could not complement the chromosomal deletion, resulting in retention of the pPM103 plasmid. Some mutant genes expressing low levels of enzyme activity replaced the complementing plasmid, but the strains produced were auxotrophic for products of folate-dependent pathways. The folylpolyglutamate synthetase gene from Lactobacillus casei, which may lack dihydrofolate synthetase activity, replaced the complementing plasmid, but the strain was auxotrophic for all folate end products.  相似文献   

9.
10.
11.
The polysaccharide chains of enterobacterial common antigen (ECA) are comprised of the trisaccharide repeat unit Fuc4NAc-ManNAcA-GlcNAc, where Fuc4NAc is 4-acetamido-4,6-dideoxy-D-galactose, ManNAcA is N-acetyl-D-mannosaminuronic acid, and GlcNAc is N-acetyl-D-glucosamine. Individual trisaccharide repeat units are assembled as undecaprenyl-linked intermediates in a sequence of reactions that culminate in the transfer of Fuc4NAc from TDP-Fuc4NAc to ManNAcA-GlcNAc-pyrophosphorylundecaprenol (lipid II) to yield Fuc4NAc-ManNAcA-GlcNAc-pyrophosphorylundecaprenol (lipid III), the donor of trisaccharide repeat units for ECA polysaccharide chain elongation. Most of the genes known to be involved in ECA assembly are located in the wec gene cluster located at ca. 85.4 min on the Escherichia coli chromosome. The available data suggest that the structural gene for the TDP-Fuc4NAc:lipid II Fuc4NAc transferase also resides in the wec gene cluster; however, the location of this gene has not been unequivocally defined. Previous characterization of the nucleotide sequence of the wec gene cluster in the region between o416 and wecG revealed that it contained three open reading frames: o74, o204, and o450. In contrast, the results of experiments described in the current investigation revealed that it contains only two open reading frames, o359 and o450. Mutants of E. coli possessing null mutations in o359 were unable to synthesize ECA, and they accumulated lipid II. In addition, the in vitro incorporation of [(3)H]FucNAc from TDP-[(3)H]Fuc4NAc into lipid II was not observed in reaction mixtures using cell extracts obtained from these mutants as a source of enzyme. The ECA-negative phenotype of these mutants was complemented by plasmid constructs containing the wild-type o359 allele, and Fuc4NAc transferase activity was demonstrated by using cell extracts obtained from the complemented mutants. Furthermore, partially purified o359 gene product, expressed as recombinant C-terminal His-tagged protein, was able to catalyze the in vitro transfer of [(3)H]Fuc4NAc from TDP-[(3)H]Fuc4NAc to lipid II. Our data support the conclusion that o359 of the wec gene cluster of E. coli is the structural gene for the TDP-Fuc4NAc:lipid II Fuc4NAc transferase involved in the synthesis ECA trisaccharide repeat units.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
The genes ptsI and ptsH, which encode, respectively, enzyme I and Hpr, cytoplasmic proteins involved in the phosphoenolpyruvate:sugar phosphotransferase system, were cloned from Bacillus subtilis. A plasmid containing a 4.1-kilobase DNA fragment was shown to complement Escherichia coli mutations affecting the ptsH and ptsI genes. In minicells this plasmid expressed two proteins with the molecular weights expected for Hpr and enzyme I. Therefore, ptsH and ptsI are adjacent in B. subtilis, as in E. coli. In E. coli a third gene (crr), involved in glucose translocation and also in catabolite repression, is located downstream from the ptsHI operon. The 4.1-kilobase fragment from B. subtilis was shown to contain a gene that enables an E. coli crr mutant to use glucose. This gene, unlike the E. coli crr gene, was located to the left of ptsH.  相似文献   

20.
L Isaki  R Beers    H C Wu 《Journal of bacteriology》1990,172(11):6512-6517
The lsp gene encoding prolipoprotein signal peptidase (signal peptidase II) is organized into an operon consisting of ileS and three open reading frames, designated genes x, orf149, and orf316 in both Escherichia coli and Enterobacter aerogenes. A plasmid, pBROC128, containing a 5.8-kb fragment of Pseudomonas fluorescens DNA was found to confer pseudomonic acid resistance on E. coli host cells and to contain the structural gene of ileS from P. fluorescens. In addition, E. coli strains carrying pBROC128 exhibited increased globomycin resistance. This indicated that the P. fluorescens lsp gene was present on the plasmid. The nucleotide sequences of the P. fluorescens lsp gene and of its flanking regions were determined. Comparison of the nucleotide sequences of the lsp genes in E. coli and P. fluorescens revealed two highly conserved domains in this enzyme. Furthermore, the five genes which constitute an operon in E. coli and Enterobacter aerogenes were found in P. fluorescens in the same order as in the first two species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号