首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The products of the bvgAS locus coordinately regulate the expression of Bordetella virulence factors in response to environmental conditions. We have identified a phenotype in Bordetella bronchiseptica that is negatively controlled by bvg. Environmental signals which decrease (modulate) the expression of bvg-activated genes lead to flagellum production and motility in B. bronchiseptica. Wild-type (Bvg+) strains are motile and produce peritrichous flagella only in the presence of modulating signals, whereas Bvg- (delta bvgAS or delta bvgS) strains are motile in the absence of modulators. The bvgS-C3 mutation, which confers signal insensitivity and constitutive activation of positively controlled loci, eliminates the induction of motility and production of flagellar organelles. The response to environmental signals is conserved in a diverse set of clinical isolates of both B. bronchiseptica and B. avium, another motile Bordetella species; however, nicotinic acid induced motility only in B. bronchiseptica. Purification of flagellar filaments from B. bronchiseptica strains by differential centrifugation followed by CsCl equilibrium density gradient centrifugation revealed two classes of flagellins of Mr 35,000 and 40,000. A survey of clinical isolates identified only these two flagellin isotypes, and coexpression of the two forms was not detected in any strain. All B. avium strains tested expressed a 42,000-Mr flagellin. Amino acid sequence analysis of the two B. bronchiseptica flagellins revealed 100% identity in the N-terminal region and 80% identity with Salmonella typhimurium flagellin. Monoclonal antibody 15D8, which recognizes a conserved epitope in flagellins in members of the family Enterobacteriaceae, cross-reacted with flagellins from B. bronchiseptica and B. avium. Our results highlight the biphasic nature of the B. bronchiseptica bvg regulon and provide a preliminary characterization of the Bvg-regulated motility phenotype.  相似文献   

3.
4.
5.
6.
We previously showed that the Bvg virulence control system regulates biofilm formation in Bordetella bronchiseptica (Y. Irie, S. Mattoo, and M. H. Yuk, J. Bacteriol. 186:5692-5698, 2004). Analyses of the extracellular components of B. bronchiseptica biofilm matrix revealed that the major sugar component in the matrix was xylose, and linkage analysis indicated a majority of it to be in a 4-linked polymeric form. The production of xylose was independent of Bvg regulation but instead was dependent on bacterial growth phase. In addition, N-acetyl-glucosamine in the matrix was found to be important for the initial development of the biofilm. These results suggest that B. bronchiseptica biofilm formation is growth phase dependent in addition to being regulated by the Bvg virulence system.  相似文献   

7.
A previous study found that alcaligin siderophore production by Bordetella bronchiseptica strain RB50 is Bvg repressed. In contrast, we report that alcaligin production by RB50 does not require Bvg phenotypic phase modulation and that isogenic Bvg(Con) and Bvg(-) phase-locked mutants both produce alcaligin in response to iron starvation.  相似文献   

8.
Irie Y  Mattoo S  Yuk MH 《Journal of bacteriology》2004,186(17):5692-5698
Bordetella species utilize the BvgAS (Bordetella virulence gene) two-component signal transduction system to sense the environment and regulate gene expression among at least three phases: a virulent Bvg+ phase, a nonvirulent Bvg- phase, and an intermediate Bvgi phase. Genes expressed in the Bvg+ phase encode known virulence factors, including adhesins such as filamentous hemagglutinin (FHA) and fimbriae, as well as toxins such as the bifunctional adenylate cyclase/hemolysin (ACY). Previous studies showed that in the Bvgi phase, FHA and fimbriae continue to be expressed, but ACY expression is significantly downregulated. In this report, we determine that Bordetella bronchiseptica can form biofilms in vitro and that the generation of biofilm is maximal in the Bvgi phase. We show that FHA is required for maximal biofilm formation and that fimbriae may also contribute to this phenotype. However, expression of ACY inhibits biofilm formation, most likely via interactions with FHA. Therefore, the coordinated regulation of adhesins and ACY expression leads to maximal biofilm formation in the Bvgi phase in B. bronchiseptica.  相似文献   

9.
Bordetella bronchiseptica chronically infects a wide range of mammals, and resides primarily in the nasal cavity of the infected host. Multiple virulence factors of Bordetella species have been studied in the context of lower respiratory tract infections, but relatively less is known about the bacterial life cycle in the nasal cavity. Evidences were discovered for Bvg intermediate (Bvg(i)) phase expression in vivo and that the major adhesin filamentous hemagglutinin plays a major role in the colonization of B. bronchiseptica in the unciliated olfactory epithelia of the nasal cavity.  相似文献   

10.
The expression of many virulence factors of Bordetella bronchiseptica is regulated by the bvgAS locus and reduced in response to environmental signals called modulators. Virulent strains can alternate between virulent (Bvg(+)), intermediate (Bvg(i)), and modulated (Bvg(+)mod) phenotypes. Potential vaccine antigens can be expressed by Bvg1 strains grown only in the absence of modulators. In the present study we evaluated filamentous hemagglutinin (FHA) and outer membrane protein (OMP) expression in Bvg(+) B. bronchiseptica strains grown in chemically undefined media: nutrient agar (NA), tryptic soy agar (TSA), tryptose phosphate broth (TPB), and brain-heart infusion (BHI). Our results suggest that TSA and TPB usually induce semimodulation, since Bvg(+) strains cultured in these media retained the expression of FHA and virulence-associated OMPs in the 30 kDa region, but failed to express other virulence markers such as OMPs in the regions of 90 and 200 kDa, though they expressed flagellin (avirulence marker). On the other hand, NA and BHI usually induce modulation. Thus the assayed chemically undefined media should not be used in vaccine production. Semimodulation induced by TSA and TPB can be accurately detected by SDS-PAGE Sarkosyl-insoluble OMP-enriched profiles. The reduction or absence of OMPs in the regions of 90 and 200 kDa is the most sensitive marker, and in some cases the presence of flagellin in intermediate profiles is another trait of the Bvg(i) phenotypes. Therefore these markers could be useful for selecting media for vaccine production. We also characterized the phenotype of Bvg(+) strains grown in Stainer-Scholte broth, an expensive medium, with and without glutathione, and we have detected no differences; this is the first attempt to reduce the cost of a Bordetella growth medium for veterinary vaccine production.  相似文献   

11.
The Bordetella BvgAS signal-transduction system has traditionally been viewed as mediating a transition between two distinct phenotypic phases: the Bvg+ phase, characterized by the expression of adhesins and toxins, and the Bvg phase, characterized by motility in Bordetella bronchiseptica and by the expression of vrg loci in Bordetella pertussis . In B. bronchiseptica , the Bvg+ phase is necessary and sufficient for respiratory tract colonization whereas the Bvg phase is required for growth under nutrient-limiting conditions. This report describes the characterization of a mutant that is locked in a Bvg-intermediate (Bvgi) phase. The mutation conferring this phenotype, designated bvgS -I1, results in a threonine-to-methionine substitution near the primary site of phosphorylation in BvgS. Compared to its Bvg+-phase-locked parent, the Bvgi mutant displays increased resistance to nutrient limitation and reduced virulence. Molecular analyses indicate that the mutant has lost the ability to express a subset of Bvg+-phase factors and has gained the ability to express factors unique to the Bvgi phase. Although identified by mutation, this work indicates that the Bvgi phase is expressed by wild-type B. bronchiseptica in response to certain (semi-modulating) environmental conditions. The identification of Bvgi-specific antigens suggests the existence of a new class of Bvg-regulated genes. We hypothesize that BvgAS is capable of mediating the expression of a spectrum of phenotypic phases in response to the various environments encountered as Bordetella travels within and between mammalian hosts.  相似文献   

12.
To successfully colonize their mammalian hosts, many bacteria produce multiple virulence factors that play essential roles in disease processes and pathogenesis. Some of these molecules are adhesins that allow efficient attachment to host cells, a prerequisite for successful host colonization. Bordetella spp. express a number of proteins which either play a direct role in attachment to the respiratory epithelia or exhibit similarity to known bacterial adhesins. One such recently identified protein is BipA. Despite the similarity of BipA to intimins and invasins, deletion of this protein from B. bronchiseptica did not result in any significant defect in respiratory tract colonization. In this study, we identified an open reading frame in B. bronchiseptica, designated bcfA (encoding BcfA [bordetella colonization factor A]), that is similar to bipA. In contrast to the maximal expression of bipA in the Bvg intermediate (Bvg(i)) phase, bcfA is expressed at high levels in both the Bvg(+) and Bvg(i) phases. We show here that BvgA and phosphorylated BvgA bind differentially to the bcfA promoter region. Utilizing immunoblot assays, we found that BcfA is localized to the outer membrane and that it is expressed during animal infection. While deletion of either bipA or bcfA did not significantly affect respiratory tract colonization, concomitant deletion of both genes resulted in a defect in colonization of the rat trachea. Our results indicate that the two paralogous proteins have a combinatorial role in mediating efficient respiratory tract colonization.  相似文献   

13.
Regulated covalent modifications of lipid A are implicated in virulence of pathogenic Gram-negative bacteria. The Salmonella typhimurium PhoP/PhoQ-activated gene pagP is required both for biosynthesis of hepta-acylated lipid A species containing palmitate and for resistance to cationic anti-microbial peptides. Palmitoylated lipid A can also function as an endotoxin antagonist. We now show that pagP and its Escherichia coli homolog (crcA) encode an unusual enzyme of lipid A biosynthesis localized in the outer membrane. PagP transfers a palmitate residue from the sn-1 position of a phospholipid to the N-linked hydroxymyristate on the proximal unit of lipid A (or its precursors). PagP bearing a C-terminal His(6)-tag accumulated in outer membranes during overproduction, was purified with full activity and was shown by cross-linking to behave as a homodimer. PagP is the first example of an outer membrane enzyme involved in lipid A biosynthesis. Additional pagP homologs are encoded in the genomes of YERSINIA: and BORDETELLA: species. PagP may provide an adaptive response toward both Mg(2+) limitation and host innate immune defenses.  相似文献   

14.
15.
16.
The ability of nonmodulated Bvg+ phase cultures, temperature modulated Bvg- phase cultures, and a Bvg- phase-locked mutant of Bordetella bronchiseptica to colonize the rat upper respiratory tract was investigated. Initially, greater numbers of the temperature modulated Bvg- phase bacteria adhered to the nasal cavity of the rats. The temperature modulated Bvg- phase bacteria appeared to be quickly cleared to levels lower than the Bvg+ phase bacteria by 4 h after inoculation and stayed lower until 48 h after inoculation when colonization levels were equal to the Bvg+ phase bacteria. The level of colonization with the Bvg- phase-locked mutant of B. bronchiseptica was lower than both the nonmodulated Bvg+ phase and temperature modulated Bvg- phase cultures and declined over time during the experiment. These findings suggest that there may be increased adherence from an environmental phase to ensure bacteria survive initial clearance mechanisms until the switch to the Bvg+ phase occurs.  相似文献   

17.
AIMS: The present study shows that Congo red binding and urease activity assays are useful for selection of virulent (Bvg+) Bordetella bronchiseptica cultures. METHODS AND RESULTS: Congo red binding and urease activity of Bvg+ B. bronchiseptica cultures in different liquid media were compared with the expression of virulence markers such as filamentous haemagglutinin and some outer membrane proteins (OMP). The correlation with the reference virulence markers allowed the establishment of cut-off values for the proposed markers to assure the virulent phenotype (> or = 26 nmol ml-1 of CR and < or = 2.6 U). Using both assays, modulated cultures with avirulent phenotype (Stainer-Scholte broth, with MgSO4 20 mmol l-1 and brain heart infusion broth) and semi-modulated cultures with intermediate phenotypes (tryptose phosphate broth and 83% Stainer-Scholte with MgSO4 5 mmol l-1 cultures) could be distinguished. CONCLUSION: CR binding assay and urease activity are specific and sensitive enough to detect intermediate phenotypes that could only be detected by subtle changes in OMP profiles. SIGNIFICANCE AND IMPACT OF THE STUDY: The production of effective veterinary vaccines is hampered by reversible B. bronchiseptica antigenic modulation. The proposed assays are technically suitable for selection of virulent cultures to optimize vaccine production.  相似文献   

18.
Helicobacter pylori produces a unique surface lipopolysaccharide (LPS) characterized by strikingly low endotoxicity that is thought to aid the organism in evading the host immune response. This reduction in endotoxicity is predicted to arise from the modification of the Kdo–lipid A domain of Helicobacter LPS by a series of membrane bound enzymes including a Kdo (3‐deoxy‐d ‐manno‐octulosonic acid) hydrolase responsible for the modification of the core oligosaccharide. Here, we report that Kdo hydrolase activity is dependent upon a putative two‐protein complex composed of proteins Hp0579 and Hp0580. Inactivation of Kdo hydrolase activity produced two phenotypes associated with cationic antimicrobial peptide resistance and O‐antigen expression. Kdo hydrolase mutants were highly sensitive to polymyxin B, which could be attributed to a defect in downstream modifications to the lipid A 4′‐phosphate group. Production of a fully extended O‐antigen was also diminished in a Kdo hydrolase mutant, with a consequent increase in core–lipid A. Finally, expression of O‐antigen Lewis X and Y epitopes, known to mimic glycoconjugates found on human tissues, was also affected. Taken together, we have demonstrated that loss of Kdo hydrolase activity affects all three domains of H. pylori LPS, thus highlighting its role in the maintenance of the bacterial surface.  相似文献   

19.
Lipopolysaccharides (LPS) isolated from Bordetella pertussis, B. parapertussis and B. bronchiseptica were analysed for their chemical composition, molecular heterogeneity and immunological properties. All the LPS preparations contained heptose, 3-deoxy-D-manno-2-octulosonic acid, glucosamine, uronic acid, phosphate and fatty acids. The fatty acids C14:0, C16:0 and beta OHC14:0 were common to all the LPS preparations. LPS from B. pertussis strains additionally contained isoC16:0, those from B. parapertussis contained isoC14:0 and isoC16:0, and those from B. bronchiseptica contained C16:1. By SDS-PAGE, LPS from B. pertussis had two bands of low molecular mass, and the LPS from B. parapertussis and B. bronchiseptica showed low molecular mass bands together with a ladder arrangement of high molecular mass bands. Immunodiffusion, quantitative agglutination and ELISA demonstrated that the LPS from B. pertussis strains reacted with antisera prepared against whole cells of B. pertussis and B. bronchiseptica; LPS from B. parapertussis reacted with antisera to B. parapertussis and B. bronchiseptica, and LPS from B. bronchiseptica reacted with anti-whole cell serum raised against any of the three species. From these results, it is concluded that LPS from B. bronchiseptica has structures in common with LPS from B. pertussis and B. parapertussis, while the LPS from B. pertussis and B. parapertussis are serologically entirely different from each other.  相似文献   

20.
To investigate the mechanism by which the Bordetella BvgAS phosphorelay controls expression of at least three distinct phenotypic phases, we isolated and characterized two B. pertussis mutants that were able to express Bvg- and Bvg(i) phase phenotypes but not Bvg+ phase phenotypes. In both cases, the mutant phenotype was due to a single nucleotide change in bvgA resulting in a single amino acid substitution in BvgA. In vitro phosphorylation assays showed that BvgA containing the T194M substitution was significantly impaired in its ability to use either BvgS or acetyl phosphate as a substrate for phosphorylation. Binding studies indicated that this mutant protein was able to bind an oligonucleotide containing a high-affinity BvgA binding site in a manner similar to wild-type BvgA, but was defective for binding the fhaB promoter in the absence of RNA polymerase (RNAP). By contrast, BvgA containing the R152H substitution had wild-type phosphorylation properties but was severely defective in its ability to bind either the high-affinity BvgA binding site-containing oligonucleotide or the fhaB promoter by itself. Both mutant BvgA proteins were able to bind the fhaB promoter in the presence of RNAP however, demonstrating the profound effect that RNAP has on stabilizing the ternary complexes between promoter DNA, BvgA and RNAP. Our results are consistent with the hypothesis that BvgAS controls expression of multiple phenotypic phases by adjusting the intracellular concentration of BvgA-P and they demonstrate the additive nature of BvgA binding site affinity and protein-protein interactions at different Bvg-regulated promoters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号