首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A limit dextrinase has been purified 2,700-fold from ungerminated peas by affinity chromatography. The enzyme hydrolyses (1→6)-α-D-glucosidic linkages in alpha-limit dextrins containing at least one α-(1→4)-linked D-glucose residue on either side of the susceptible linkage. The limit dextrinase also hydrolyses the polysaccharides amylopectin, amylopectin beta-limit dextrin, glycogen beta-limit dextrin, and pullulan, but has no activity towards glycogen.  相似文献   

2.
Neurospora crassa branching enzyme [EC 2.4.1.18] acted on potato amylopectin or amylose to convert them to highly branched glycogen-type molecules which consisted of unit chains of six glucose units. The enzyme also acted on the amylopectin beta-limit dextrin, indicating that the enzyme acted on internal glucose chains as well as outer chains. By the combined action of N. crassa glycogen synthase [EC 2.4.1.11] and the branching enzyme, a glycogen-type molecule was formed from UDP-glucose. In the presence of primer glycogen, the glucose transfer reaction was accelerated by the addition of branching enzyme. On the other hand, the glucose transfer reaction by glycogen synthase did not occur without primers. When the branching enzyme was added, the glucose transfer occurred after a short time lag. This recovery of the glucose transfer reaction did not occur upon addition of the inactivated branching enzyme. The structure of the product formed by the combined action of the two enzymes was different from that of the intact N. crassa glycogen with respect to the distribution patterns of the unit chains.  相似文献   

3.
The rate of hydrolysis of amylopectin by three different limit dextrinase preparations is only about 15-23% of that of amylopectin beta-limit dextrin under similar conditions. On dilution of the enzymes there was no change in specificity. The factors controlling the specificity of the enzyme and the possible significance in vivo of the results are discussed.  相似文献   

4.
Summary Thermoactinomyces thalpophilus No. 15 produced an extracellular pullulanase in an aerobic fermentation with soluble starch, salts, and complex nitrogen sources. Acetone fractionation, ion-exchange chromatography, and gel filtration purified the enzyme from cell-free broth 16-fold to an electrophoretically homogeneous state (specific activity, 1352 U/mg protein; yield, 4%). The purified enzyme (estimated MW 79 000) was optimally active at pH 7.0 and 70°C and retained 90% relative activity at 80°C (30 min) in the absence of substrate. The enzyme was activated by Co2+, inhibited by Hg2+, and exhibited enhanced stability in the presence of Ca2+. The enzyme hydrolyzed pullulan (K m 0.32%, w/v) forming maltotriose, and hydrolyzed amylopectin (K m 0.36%, w/v), amylopectin beta-limit dextrin (K m 0.45%, w/v) and glycogen beta-limit dextrin (K m 1.11%, w/v) forming maltotriose and maltose.  相似文献   

5.
Starch isolated from mature Ginkgo biloba seeds and commercial normal maize starches were subjected to α-amylolysis and acid hydrolysis. Ginkgo starch was more resistant to pancreatic α-amylase hydrolysis than the normal maize starch. The chain length distribution of debranched amylopectin of the starches was analyzed by using high performance anion-exchange chromatography equipped with an amyloglucosidase reactor and a pulsed amperometric detector. The chain length distribution of ginkgo amylopectin showed higher amounts of both short and long chains compared to maize starch. Naegeli dextrins of the starches prepared by extensive acid hydrolysis over 12 days demonstrated that ginkgo starch was more susceptible than normal maize to acid hydrolysis. Ginkgo dextrins also demonstrate a lower concentration of singly branched chains than maize dextrins, and unlike maize dextrin, debranched ginkgo shows no multiple branched chains. The ginkgo starch displayed a C-type X-ray diffraction pattern, compared to an A-type pattern for maize. Ginkgo starch and maize starch contained 24.0 and 17.6% absolute amylose contents, respectively.  相似文献   

6.
The reversible thermal transition of soluble branched starch chains prepared from slightly acid-treated potato starch granules (ATS) was investigated. Potato starch was immersed in 15% sulfuric acid to obtain ATS with a 1% hydrolysis rate. About half of the molecules of ATS, which spontaneously formed large aggregates with a mass of a few million daltons in aqueous solution, was fractionated and soluble branched starch chains with a relative molecular weight (Mr) of 8.91 x 10(4) were obtained. Structural analysis indicated that the soluble branched starch chains consisted of three unit chains with Mr 7,900 and 21 unit chains with Mr 2,700. DSC and FT-IR measurements showed that the soluble branched starch chains underwent a reversible thermal transition, which is considered to be a helix-coil transition, during heating and cooling, but a debranched sample and beta-limit dextrins showed substantially different thermal behavior, indicating the contribution of the ordered structure of the branched chains.  相似文献   

7.
Granular potato starch and amylopectin potato starch were methylated to molar substitutions (MS) up to 0.29. Extensive alpha-amylase digestion gave mixtures of partially methylated oligomers. Precipitation of larger fragments by methanol yielded mainly alpha-limit dextrins (84-99%). Methanol precipitates were extensively digested with beta-amylase yielding alpha,beta-limit dextrins. The average substitution level of branched glucose residues in the dextrins thus obtained was determined after per deuteriomethylation by using FAB mass spectrometry, and compared with that of the linearly linked glucose residues. The present work demonstrates that methylation does not show any preference for substitution at either branched or linearly linked glucose residues, taking into account the inherently lower amount of substitution sites at branched residues. The results corroborate earlier studies wherein it was found that substituents in branched regions are distributed almost randomly. In addition, the data enable the determination of the average degree of branching of partially methylated dextrins.  相似文献   

8.
Maize and potato amylopectin (57 and 64%, respectively) were recovered as non-cyclic products from 4-h digests of the starches with cyclodextrin glycosyltransferase {(1→4)-α-d-glucan:[(1→4)-α-d-glucopyranosyl]transferase (cyclising), EC 2.4.1.19} from Klebsiella pneumoniae M 5 al. Besides smaller saccharides, highly branched fragments of different sizes (average d.p. 40–140) were obtained by fractionation. The extents of beta-amylolysis varied between 24 and 37%, indicating that the clusters were not equally susceptible to attack by cyclodextrin glycosyltransferase. The fragments of potato amylopectin still contained larger amounts of material of high molecular weight. Accordingly, part of the longer B-chains of the basic structure were protected from the enzymic attack, presumably because of interchain branches. By debranching with pullulanase, it was evident that the beta-limit dextrins of the fragments of potato amylopectin were composed of longer B-chains (average chainlength 17.8) than those of maize amylopectin (average chain-length 14.1). The A/B-chain ratios, which were calculated from h.p.l.c. data for the debranched beta-limit dextrins, were 1.22 (maize) and 1.06 (potato). Some structural differences between potato and maize amylopectin are discussed.  相似文献   

9.
Pullulanase (EC 3.2.1.41) in non-germinating seeds was compared with that in germinating seeds. Moreover, pullulanase from the endosperm of rice (Oryza sativa L., cv. Hinohikari) seeds was isolated and its properties investigated. The pI value of pullulanase from seeds after 8 days of germination was almost equal to that from non-germinating seeds, which shows that these two enzymes are the same protein. Therefore, the same pullulanase may play roles in both starch synthesis during ripening and starch degradation during germination in rice seeds. The enzyme was isolated by a procedure that included ammonium sulfate fractionation, DEAE-cellulofine column chromatography, preparative isoelectric focusing, and preparative disc gel electrophoresis. The enzyme was homogeneous by SDS/PAGE. The molecular weight of the enzyme was estimated to be 100 000 based on its mobility on SDS/PAGE and 105 000 based on gel filtration with TSKgel super SW 3000, which showed that it was composed of a single unit. The isoelectric point of the enzyme was 4.7. The enzyme was strongly inhibited by beta-cyclodextrin. The enzyme was not activated by thiol reagents such as dithiothreitol, 2-mercaptoethanol or glutathione. The enzyme most preferably hydrolyzed pullulan and liberated only maltotriose. The pullulan hydrolysis was strongly inhibited by the substrate at a concentration higher than 0.1%. The degree of inhibition increased with an increase in the concentration of pullulan. However, the enzyme hydrolyzed amylopectin, soluble starch and beta-limit dextrin more rapidly as their concentrations increased. The enzyme exhibited alpha-glucosyltransfer activity and produced an alpha-1,6-linked compound of two maltotriose molecules from pullulan.  相似文献   

10.
Starch debranching enzymes (DBE) are required for mobilization of carbohydrate reserves and for the normal structural organization of storage glucan polymers. Two isoforms, the pullulanase-type DBEs and the isoamylase-type DBEs, are both highly conserved in plants. To address DBE functions in starch assembly and breakdown, this study characterized the biochemical activity of ZPU1, a pullulanase-type DBE that is the product of the maize Zpu1 gene. Assays showed directly that recombinant ZPU1 (ZPU1r) expressed in Escherichia coli functions as a pullulanase-type enzyme, and 1H-NMR spectroscopy demonstrated that ZPU1r specifically hydrolyzes alpha(1-->6) branch linkages. Preferred substrates for ZPU1r hydrolytic activity were determined, as were pH, temperature, and thermal stability optima. Kinetic properties of ZPU1r with respect to two substrates, beta-limit dextrin and pullulan, were determined. ZPU1 activity was increased by incubation with thioredoxin h, and native activity was decreased in mutants that accumulate soluble sugars, suggesting potential regulatory mechanisms.  相似文献   

11.
The angular dependence of scattered light from amylopectin and its β-limit dextrin, the mean square radius of gyration and the molecular weights Mw and Mn have been calculated on the basis of the cascade branching theory for the homogeneously branched model by Meyer &; Bernfeld (1940) (Model I) and for the two heterogeneously branched structures suggested by French (1972) (Model II) and by Robin et al. (1974, 1975) (Model III). The calculations take into account the particularities of topology in branched molecules and the experimentally determined ratio of the number of A- and B-chains, A/B = 1. Furthermore, an average branching density of 4% and an interconnecting chain length of ovbar|ni2 = 22, found by gel permeation chromatography (GPC) after debranching, were used. The constraints lead to the conclusion that amylopectin is heterogeneously branched. Densely branched clusters containing 3·22 branching units are interconnected by longer chains of 22 units in length. Comparison of the calculated angular dependence of light scattering with measurements from a maize amylopectin β-limit dextrin in 1 n NaOH solution gives strong evidence for a modified Robin-Mercier model. The modification consists of the conclusion that the interconnecting chains are preferentially B-chains, such that these chains carry on the average 1·4 clusters, while Robin and Mercier assume exactly 2 clusters. Our result is in agreement with the distribution of chain length found after debranching the amylopectin β-limit dextrin.  相似文献   

12.
Multiple forms of ADP-glucose-alpha-1,4-glucan alpha-4-glucosyltransferase were obtained from spinach leaves by gradient elution from a DEAE-cellulose column. In the presence of high concentrations of some salts and bovine serum albumin, unprimed activity was found in one (transglucosylase III) of the four fractions eluted from the column. In addition to having unprimed activity, transglucosylase III had a lower K(m) for ADP-glucose, a much higher K(m) for oyster glycogen, greater heat sensitivity and lower affinity for maltose, maltotriose and amylopectin beta-limit dextrin than fractions I, II and IV. In addition, the kinetics at low concentrations of amylose, amylopectin and rabbit liver glycogen were non-linear for transglucosylase III. The properties of transglucosylases I, II and IV were generally similar to each other. Rates of the unprimed reaction at physiological concentrations of ADP-glucose were greater than those found for the primed reaction of fraction III. The product formed by the unprimed reaction was a glucan containing principally alpha-1,4 linkages with some alpha-1,6 linkages. The primer, maltose, at a concentration of 0.5m inhibited the synthesis of the unprimed product.  相似文献   

13.
《Carbohydrate research》1987,162(1):33-40
The size and shape of β-limit dextrin have been investigated by using pulsed, field-gradient nuclear magnetic resonance and analytical ultracentrifugation. In addition, the β-limit dextrin has been compared with the amylopectin from which it was derived by enzymic hydrolysis. When measuring size and shape, dimethyl sulfoxide was used as the solvent, in order to avoid problems of polymer agggregation. The results suggest that β-limit dextrin is an oblate ellipsoid with an axial ratio of ∼5:1, and the corresponding amylopectin molecule is even flatter. This indicates that the linear segments beyond the final branch-points of amylopectin lie in the plane of its branched core. The study also demonstrated that the density of packing of polymer chains in this branched core is much greater than at the periphery of amylopectin, and that the latter region is the location of the great majority of the nonreducing chains cleaved by beta amylase. Furthermore, the different sized molecules in amylopectin samples appear to undergo the same degree of degradation by this enzyme.  相似文献   

14.
Saccharogenic and dextrinogenic amylase fractions were prepared from Black-koji amylase system and their actions investigated with a number of different substrates.

It was found that saccharogenic amylase fraction completely hydrolyzes glutinous rice starch and glycogen to glucose, without leaving any limit dextrin. On the other hand, this enzyme fraction converts potato starch to an extent of about 90% theoretical glucose, the remainder being left as limit dextrin, which is colored purple by iodine. The complete hydrolysis of the branched substrates except potato starch shows that the saccharogenic amylase fraction is capable of hydrolyzing the l,6-α-d-glucosidic linkage besides the 1,4-linkage, while the branched fraction of potato starch may contain some sort of anomaly to the enzyme. Dextrinogenic amylase fraction hydrolyzes starch and glycogen just as malt α-amylase.  相似文献   

15.
1. A pullulanase has been separated from cell extracts of Streptococcus mitis. The enzyme was freed from transglucosylase by fractionation with ammonium sulphate. 2. Pullulanase was produced in the absence of inducers, and addition of glucose or maltose to the broth did not increase the yield of enzyme. 3. The pullulanase acted rapidly on alpha-(1-->6)-bonds in substrates having the structure alpha-maltodextrinyl-(1-->6)-maltodextrin, but had no action on isomaltose, 6-alpha-glucosylmaltodextrins or 6-alpha-maltodextrinylglucoses. 4. 6-alpha-Maltotriosylmaltodextrins were hydrolysed over 10 times faster than 6-alpha-maltosylmaltodextrins. 5. The branch linkages of amylopectin phosphorylase limit dextrin, glycogen phosphorylase limit dextrin and glycogen beta-amylase limit dextrin were hydrolysed. The action of pullulanase on amylopectin and glycogen was accompanied by a rise in the iodine stain of 50% and 30% respectively. 6. A reversal of pullulanase action occurred on incubation with high concentrations of maltotriose. Condensation of maltosyl units to form a branched tetrasaccharide occurred less readily. 7. S. mitis pullulanase was rapidly inactivated at temperatures higher than 40 degrees , and the enzyme did not recover activity on storage at room temperature.  相似文献   

16.
A branching enzyme was extracted from the mycelia of Neurospora crassa and was purified to electrophoretic homogeneity by procedures including DEAE-Sephacel column chromatography, 6-aminohexyl-Sepharose 4B column chromatography and gel filtration on Toyopearl HW-55S. The final yield of the branching enzyme activity was 15.1%, and the final purified enzyme preparation showed a specific activity of 702 units per mg of protein. The molecular weight of this enzyme was estimated to be 80,000 by electrophoresis in sodium dodecyl sulfate-polyacrylamide gel. The amino acid composition and the carbohydrate content of this enzyme were analyzed. The isoelectric point of this enzyme determined by polyacrylamide gel isoelectrofocusing was 5.6. The branching activity of the enzyme was confirmed by its action on amylopectin as well as by the combined action of this enzyme and N. crassa glycogen synthase. The action of this enzyme on amylopectin decreased the wavelength of the absorption maximum of the glucan-iodine complex, and increased the amount of the short unit chains of the debranched product. The product obtained by the combined action yielded beta-limit dextrin upon hydrolysis with beta-amylase. No multiplicity was found for the branching activity either by chromatography or by electrophoresis.  相似文献   

17.
Maltosyl-α-cyclodextrin (6-α-maltosylcyclomaltohexaose, M-CD) was prepared from maltose and α-cyclodextrin by the reverse action of Bacillus pullulanase, and the action of α-amylases on this dextrin was examined. Among α-amylases tested, Thermoactinomyces vulgaris α-amylase (TVA) and Taka-amylase A (TAA) were found to attack the M-CD. Their action pattern on M-CD was studied. These α-amylases cleaved, first the cyclodextrin ring of M-CD, and the branched octasaccharides formed were immediately degraded to form glucose, branched tetraose, or pentaose, though the action pattern was different for TVA and TAA. In addition, TAA also split M-CD into glucose and glucosyl-α-cyclodextrin. Fission products at various stages of the reaction were separated and analyzed by paper chromatography and high performance liquid chromatography, their structures were analyzed, and the degradation pattern of M-CD was found.  相似文献   

18.
The protein anabolic effect of branched chain amino acids was studied in isolated quarter diaphragms of rats. Protein synthesis was estimated by measuring tyrosine incorporation into muscle proteins in vitro. Tyrosine release during incubation with cycloheximide served as an index of protein degradation. In muscles from normal rats the addition of 0.5 mM leucine stimulated protein synthesis 36--38% (P less than 0.01), while equimolar isoleucine or valine, singly or in combination were ineffective. The three branched chain amino acids together stimulated no more than leucine alone. The product of leucine transamination, alpha-keto-isocaproate, did not stmino norborane-2-carboxylic acid (a leucine analogue) were ineffective. Leucine and isoleucine stimulated protein synthesis in muscles from diabetic rats.Leucine, isoleucine, valine and the norbornane amino acid but not alpha-ketoisocaproate or beta-hydroxybutyrate decreased the concentration of free tyrosine in tissues during incubation with cycloheximide; tyrosine release into the medium did not decrease significantly. Leucine caused a small decrease in total tyrosine release, (measured as the sum of free tyrosine in tissues and media), suggesting inhibition of protein degradation. The data suggest that leucine may be rate limiting for protein synthesis in muscles. The branched chain amino acids may exert a restraining effect on muscle protein catabolism during prolonged fasting and diabetes.  相似文献   

19.
D-[14C]glucose was incorporated into starch when 12 varieties of starch granules were incubated with [14C]sucrose. Digestion of the 14C-labeled starches with porcine pancreatic alpha amylase showed that a high percentage (16.1-84.1%) of the synthesized starch gave a relatively high molecular weight alpha-limit dextrin. Hydrolysis of the 12 varieties of starch granules by alpha amylase, without sucrose treatment, also gave an alpha-limit dextrin, ranging in amounts from 0.51% (w/w) for amylomaize-7 starch to 8.47% (w/w) for rice starch. These alpha-limit dextrins had relatively high molecular weights, 2.47 kDa for amylomaize-7 starch to 5.75 kDa for waxy maize starch, and a high degree of alpha-(1-->6) branching, ranging from 15.6% for rice starch to 41.1% for shoti starch. ADPGlc and UDPGlc did not synthesize a significant amount (1-2%) of the branched component, suggesting that sucrose is the probable substrate for the in vivo synthesis of the component and that sucrose is not first converted into a nucleotide-glucose diphosphate intermediate.  相似文献   

20.
The molecular structure of amylopectin and its varphi,beta-limit dextrins from starch of 13 amaranth cultivars was determined by HPAEC-PAD after debranching. Chain length profiles of amylopectins showed bimodal distributions. The molar-based ratios of the average chain lengths of amylopectins (CLap) ranged from 17.41 to 18.22. The molar-based average chain lengths (CLld) and average B-chain lengths (BCLld) of varphi,beta-limit dextrins varied from 7.68 to 8.05, and from 14.10 to 14.73, respectively. Correlation analysis indicated that most structural parameters were positively correlated with thermal properties with few exceptions, whereas the content of fraction fa' ("'" stands for molar-based chain length ratio) was negatively correlated with the thermal properties. Pasting properties of cold paste viscosity (CPV) and setback were also correlated with amylopectin structural parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号