首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Seven novel KIT mutations in horses with white coat colour phenotypes   总被引:2,自引:0,他引:2  
White coat colour in horses is inherited as a monogenic autosomal dominant trait showing a variable expression of coat depigmentation. Mutations in the KIT gene have previously been shown to cause white coat colour phenotypes in pigs, mice and humans. We recently also demonstrated that four independent mutations in the equine KIT gene are responsible for the dominant white coat colour phenotype in various horse breeds. We have now analysed additional horse families segregating for white coat colour phenotypes and report seven new KIT mutations in independent Thoroughbred, Icelandic Horse, German Holstein, Quarter Horse and South German Draft Horse families. In four of the seven families, only one single white horse, presumably representing the founder for each of the four respective mutations, was available for genotyping. The newly reported mutations comprise two frameshift mutations (c.1126_1129delGAAC; c.2193delG), two missense mutations (c.856G>A; c.1789G>A) and three splice site mutations (c.338-1G>C; c.2222-1G>A; c.2684+1G>A). White phenotypes in horses show a remarkable allelic heterogeneity. In fact, a higher number of alleles are molecularly characterized at the equine KIT gene than for any other known gene in livestock species.  相似文献   

2.
3.
4.
Kang HJ  Koh KH  Yang E  You KT  Kim HJ  Paik YK  Kim H 《Proteomics》2006,6(4):1151-1157
Most gastrointestinal stromal tumors (GIST) have activating mutations in either KIT or PDGFRA. However, a small subset of GIST lacks either mutation. To investigate the molecular characteristics of GIST according to mutation type, protein expression profiles in 12 GIST (2 cases with PDGFRA mutations, 8 cases with KIT mutations and 2 cases lacking either mutation) were analyzed using 2-DE and MALDI-TOF-MS. Comparative analysis of the respective spot patterns using 2-DE showed that 15 proteins were differently expressed according to the mutation status. Expression levels of septin and heat shock protein (HSP) 27 were increased in GIST with KIT mutations and annexin V was overexpressed in GIST lacking either mutation. Among the 15 proteins, overexpression of 5 proteins [annexin V, high mobility group protein 1 (HMGB1), C13orf2, glutamate dehydrogenase 1 and fibrinogen beta chain] and decreased expression of RoXaN correlated with a higher tumor grade. These findings suggest that differential protein expression can be used as a diagnostic biomarker. Moreover, it may play a role in the development and progression of GIST according to activating mutation type, as these proteins have been shown to be involved in tumor metastasis, apoptosis and immune response.  相似文献   

5.
The aim of this study was to determine the minimal set of genetic alterations required for the development of a very low risk clinically symptomatic gastro-intestinal stromal tumour within the stomach wall. We studied the genome of a very low-risk gastric gastro-intestinal stromal tumour by whole-genome sequencing, comparative genomic hybridisation and methylation profiling. The studied tumour harboured two typical genomic lesions: loss of the long arm of chromosome 14 and an activating mutation in exon 11 of KIT. Besides these genetic lesions, only two point mutations that may affect tumour progression were identified: A frame-shift deletion in RNF146 and a missense mutation in a zinc finger of ZNF407. Whilst the frameshift deletion in RNF146 seemed to be restricted to this particular tumour, a similar yet germline mutation in ZNF407 was found in a panel of 52 gastro-intestinal stromal tumours from different anatomical sites and different categories. Germline polymorphisms in the mitotic checkpoint proteins Aurora kinase A and BUB1 kinase B may have furthered tumour growth. The epigenetic profile of the tumour matches that of other KIT-mutant tumours. We have identified mutations in three genes and loss of the long arm of chromosome 14 as the so far minimal set of genetic abnormalities sufficient for the development of a very low risk clinically symptomatic gastric stromal tumour.  相似文献   

6.
7.
In this work, we computationally identified the most detrimental missense mutations of KIT receptor causing gastrointestinal stromal tumors and analyzed the drug resistance of these missense mutations. Out of 31 missense mutations, 19 variants were commonly found less stable, deleterious and damaging by I-Mutant 2.0, SIFT and PolyPhen programs, respectively. Subsequently, we performed modeling of these 19 variants to understand their change in conformations with respect to native KIT receptor by computing their RMSD. Further, the native and 19 mutants were docked with the drug ‘Imatinib’ to explain the drug resistance of these detrimental missense mutations. Among the 19 mutants, we found by docking studies that 12 mutants, namely, F584C, F584L, V654A, L656P, T670I, R804W, D816F, D816V, D816Y, N822K, Y823D and E839K had less binding affinity with Imatinib than the native type. Finally, we analyzed that the loss of binding affinity of these 12 mutants, was due to altered flexibility in their binding amino acids with Imatinib as compared with native type by normal mode analysis. In our work, we found the novel data that the majority of the drug-binding amino acids in those 12 mutants had encountered loss of flexibility, which could be the theoretical basis for the cause of drug insensitivity.  相似文献   

8.

Objective

Most gain of function mutations of tyrosine kinase receptors in human tumours are hemizygous. Gastrointestinal stromal tumours (GIST) with homozygous mutations have a worse prognosis. We aimed to identify genes differentially regulated by hemizygous and heterozygous KIT mutations.

Materials and Methods

Expression of 94 genes and 384 miRNA was analysed with low density arrays in five NIH3T3 cell lines expressing the full-length human KIT cDNA wild-type (WT), hemizygous KIT mutation with del557-558 (D6) or del564-581 (D54) and heterozygous WT/D6 or WT/D54. Expression of 5 of these genes and 384 miRNA was then analysed in GISTs samples.

Results

Unsupervised and supervised hierarchical clustering of the mRNA and miRNA profiles showed that heterozygous mutants clustered with KIT WT expressing cells while hemizygous mutants were distinct. Among hemizygous cells, D6 and D54 expressing cells clustered separately. Most deregulated genes have been reported as potentially implicated in cancer and severals, as ANXA8 and FBN1, are highlighted by both, mRNA and miRNA analyses. MiRNA and mRNA analyses in GISTs samples confirmed that their expressions varied according to the mutation of the alleles. Interestingly, RGS16, a membrane protein of the regulator of G protein family, correlate with the subcellular localization of KIT mutants and might be responsible for regulation of the PI3K/AKT signalling pathway.

Conclusion

Patterns of mRNA and miRNA expression in cells and tumours depend on heterozygous/hemizygous status of KIT mutations, and deletion/presence of TYR568 & TYR570 residues. Thus each mutation of KIT may drive specific oncogenic pathways.  相似文献   

9.
10.
11.
White spotting phenotypes have been intensively studied in horses, and although similar phenotypes occur in the donkey, little is known about the molecular genetics underlying these patterns in donkeys. White spotting in donkeys can range from only a few white areas to almost complete depigmentation and is characterised by a loss of pigmentation usually progressing from a white spot in the hip area. Completely white‐born donkeys are rare, and the phenotype is characterised by the complete absence of pigment resulting in pink skin and a white coat. A dominant mode of inheritance has been demonstrated for spotting in donkeys. Although the mode of inheritance for the completely white phenotype in donkeys is not clear, the phenotype shows similarities to dominant white in horses. As variants in the KIT gene are known to cause a range of white phenotypes in the horse, we investigated the KIT gene as a potential candidate gene for two phenotypes in the donkey, white spotting and white. A mutation analysis of all 21 KIT exons identified a missense variant in exon 4 (c.662A>C; p.Tyr221Ser) present only in a white‐born donkey. A second variant affecting a splice donor site (c.1978+2T>A) was found exclusively in donkeys with white spotting. Both variants were absent in 24 solid‐coloured controls. To the authors’ knowledge, this is the first study investigating genetic mechanisms underlying white phenotypes in donkeys. Our results suggest that two independent KIT alleles are probably responsible for white spotting and white in donkeys.  相似文献   

12.
Suppressor of cytokine signaling (SOCS) proteins are a family of Src homology 2-containing adaptor proteins. Cytokine-inducible Src homology domain 2-containing protein, SOCS1, SOCS2, and SOCS3 have been implicated in the down-regulation of cytokine signaling. The function of SOCS4, 5, 6, and 7 are not known. KIT receptor signaling is regulated by protein tyrosine phosphatases and adaptor proteins. We previously reported that SOCS1 inhibited cell proliferation in response to stem cell factor (SCF). By screening the other members of SOCS family, we identified SOCS6 as a KIT-binding protein. Using KIT mutants and peptides, we demonstrated that SOCS6 bound directly to KIT tyrosine 567 in the juxtamembrane domain. To investigate the function of this interaction, we constitutively expressed SOCS6 in cell lines. Ectopic expression of SOCS6 in Ba/F3-KIT cell line decreased cell proliferation in response to SCF but not SCF-induced chemotaxis. SOCS6 reduced SCF-induced activation of ERK1/2 and p38 but not activation of AKT or STATs in Ba/F3, murine embryonic fibroblast (MEF), or COS-7 cells. SOCS6 did not impair ERK and p38 activation by other stimuli. These results indicate that SOCS6 binds to KIT juxtamembrane region, which affects upstream signaling components leading to MAPK activation. Our results indicate that KIT signaling is regulated by several SOCS proteins and suggest a putative function for SOCS6 as a negative regulator of receptor tyrosine kinases.  相似文献   

13.
14.
In rodent ovaries Kit ligand (KITL) and its receptor KIT have diverse roles, including the promotion of primordial follicle activation, oocyte growth, and follicle survival. Studies were undertaken to determine whether KITL and KIT carry out similar activities in rabbits.KitlandKitmRNA and protein were localized to oocytes and granulosa cells, respectively, in the rabbit ovary. Ovarian cortical explants from juvenile rabbits and neonatal mouse ovaries were subsequently cultured with recombinant mouse KITL and/or KITL neutralizing antibody. Indices of follicle growth initiation were compared with controls and between treatment groups for each species. Recombinant mouse KITL had no stimulatory effect on primordial follicle recruitment in cultured rabbit ovarian explants. However, the mean diameter of oocytes from primordial, early primary, primary, and growing primary follicles increased significantly in recombinant mouse KITL-treated explants compared with untreated tissues. In contrast, recombinant mouse KITL promoted both primordial follicle activation and an increase in the diameter of oocytes from primordial and early primary follicles in the mouse, and these effects were inhibited by coculture with KITL-neutralizing antibody. Recombinant mouse KITL had no effect on follicle survival for either species. These data demonstrate that KITL promotes the growth of rabbit and mouse oocytes and stimulates primordial follicle activation in the mouse but not in the rabbit. We propose that the physiologic roles of KITL and KIT may differ between species, and this has important implications for the design of in vitro culture systems for folliculogenesis in mammals, including the human.  相似文献   

15.
16.
Despite the benefits of imatinib for treating gastrointestinal stromal tumors (GIST), the prognosis for high risk GIST and imatinib-resistant (IR) GIST remains poor. The mechanisms of imatinib resistance have not yet been fully clarified. The aim of the study was to establish imatinib-resistant cell lines and investigate nilotinib, a second generation tyrosine kinase inhibitor (TKI), in preclinical models of GIST and imatinib-resistant GIST. For a model of imatinib-resistant GIST, we generated resistant cells from GK1C and GK3C cell lines by exposing them to imatinib for 6 months. The parent cell lines GK1C and GK3C showed imatinib sensitivity with IC50 of 4.59±0.97 µM and 11.15±1.48 µM, respectively. The imatinib-resistant cell lines GK1C-IR and GK3C-IR showed imatinib resistance with IC50 values of 11.74±0.17 µM (P<0.001) and 41.37±1.07 µM (P<0.001), respectively. The phosphorylation status of key cell signaling pathways, receptor tyrosine kinase KIT (CD117), platelet-derived growth factor receptor alpha (PDGFRA) and downstream signaling kinases: serine-threonine kinase Akt (AKT) and extracellular signal-regulated kinase 1/2 (ERK1/2) or the non-receptor tyrosine kinase: proto-oncogene tyrosine-protein kinase Src (SRC), was analyzed in established cell lines and ERK1/2 phosphorylation was found to be increased compared to the parental cells. Nilotinib demonstrated significant antitumor efficacy against GIST xenograft lines and imatinib-resistant GIST cell lines. Thus, nilotinib may have clinical potential for patients with GIST or imatinib-resistant GIST.  相似文献   

17.
Evaluating the risk category of gastrointestinal stromal tumors (GISTs) is crucial for predicting prognosis and choosing treatment strategies, and tumor metastasis usually represent poor prognosis. Tumor necrosis factor-alpha-induced protein 8-like 2 (TIPE2) is a novel described tumor suppressor. In the present study, TIPE2 expression was detected using a total of 96 human GIST specimens by immunohistochemistry. The effect of TIPE2 on proliferation and invasiveness of GIST cells and its related mechanisms were explored in vitro. It was found that TIPE2 expression was gradually decreased in accordance with GIST risk grades and negatively associated with tumor size, mitotic count and risk category. Moreover, TIPE2 was identified as a biomarker for evaluating the risk grade of GIST. TIPE2 markedly suppressed the viability, colony formation, migration and invasion of GIST cells. Furthermore, TIPE2 induced apoptosis and suppressed MMP-9 expression of GIST cells by targeting Rac1. In conclusion, these results indicate that TIPE2 plays a pivotal role in the progression of GIST. TIPE2 serves as a promising biomarker for evaluating GIST risk grade and a potential target for treatment of GIST.  相似文献   

18.
Activation of receptor tyrosine kinases needs tight control by tyrosine phosphatases to keep their normal function. In this study, we investigated the regulation of activation of the type III receptor tyrosine kinase KIT by protein tyrosine phosphatase receptor type E (PTPRE). We found that PTPRE can associate with wild-type KIT and inhibit KIT activation in a dose-dependent manner, although the activation of wild-type KIT is dramatically inhibited even when PTPRE is expressed at low level. The D816V mutation of KIT is the most frequently found oncogenic mutation in mastocytosis, and we found that PTPRE can associate and inhibit the activation of KIT/D816V in a dose dependent manner, but the inhibition is much weaker compared with wild-type KIT. Similar to mastocytosis, KIT mutations are the main oncogenic mutations in gastrointestinal stromal tumors (GISTs) although GISTs carry different types of KIT mutations. We further studied the regulation of the activation of GISTs-type KIT mutants and other mastocytosis-type KIT mutants by PTPRE. Indeed, PTPRE can almost block the activation of GISTs-type KIT mutants, while the activation of mastocytosis-type KIT mutants is more resistant to the inhibition of PTPRE. Taken together, our results suggest that PTPRE can associate with KIT, and inhibit the activation of both wild-type KIT and GISTs-type KIT mutants, while the activation of mastocytosis-type KIT mutants is more resistant to PTPRE.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号