首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
厌氧颗粒污泥的超微结构分析   总被引:3,自引:0,他引:3  
目的:通过透射电镜对厌氧污泥颗粒内部结构进行系统的分析,研究其中微生物的生态情况及分布特征。方法:对颗粒的表面、1/3、1/2等特征部位处进行超薄切片,在透射电镜下观察并分析。结果:厌氧颗粒污泥由多种微生物但主要是丝状菌、杆状菌和球状菌组成。这些菌群整体上以混栖分布的形式存在,菌体密度从外向内看由密变疏,呈递减式的梯度分布。结论:厌氧颗粒污泥是一个微生态系统,不同类型的细菌种群在系统中相互依存,形成互营共生体系,有利于细菌对有机物的降解。透射电镜下对于污泥颗粒内不同层面中的菌群生态及分布情况的观察非常直观,十分有利于了解各菌群之间的生态关系。因此,采用透射电镜技术是研究厌氧污泥颗粒一种好方法。  相似文献   

2.
The contact angle, which is generally used to evaluate the hydrophobicities of pure bacterial strains and solid surfaces, was used to study mixed cell cultures of bacteria involved in anaerobic digestion. Previously published data and data from this study showed that most acidogens are hydrophilic (contact angle, <45(deg)) but most of the acetogens and methanogens isolated from granular sludge are hydrophobic (contact angle, >45(deg)). The hydrophobicities of mixtures of hydrophilic and hydrophobic cells were found to be linearly correlated with the cell mixing ratio. The hydrophobicities of cells present in effluents from upflow anaerobic sludge bed reactors which were treating different types of substrates were different depending on the reactor conditions. When the reactor liquid had a high surface tension, cells sloughing off from sludge granules, as well as cells present on the outer surfaces of the granules, were hydrophobic. Short-term batch enrichment cultures revealed that proteins selected for highly hydrophilic cells. Long-term in-reactor enrichment cultures revealed that sugars selected for hydrophilic acidogens on the surfaces of the granules, while fatty acids tended to enrich for hydrophobic methanogens. When linear alkylbenzenesulfonate was added, the cells on the surfaces of granules became more hydrophilic. Control tests performed with pure cultures revealed that there was no change in the surface properties due to linear alkylbenzenesulfonate; hence, the changes in the wash-out observed probably reflect changes in the species composition of the microbial association. A surface layer with moderate hydrophobicity, a middle layer with extremely high hydrophobicity, and a core with high hydrophobicity could be distinguished in the grey granules which we studied.  相似文献   

3.
The metabolic properties and ultrastructure of mesophilic aggregates from a full-scale expanded granular sludge bed reactor treating brewery wastewater are described. The aggregates had a very high methanogenic activity on acetate (17.19 mmol of CH4/g of volatile suspended solids [VSS]·day or 1.1 g of CH4 chemical oxygen demand/g of VSS·day). Fluorescent in situ hybridization using 16S rRNA probes of crushed granules showed that 70 and 30% of the cells belonged to the archaebacterial and eubacterial domains, respectively. The spherical aggregates were black but contained numerous whitish spots on their surfaces. Cross-sectioning these aggregates revealed that the white spots appeared to be white clusters embedded in a black matrix. The white clusters were found to develop simultaneously with the increase in diameter. Energy-dispersed X-ray analysis and back-scattered electron microscopy showed that the whitish clusters contained mainly organic matter and no inorganic calcium precipitates. The white clusters had a higher density than the black matrix, as evidenced by the denser cell arrangement observed by high-magnification electron microscopy and the significantly higher effective diffusion coefficient determined by nuclear magnetic resonance imaging. High-magnification electron microscopy indicated a segregation of acetate-utilizing methanogens (Methanosaeta spp.) in the white clusters from syntrophic species and hydrogenotrophic methanogens (Methanobacterium-like and Methanospirillum-like organisms) in the black matrix. A number of physical and microbial ecology reasons for the observed structure are proposed, including the advantage of segregation for high-rate degradation of syntrophic substrates.  相似文献   

4.
柠檬酸废水IC反应器厌氧颗粒污泥真细菌结构分析   总被引:1,自引:0,他引:1  
目的:分析柠檬酸工业废水IC厌氧反应器处理时产生的厌氧颗粒污泥中真细菌的菌群结构.方法:构建细菌的16S rDNA克隆文库,对文库中的16S rDNA基因序列进行测序,然后Blast比对,并进行分类、建系统发育树.结果:对获得的77个16S rDNA序列进行测序,按序列相似性≥97%的分类标准,这些序列可分为22个OTU,其中4个优势OTU分别与棒杆菌属(Corynebacterium)、梭菌属(Clostridium)、消化球菌属(Peptococcus)、疣微菌属(Verrucomicrobia)最为相近,其余OTU的克隆数较少.颗粒污泥中的真细菌主要为放线菌纲(Actinobacteria)、梭菌纲(Clostridia)、拟杆菌纲(Bacteroidetes)以及δ-变形菌纲(Deltaproteobacteria)的细菌,分别占克隆总数的34/77、31/77、6/77、6/77.结论:该文研究了柠檬酸废水处理过程中产生的厌氧颗粒污泥中细菌的菌群组成和结构,为深入了解柠檬酸废水的厌氧处理过程提供了一定的理论借鉴作用.  相似文献   

5.
Dechlorination of tetrachloroethene, also known as perchloroethylene (PCE), was investigated in an upflow anaerobic sludge blanket (UASB) reactor after incorporation of the strictly anaerobic, reductively dechlorinating bacterium Dehalospirillum multivorans into granular sludge. This reactor was compared to the reference 1 (R1) reactor, where the granules were autoclaved to remove all dechlorinating abilities before inoculation, and to the reference 2 (R2) reactor, containing only living granular sludge. All three reactors were fed mineral medium containing 3 to 57 μM PCE, 2 mM formate, and 0.5 mM acetate and were operated under sterile conditions. In the test reactor, an average of 93% (mole/mole) of the effluent chloroethenes was dichloroethene (DCE), compared to 99% (mole/mole) in the R1 reactor. The R2 reactor, with no inoculation, produced only trichloroethene (TCE), averaging 43% (mole/mole) of the effluent chloroethenes. No dechlorination of PCE was observed in an abiotic control consisting of sterile granules without inoculum. During continuous operation with stepwise-reduced hydraulic retention times (HRTs), both the test reactor and the R1 reactor showed conversion of PCE to DCE, even at HRTs much lower than the reciprocal maximum specific growth rate of D. multivorans, indicating that this bacterium was immobilized in the living and autoclaved granular sludge. In contrast, the R2 reactor, with no inoculation of D. multivorans, only converted PCE to TCE under the same conditions. Immobilization could be confirmed by using fluorescein-labeled antibody probes raised against D. multivorans. In granules obtained from the R1 reactor, D. multivorans grew mainly in microcolonies located in the centers of the granules, while in the test reactor, the bacterium mainly covered the surfaces of granules.  相似文献   

6.
Kinetic parameters of acetate oxidation were determined for the sulfate reducers Desulforhabdus amnigenus and Desulfobacca acetoxidans. Based on these parameters, both sulfate reducers seem to be able to outcompete Methanosaeta spp. for acetate in acetate-fed anaerobic bioreactors. Mixed-substrate studies showed that D. amnigenus degraded acetate and hydrogen simultaneously but preferred lactate, propionate, and ethanol over acetate.  相似文献   

7.
Extracellular polymeric substances (EPS) were quantified in flocculent and aerobic granular sludge developed in two sequencing batch reactors with the same shear force but different settling times. Several EPS extraction methods were compared to investigate how different methods affect EPS chemical characterization, and fluorescent stains were used to visualize EPS in intact samples and 20-μm cryosections. Reactor 1 (operated with a 10-min settle) enriched predominantly flocculent sludge with a sludge volume index (SVI) of 120 ± 12 ml g−1, and reactor 2 (2-min settle time) formed compact aerobic granules with an SVI of 50 ± 2 ml g−1. EPS extraction by using a cation-exchange resin showed that proteins were more dominant than polysaccharides in all samples, and the protein content was 50% more in granular EPS than flocculent EPS. NaOH and heat extraction produced a higher protein and polysaccharide content from cell lysis. In situ EPS staining of granules showed that cells and polysaccharides were localized to the outer edge of granules, whereas the center was comprised mostly of proteins. These observations confirm the chemical extraction data and indicate that granule formation and stability are dependent on a noncellular, protein core. The comparison of EPS methods explains how significant cell lysis and contamination by dead biomass leads to different and opposing conclusions.  相似文献   

8.
Abstract The majority of phosphatase (PO4ase) activity detected in fresh aerobic activated sludge from a municipal wastewater treatment plant was associated with suspended floc material. PO4ase activity appeared to be localized in discrete bacteria-containing areas of the floc matrix based on the distribution of nucleic acid–stained cells and precipitated fluorescent crystals produced as a result of reaction of the enzyme(s) with the artificial substrate ELF™-PO4. Of the total floc-associated bacterial cells that stained positive with the nucleic acid–binding fluorochrome acridine orange (AO), 8.8 ± 1.2% displayed PO4ase activity based on the proximity of AO-stained cells to precipitated ELF crystals. Using a 16S rRNA oligonucleotide probe specific for the cytophaga–flavobacteria group, it was determined that 17–20% of the floc-associated bacteria that probed positive also displayed PO4ase activity. Furthermore, 35–45% of the ELF fluorescence was associated with bacterial cells that probed positive for the cytophaga–flavobacteria group. The results suggest that the cytophaga–flavobacteria, as a group, is important in mediating the liberation of inorganic orthophosphate (Pi) from phosphomonoesters of detrital organic phosphate (organic-P) in the aerobic activated sludge process of wastewater treatment. Received: 17 March 1999; Accepted: 9 June 1999  相似文献   

9.
Eight anaerobic granular sludges were surveyed for Crenarchaeota using rRNA gene cloning. Microbial arrangement and substrate uptake patterns were elucidated by fluorescent in situ hybridization and beta imaging. Group 1.3 Crenarchaeota represented up to 50% of Archaea and 25% of the total microbiota in five sludges. Crenarchaeota were localized in close association with methanogenic Archaea.  相似文献   

10.
Oligonucleotide probes, designed from genes coding for 16S rRNA, were developed to differentiate Methanosaeta concilii, Methanosarcina barkeri, and mesophilic methanogens. All M. concilii oligonucleotide probes (designated MS1, MS2, and MS5) hybridized specifically with the target DNA, but MS5 was the most specific M. concilii oligonucleotide probe. Methanosarcina barkeri oligonucleotide probes (designated MB1, MB3, and MB4) hybridized with different Methanosarcina species. The MB4 probe specifically detected Methanosarcina barkeri, and the MB3 probe detected the presence of all mesophilic Methanosarcina species. These new oligonucleotide probes facilitated the identification, localization, and quantification of the specific relative abundance of M. concilii and Methanosarcina barkeri, which play important roles in methanogenesis. The combined use of fluorescent in situ hybridization with confocal scanning laser microscopy demonstrated that anaerobic granule topography depends on granule origin and feeding. Protein-fed granules showed no layered structure with a random distribution of M. concilii. In contrast, a layered structure developed in methanol-enriched granules, where M. barkeri growth was induced in an outer layer. This outer layer was followed by a layer composed of M. concilii, with an inner core of M. concilii and other bacteria.  相似文献   

11.
Granules from a mesophilic upflow anaerobic sludge blanket reactor were disintegrated, and bacteria utilizing only hydrogen or formate or both hydrogen and formate were added to investigate the role of interspecies electron transfer during degradation of propionate and butyrate. The data indicate that the major electron transfer occurred via interspecies hydrogen transfer, while interspecies formate transfer may not be essential for interspecies electron transfer in this system during degradation of propionate and butyrate.  相似文献   

12.
Culture-independent (PCR with Crenarchaeota-specific primers and subsequent denaturing gradient gel electrophoresis) and culture-dependent approaches were used to study the diversity of Crenarchaeota in terrestrial hot springs of the Kamchatka Peninsula and the Lake Baikal region (Russia) and of Iceland. Among the phylotypes detected there were relatives of both cultured (mainly hyperthermophilic) and uncultured Crenarchaeota. It was found that there is a large and diverse group of uncultured Crenarchaeota that inhabit terrestrial hot springs with moderate temperatures (55 to 70°C). Two of the lineages of this group were given phenotypic characterization, one as a result of cultivation in an enrichment culture and another one after isolation of a pure culture, “Fervidococcus fontis,” which proved to be a moderately thermophilic, neutrophilic (optimum pH of 6.0 to 7.5), anaerobic organotroph.  相似文献   

13.
Intact core tetraether membrane lipids of marine planktonic Crenarchaeota were quantified in water column-suspended particulate matter obtained from four depth intervals ( approximately 70, 500, 1,000 and 1,500 m) at seven stations in the northwestern Arabian Sea to investigate the distribution of the organisms at various depths. Maximum concentrations generally occurred at 500 m, near the top of the oxygen minimum zone, and the concentrations at this depth were, in most cases, slightly higher than those in surface waters. In contrast, lipids derived from eukaryotes (cholesterol) and from eukaryotes and bacteria (fatty acids) were at their highest concentrations in surface waters. This indicates that these crenarchaeotes are not restricted to the photic zone of the ocean, which is consistent with the results of recent molecular biological studies. Since the Arabian Sea has a strong oxygen minimum zone between 100 and 1,000 m, with minimum oxygen levels of <1 microM, the abundance of crenarchaeotal membrane lipids at 500 m suggests that planktonic Crenarchaeota are probably facultative anaerobes. The cell numbers we calculated from the concentrations of membrane lipids are similar to those reported for the Central Pacific Ocean, supporting the recent estimation of M. B. Karner, E. F. DeLong, and D. M. Karl ( Nature 409:507-510, 2001) that the world's oceans contain ca. 10(28) cells of planktonic Crenarchaeota.  相似文献   

14.
The potential of granular sludge from upflow anaerobic sludge blanket (UASB) reactors for bioremediation of chlorinated pollutants was evaluated by using carbon tetrachloride (CT) as a model compound. Granular sludges cultivated in UASB reactors on methanol, a volatile fatty acid mixture, or sucrose readily degraded CT supplied at a concentration of 1,500 nmol/batch (approximately 10 μM) without any prior exposure to organohalogens. The maximum degradation rate was 1.9 μmol of CT g of volatile suspended solids−1 day−1. The main end products of CT degradation were CO2 and Cl, and the yields of these end products were 44 and 68%, respectively, of the initial amounts of [14C]CT and CT-Cl. Lower chlorinated methanes accumulated in minor amounts temporarily. Autoclaved (dead) sludges were capable of degrading CT at rates two- to threefold lower than those for living sludges, indicating that abiotic processes (mediated by cofactors or other sludge components) played an important role in the degradation observed. Reduced components in the autoclaved sludge were vital for CT degradation. A major part (51%) of the CT was converted abiotically to CS2. The amount of CO2 produced (23%) was lower and the amount of Cl produced (86%) was slightly higher with autoclaved sludge than with living sludge. Both living and autoclaved sludges could degrade chloroform. However, only living sludge degraded dichloromethane and methylchloride. These results indicate that reductive dehalogenation, which was mediated better by living sludge than by autoclaved sludge, is only a minor pathway for CT degradation. The main pathway involves substitutive and oxidative dechlorination reactions that lead to the formation of CO2. Granular sludge, therefore, has outstanding potential for gratuitous dechlorination of CT to safe end products.  相似文献   

15.
Michaelis-Menten kinetic parameters for H2 consumption by three methanogenic habitats were determined from progress curve and initial velocity experiments. The influences of mass transfer resistance, endogenous H2 production, and growth on apparent parameter estimates were also investigated. Kinetic parameters could not be determined for undiluted rumen fluid and some digestor sludge from gas-phase measurements of H2, since mass transfer of H2 across the gas-liquid interface was rate limiting. However, accurate values were obtained once the samples were diluted. H2 consumption by digestor sludge with a long retention time and by hypereutrophic lake sediment was not phase transfer limited. The Km values for H2 uptake by these habitats were similar, with means of 5.8, 6.0, and 7.1 μM for rumen fluid, digestor sludge, and sediment, respectively. Vmax estimates suggested a ratio of activity of approximately 100 (rumen fluid):10 (sludge):1 (sediment); their ranges were as follows: rumen fluid, 14 to 28 mM h−1; Holt sludge, 0.7 to 4.3 mM h−1; and Wintergreen sediment, 0.13 to 0.49 mM h−1. The principles of phase transfer limitation, studied here for H2, are the same for all gaseous substrates and products. The limitations and errors associated with gas phase determination of kinetic parameters were evaluated with a mathematical model that combined mass transport and Michaelis-Menten kinetics. Three criteria are described which can be used to evaluate the possibility that a phase transfer limitation exists. If it does not exist, (i) substrate consumption curves are Michaelis-Menten and not first order, (ii) the Km is independent of initial substrate concentration, and (iii) the Km is independent of biomass (Vmax) and remains constant with dilution of sample. Errors in the Michaelis-Menten kinetic parameters are caused by endogenously produced H2, but they were <15% for rumen fluid and 10% for lake sediment and digestor sludge. Increases in Vmax during the course of progress curve experiments were not great enough to produce systematic deviations from Michaelis-Menten kinetics.  相似文献   

16.
The microbial population structure and function of natural anaerobic communities maintained in laboratory fixed-bed biofilm reactors were tracked before and after a major perturbation, which involved the addition of sulfate to the influent of a reactor that had previously been fed only glucose (methanogenic), while sulfate was withheld from a reactor that had been fed both glucose and sulfate (sulfidogenic). The population structure, determined by using phylogenetically based oligonucleotide probes for methanogens and sulfate-reducing bacteria, was linked to the functional performance of the biofilm reactors. Before the perturbation, the methanogenic reactor contained up to 25% methanogens as well as 15% sulfate-reducing bacteria, even though sulfate was not present in the influent of this reactor. Methanobacteriales and Desulfovibrio spp. were the most abundant methanogens and sulfate-reducing bacteria, respectively. The presence of sulfate-reducing bacteria (primarily Desulfovibrio spp. and Desulfobacterium spp.) in the absence of sulfate may be explained by their ability to function as proton-reducing acetogens and/or fermenters. Sulfate reduction began immediately following the addition of sulfate consistent with the presence of significant levels of sulfate-reducing bacteria in the methanogenic reactor, and levels of sulfate-reducing bacteria increased to a new steady-state level of 30 to 40%; coincidentally, effluent acetate concentrations decreased. Notably, some sulfate-reducing bacteria (Desulfococcus/Desulfosarcina/Desulfobotulus group) were more competitive without sulfate. Methane production decreased immediately following the addition of sulfate; this was later followed by a decrease in the relative concentration of methanogens, which reached a new steady-state level of approximately 8%. The changeover to sulfate-free medium in the sulfidogenic reactor did not cause a rapid shift to methanogenesis. Methane production and a substantial increase in the levels of methanogens were observed only after approximately 50 days following the perturbation.  相似文献   

17.
A phylogenetic tree of guppies from seven introduced Japanese populations was constructed using a mitochondrial gene, and the relationship between these Japanese populations and indigenous South American populations was examined. Phylogenetic trees constructed by maximum parsimony and neighbor joining methods indicated four major groups: Group A: Trinidadian populations; Group B: the northernmost Okinawa populations; Group C: the northern Okinawa populations; Group D: Shimoda populations and the remainder of Trinidadian, Venezuelan, and southern Okinawa populations. Considerable genetic differences were observed among the haplotypes within each Okinawa population similar to that found among haplotypes of different native populations, but not within the Shimoda population, because each Okinawa population included haplotypes belonging to different groups. Genetic differences between Groups B, C, and D might reflect those of the introduced lineages; however, these differences might not result from the divergence after introduction events. These results suggested that multiple introductions of different breeding lineages might cause considerable divergence within and between Okinawa populations.  相似文献   

18.
The goal of this study is to investigate the effect of inoculating granules on reducing membrane fouling. In order to evaluate the differences in performance between flocculent sludge and aerobic granular sludge in membrane reactors (MBRs), two reactors were run in parallel and various parameters related to membrane fouling were measured. The results indicated that specific resistance to the fouling layer was five times greater than that of mixed liquor sludge in the granular MBR. The floc sludge more easily formed a compact layer on the membrane surface, and increased membrane resistance. Specifically, the floc sludge had a higher moisture content, extracellular polymeric substances concentration, and negative surface charge. In contrast, aerobic granules could improve structural integrity and strength, which contributed to the preferable permeate performance. Therefore, inoculating aerobic granules in a MBR presents an effective method of reducing the membrane fouling associated with floc sludge the perspective of from the morphological characteristics of microbial aggregates.  相似文献   

19.
20.
A method has been developed which permits reliable detection of low numbers of poliovirus infective units in anaerobic digester sludge and dewatered composted sludge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号