首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plant interactions with mutualists and antagonists vary remarkably across space, and have played key roles in the ecology and evolution of flowering plants. One dominant form of spatial variation is human modification of the landscape, including urbanization and suburbanization. Our goal was to assess how suburbanization affected plant–animal interactions in Gelsemium sempervirens in the southeastern United States, including interactions with mutualists (pollination) and antagonists (nectar robbing and florivory). Based on differences in plant–animal interactions measured in multiple replicate sites, we then developed predictions for how these differences would affect patterns of natural selection, and we explored the patterns using measurements of floral and defensive traits in the field and in a common garden. We found that Gelsemium growing in suburban sites experienced more robbing and florivory as well as more heterospecific but not conspecific pollen transfer. Floral traits, particularly corolla length and width, influenced the susceptibility of plants to particular interactors. Observational data of floral traits measured in the field and in a common garden provided some supporting but also some conflicting evidence for the hypothesis that floral traits evolved in response to differences in species interactions in suburban vs. wild sites. However, the degree to which plants can respond to any one interactor may be constrained by correlations among floral morphological traits. Taken together, consideration of the broader geographic context in which organisms interact, in both suburban and wild areas, is fundamental to our understanding of the forces that shape contemporary plant–animal interactions and selection pressures in native species.  相似文献   

2.
Competition for pollination is thought to be an important factor structuring flowering in many plant communities, particularly among plant taxa with morphologically similar and easily accessible flowers. We examined the potential for heterospecific pollen transfer (HPT) in a community of four Acacia species in a highly seasonal tropical habitat in Mexico. Partitioning of pollen flow among sympatric species appears to be achieved, in part, through segregation of flowering in seasonal time, and interspecific differences in pollinator guilds. However, two coflowering species (Acacia macracantha and Acacia angustissima) shared multiple flower visitors, raising the possibility of HPT. Each of these coflowering species showed high intraspecific daily synchrony in pollen release, but dehisce at different times of day. Pollinators rapidly harvested available pollen from one species before abandoning it to visit the flowers of the second later in the day. The activity of shared pollinators, predominantly bees, is thus structured throughout the day, and potential for HPT reduced. Suggestive evidence in favour of a resource partitioning explanation for this pattern is provided by the fact that A. macracantha showed significantly greater intraspecific synchrony when coflowering with a potential competitor (A. angustissima) than when flowering alone. We discuss our results in light of previous work on coflowering acacia assemblages in Tanzania and Australia. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.
Nigel E. RaineEmail:
  相似文献   

3.
In late-successional steady state ecosystems, plants and microbes compete for nutrients and nutrient retention efficiency is expected to decline when inputs exceed biotic demand. In carbon (C)-poor environments typical of early primary succession, nitrogen (N) uptake by C-limited microbes may be limited by inputs of detritus and exudates derived from contemporaneous plant production. If plants are N-limited in these environments, then this differential limitation may lead to positive relationships between N inputs and N retention efficiency. Further, the mechanisms of N removal may vary as a function of inputs if plant-derived C promotes denitrification. These hypotheses were tested using field surveys and greenhouse microcosms simulating the colonization of desert stream channel sediments by herbaceous vegetation. In field surveys of wetland (ciénega) and gravelbed habitat, plant biomass was positively correlated with nitrate (NO3 ?) concentration. Manipulation of NO3 ? in flow-through microcosms produced positive relationships among NO3 ? supply, plant production, and tissue N content, and a negative relationship with root:shoot ratio. These results are consistent with N limitation of herbaceous vegetation in Sycamore Creek and suggest that N availability may influence transitions between and resilience of wetland and gravelbed stable states in desert streams. Increased biomass in high N treatments resulted in elevated rates of denitrification and shifts from co-limitation by C and NO3 ? to limitation by NO3 ? alone. Overall NO3 ? retention efficiency and the relative importance of denitrification increased with increasing N inputs. Thus the coupling of plant growth and microbial processes in low C environments alters the relationship between N inputs and exports due to increased N removal under high input regimes that exceed assimilative demand.  相似文献   

4.
Wilkinson EB  Feener DH 《Oecologia》2007,152(1):151-161
Species must balance effective competition with avoidance of mortality imposed by predators or parasites to coexist within a local ecological community. Attributes of the habitat in which species interact, such as structural complexity, have the potential to affect how species balance competition and mortality by providing refuge from predators or parasites. Disturbance events such as fire can drastically alter habitat complexity and may be important modifiers of species interactions in communities. This study investigates whether the presence of habitat complexity in the form of leaf litter can alter interactions between the behaviorally dominant host ants Pheidole diversipilosa and Pheidole bicarinata, their respective specialist dipteran parasitoids (Phoridae: Apocephalus sp. 8 and Apocephalus sp. 25) and a single species of ant competitor (Dorymyrmex insanus). We used a factorial design to manipulate competition (presence/absence of competitors), mortality risk (presence/absence of parasitoids) and habitat complexity (presence/absence of leaf litter). Parasitoid presence reduced soldier caste foraging, but refuge from habitat complexity allowed increased soldier foraging in comparison to treatments in which no refuge was available. Variation in soldier foraging behavior correlated strongly with foraging success, a proxy for colony fitness. Habitat complexity allowed both host species to balance competitive success with mortality avoidance. The effect of fire on habitat complexity was also studied, and demonstrated that the immediate negative impact of fire on habitat complexity can persist for multiple years. Our findings indicate that habitat complexity can increase dominant host competitive success even in the presence of parasitoids, which may have consequences for coexistence of subordinate competitors and community diversity in general.  相似文献   

5.
Mauricio Lima  Alan A. Berryman 《Oikos》2011,120(9):1301-1310
The future number of people inhabiting the planet will influence the impact over natural ecosystems. In consequence, the growth of the human population represents one of the most important challenges for the near future. In this paper we used population dynamic theory to analyze human population growth. The results suggest that human population growth exhibited important fluctuations during the last 2000 years. In particular two different phases during the last 400 years can be distinguished, a positive relationship with population size implying positive feedback processes, followed by a negative relationship with population size – suggesting that negative feedback processes have been operating during the last 45 years. Our results support the view that ecological concepts derived from population ecology can be useful for understanding human dynamics. While cooperation at low densities in animal populations reminds us the Boserupian view that population growth induces economic development and higher standards of living, competition at high densities reconciles ecological theory with the original Malthusian view. We conclude that the present reduction in human per capita growth rates appears to be consequence of different limiting factors operating in combination around the globe in a similar manner, except in Africa where the factors operating appears to be very different. Humans may achieve a stable equilibrium population in the next century but the possibility of a population collapse caused by second‐order oscillations should be considered.  相似文献   

6.
An individual-based model of plant–herbivore interactions was developed to test the potentially interactive effects of explicit space and coevolution on population and community dynamics. Individual plants and herbivores resided in cells on a lattice and carried linked interaction genes. Interaction strength between individual plants and herbivores depended on concordance between these genes (gene-for-gene coevolution). Mating and dispersal among individuals were controlled spatially within variably sized neighbourhoods. Without evolution we observed high-frequency plant–herbivore oscillations (blue spectra) with small individual neighbourhoods, and stochastic fluctuations (white spectra) with large neighbourhoods. Evolution resulted in decreased interaction strength, decreased herbivore-induced plant mortality, increased population sizes, and longer-term fluctuations (reddened spectra). Small herbivore neighbourhoods led to herbivore extinction only with evolution. To explore the increased population size response to evolution we ran simulations without evolution while tuning plant–herbivore interaction strength from high to none. We found that herbivore populations were maximized at intermediate levels of interaction strength that coincided with the interaction strength achieved when the system tuned itself through evolution. Overall, our model shows that the small-scale details of phenotypically variable individual-level interactions, leading to evolutionary dynamics, affect large-scale population and community dynamics.  相似文献   

7.
Many of our advances regarding the spatial ecology of predators and prey have been attributed to research with insect parasitoids and their hosts. Host–parasitoid systems are ideal for spatial-ecological studies because of the small size of the organisms, the often discrete distribution of their resources, and the relative ease with which host mortality from parasitoids can be determined. We outline an integrated approach to studying host–parasitoid interactions in heterogeneous natural landscapes. This approach involves conducting experiments to obtain critically important information on dispersal and boundary behavior of the host and parasitoid, large-scale manipulations of landscape structure to reveal the impacts of landscape change on host–parasitoid interactions and temporal population dynamics, and the development of spatially realistic, behavior-based landscape models. The dividends from such an integrative approach are far reaching, as is illustrated in our research on the prairie planthopper Prokelisia crocea and its egg parasitoid Anagrus columbi that occurs in the tall-grass prairies of North America. Here, we describe the population structure of this system which is based on a long-term survey of planthoppers and parasitoids among host–plant patches. We also outline novel approaches to experimentally quantify and model the movement and boundary behavior of animals in general. The value of this information is revealed in a landscape-level field experiment that was designed to test predictions about how landscape change affects the spatial and temporal population dynamics of the host and parasitoid. Finally, with these empirical data as the foundation, we describe novel simulation models that are spatially realistic and behavior based. Drawing from this integrated approach and case study, we identify key research questions for the future.  相似文献   

8.
While horticulture tools and methods have been extensively developed to improve the management of crops, systems to harness the rhizosphere microbiome to benefit plant crops are still in development. Plants and microbes have been coevolving for several millennia, conferring fitness advantages that expand the plant’s own genetic potential. These beneficial associations allow the plants to cope with abiotic stresses such as nutrient deficiency across a wide range of soils and growing conditions. Plants achieve these benefits by selectively recruiting microbes using root exudates, positively impacting their nutrition, health and overall productivity. Advanced knowledge of the interplay between root exudates and microbiome alteration in response to plant nutrient status, and the underlying mechanisms there of, will allow the development of technologies to increase crop yield. This review summarizes current knowledge and perspectives on plant–microbial interactions for resource acquisition and discusses promising advances for manipulating rhizosphere microbiomes and root exudation.  相似文献   

9.
Plant-associated microorganisms fulfill important functions for plant growth and health. Direct plant growth promotion by microbes is based on improved nutrient acquisition and hormonal stimulation. Diverse mechanisms are involved in the suppression of plant pathogens, which is often indirectly connected with plant growth. Whereas members of the bacterial genera Azospirillum and Rhizobium are well-studied examples for plant growth promotion, Bacillus, Pseudomonas, Serratia, Stenotrophomonas, and Streptomyces and the fungal genera Ampelomyces, Coniothyrium, and Trichoderma are model organisms to demonstrate influence on plant health. Based on these beneficial plant–microbe interactions, it is possible to develop microbial inoculants for use in agricultural biotechnology. Dependent on their mode of action and effects, these products can be used as biofertilizers, plant strengtheners, phytostimulators, and biopesticides. There is a strong growing market for microbial inoculants worldwide with an annual growth rate of approximately 10%. The use of genomic technologies leads to products with more predictable and consistent effects. The future success of the biological control industry will benefit from interdisciplinary research, e.g., on mass production, formulation, interactions, and signaling with the environment, as well as on innovative business management, product marketing, and education. Altogether, the use of microorganisms and the exploitation of beneficial plant–microbe interactions offer promising and environmentally friendly strategies for conventional and organic agriculture worldwide.  相似文献   

10.
Host–parasite interactions are characterised by a lack of stable species-specific traits that limits generalisations one can make even about particular host or parasite species. For instance, the virulence, life history traits or transmission mode of a given parasite species can depend on which of its suitable hosts it infects. In the search for general rules or patterns, meta-analysis provides a possible solution to the challenges posed by the highly variable outcomes of host–parasite interactions. It allows an estimate of the overall association between any factor and its biological response that transcends the particulars of given host and parasite taxonomic combinations. In this review, we begin with a historical overview of the use of meta-analysis in research on the ecology and evolution of host–parasite interactions. We then identify several key conceptual advances that were made possible only through meta-analytical synthesis. For example, meta-analysis revealed the predominant association between rates of host and parasite gene flow and local adaptation, as well as an unexpected latitudinal gradient in parasite virulence, or parasite-induced host mortality. Finally, we propose some areas of research on host–parasite interactions that are based on a mature theoretical foundation and for which there now exist sufficient primary results to make them ripe for meta-analysis. The search for the processes causing variability in parasite species richness among host species, and the link between the expression of host resistance and the specificity of parasites, are two such research areas. The main objective of this review is to promote meta-analysis as a synthetic tool overriding the idiosyncrasies of specific host–parasite combinations and capable of uncovering the universal trends, if any, in the evolutionary ecology of parasitism.  相似文献   

11.
Our objective was to genetically characterize post-weaning weight gain (PWG), over a 345-day period after weaning, of Brangus-Ibagé (Nelore×Angus) cattle. Records (n=4016) were from the foundation herd of the Embrapa South Livestock Center. A Bayesian approach was used to assess genotype by environment (G×E) interaction and to identify a suitable model for the estimation of genetic parameters and use in genetic evaluation. A robust and heteroscedastic reaction norm multiple-breed animal model was proposed. The model accounted for heterogeneity of residual variance associated with effects of breed, heterozygosity, sex and contemporary group; and was robust with respect to outliers. Additive genetic effects were modeled for the intercept and slope of a reaction norm to changes in the environmental gradient. Inference was based on Monte Carlo Markov Chain of 110 000 cycles, after 10 000 cycles of burn-in. Bayesian model choice criteria indicated the proposed model was superior to simpler sub-models that did not account for G×E interaction, multiple-breed structure, robustness and heteroscedasticity. We conclude that, for the Brangus-Ibagé population, these factors should be jointly accounted for in genetic evaluation of PWG. Heritability estimates increased proportionally with improvement in the environmental conditions gradient. Therefore, an increased proportion of differences in performance among animals were explained by genetic factors rather than environmental factors as rearing conditions improved. As a consequence response to selection may be increased in favorable environments.  相似文献   

12.
13.
14.
Plant–herbivore interactions have strong ecological and evolutionary consequences, but have been traditionally overlooked in marine higher plants. Despite recent advances in seagrass ecology that highlight the importance of herbivory, the mechanisms that regulate the feeding behaviour of seagrass consumers remain largely unknown. Herbivores have been shown to reduce the sexual reproductive success of seagrasses through direct consumption of inflorescences and seeds, but we know little about intraspecific variation in susceptibility to grazing of different seagrass tissues. We contrasted the relative palatability of reproductive and vegetative tissues of the temperate seagrass Posidonia oceanica in the field, and we assessed the feeding preferences among these tissues of the main consumers of the plant, the fish Sarpa salpa and the urchin Paracentrotus lividus. Moreover, we identified the plant traits that explained the observed feeding behaviour. We provide strong evidence for herbivore selectivity among seagrass tissues. In the field, 70–90% of inflorescences were damaged by herbivores compared to 3–60% of leaves of similar age. In feeding assays, the urchin P. lividus showed over a twofold preference for reproductive tissue at various stages of development. By contrast, we detected no feeding activity on either leaves or inflorescences from the fish S. salpa, which is known to migrate to deeper waters soon after flowering starts and during the period of fruit maturation. Despite being the preferred food of urchins, inflorescences were chemically defended, had higher levels of phenolics and lower nutrient and calorific content than leaves. We experimentally demonstrated that leaf structural defences are the primary factor in determining urchin feeding preferences. Removal of plant structure results in a drastic shift in urchin selectivity towards the most nutritious and less chemically defended leaf tissue, indicating that multiple mechanisms of defence to herbivory may coexist in seagrasses.  相似文献   

15.
While studying breeding systems and pollination ecology of nine Gentiana species (G. lutea, G. punctata, G. asclepiadea, G. pneumonanthe, G. cruciata, G. pyrenaica, G. verna, G. utriculosa, and G. nivalis) in the Bulgarian mountains, we recorded number of insects that feed on their maturing seeds. In addition, parasitoid wasps in connection to these seed predators were detected. Insects are identified and the impact on the seed set of afore mentioned Gentiana species is estimated. Fruit capsules of Gentiana spp. from different populations in the mountains in Bulgaria were investigated for the presence or absence of damage by larvae during the period of 16 years. The seed destruction varies among the nine investigated Gentiana species. The insects whose larvae damaged the seed/fruit set belonged mainly to Coleoptera and Diptera. The larvae of lycaenid butterflies, Maculinea spp. (Lepidoptera), were recorded only in seeds of G. asclepiadea, G. pneumonanthe and G. cruciata. Parasitoid wasps from the families Ichneumonidae, Braconidae, and Pteromalidae were identified, some of them new for the fauna of Bulgaria.  相似文献   

16.
Britto DT  Ruth TJ  Lapi S  Kronzucker HJ 《Planta》2004,218(4):615-622
The first analysis of chloride fluxes and compartmentation in a non-excised plant system is presented, examining ten ecologically pertinent conditions. The short-lived radiotracer couple 38Cl/39Cl was used as a Cl tracer in intact barley (Hordeum vulgare L. cv. Klondike) seedlings, which were cultured and investigated under four external [Cl], from abundant (0.1 mM) to potentially toxic (100 mM). Chloride–nitrogen interactions were investigated by varying N source (NO3 or NH4 +) and strength (0.1 or 10 mM), in order to examine, at the subcellular compartmentation level, the antagonism, previously documented at the influx level, between Cl and NO3 , and the potential role of Cl as a counterion for NH4 + under conditions in which cytosolic [NH4 +] is excessive. Cytosolic [Cl] increased with external [Cl] from 6 mM to 360 mM. Cl influx, fluxes to vacuole and shoot, and, in particular, efflux to the external medium, also increased along this gradient. Efflux reached 90% of influx at the highest external [Cl]. Half-times of cytosolic Cl exchange decreased between high-affinity and low-affinity influx conditions. The relationship between cytosolic [Cl] and shoot flux indicated the presence of a saturable low-affinity transport system (SLATS) responsible for xylem loading of Cl. N source strongly influenced Cl flux to the vacuole, and moderately influenced Cl influx and shoot flux, whereas efflux and half-time were insensitive to N source. Cytosolic pool sizes were not strongly or consistently influenced by N source, indicating the low potential for Cl to act as a counterion to hyperaccumulating NH4 +. We discuss our results in relation to salinity responses in cereals.Abbreviations [Cl]cyt cytosolic chloride concentration - [Cl]o external chloride concentration  相似文献   

17.
Proteomics, one of the major tools of ‘omics’ is evolving phenomenally since the development and application of two-dimensional gel electrophoresis coupled with mass spectrometry at the end of twentieth century. However, the adoption and application of advanced proteomic technologies in understanding plant–pathogen interactions are far less, when compared to their application in other related fields of systems biology. Hence, this review is diligently focused on the advances in various proteomic approaches and their gamut of applications in different facets of phyto-pathoproteomics. Especially, the scope and application of proteomics in understanding fundamental concepts of plant–pathogen interactions such as identification of pathogenicity determinants (effector proteins), disease resistance proteins (resistance and pathogenesis-related proteins) and their regulation by post-translational modifications have been portrayed. This review, for the first time, presents a critical appraisal of various proteomic applications by assessing all phyto-pathoproteomics-related research publications that were published in peer-reviewed journals, during the period 2000–2016. This assessment has revealed the present status and contribution of proteomic applications in different categories of phyto-pathoproteomics, namely, cellular components, host–pathogen interactions, model and non-model plants, and utilization of different proteomic approaches. Comprehensively, the analysis highlights the burgeoning application of global proteome approaches in various crop diseases, and demand for acceleration in deploying advanced proteomic technologies to thoroughly comprehend the intricacies of complex and rapidly evolving plant–pathogen interactions.  相似文献   

18.
19.
Johnson CN  Vernes K  Payne A 《Oecologia》2005,143(1):70-76
We compared demography of populations along gradients of population density in two medium-sized herbivorous marsupials, the common brushtail possum Trichosurus vulpecula and the rufous bettong Aepyprymnus rufescens, to test for net dispersal from high density populations (acting as sources) to low density populations (sinks). In both species, population density was positively related to soil fertility, and variation in soil fertility produced large differences in population density of contiguous populations. We predicted that if source–sink dynamics were operating over this density gradient, we should find higher immigration rates in low-density populations, and positive relationships of measures of individual fitness—body condition, reproductive output, juvenile growth rates and survivorship—to population density. This was predicted because under source–sink dynamics, immigration from high-density sites would hold population density above carrying capacity in low-density sites. The study included 13 populations of these two species, representing a more than 50-fold range of density for each species, but we found that individual fitness, immigration rates and population turnover were similar in all populations. We conclude that net dispersal from high to low density populations had little influence on population dynamics in these species; rather, all populations appeared to be independently regulated at carrying capacity, with a balanced exchange of dispersers among populations. These two species have suffered recent reductions in range, and they are ecologically similar to other species that have declined to extinction in inland Australia. It has been argued that part of the cause of the vulnerability of species like these is that they exhibit source–sink dynamics, and disturbance to source habitats can therefore cause large-scale population collapses. The results of our study argue against this interpretation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号