首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four species of red marine algae (Rhodophyceae), five species of brown marine algae (Pheophyceae) and two species of green marine algae (Chlorophyceae) were examined for the fatty acid composition of the three lipid groups separated by silica gel column chromatography (neutral lipids, glycolipids, phospholipids). The four red algae had high contents of 16:0 and C20-polyunsaturated fatty acids (PUFA), 20:5n-3 ranging from 18 to 49% of the total fatty acid content and 20:4n-6 from 1.4 to 22.5%, these fatty acids were evenly distributed in all lipid groups. The five brown algae had high contents of 18:1n-9, 18:2n-6 and 18:3n-3 but low content of 20:5n-3. No precise trend was detected for the distribution of these fatty acids in the three lipid groups. The two green algae had high contents of 16:0, 18:1n-7 and 18:3n-3 and a very low content of PUFA. They contained also large amounts of 16:4n-3 together with 16:2n-6 and 16:3n-3. While 16:2n-6 was mainly found in phospholipids, 16:4n-3 was mainly distributed in neutral lipids and glycolipids.Porphyra umbilicalis represents the richest source of 20:5n-3 whileUndaria pinnatifida can be selected when a balanced mixture of (n-6) and (n-3) PUFA is required.Author for correspondence  相似文献   

2.
Rotifers (Brachionus plicatilis), maintained on baker's yeast, were fed for 24h upon two algal diets, Isochrysis galbana (diet A) and Isochrysis galbana + Nannochloropsis gaditana (diet B). (These algal diets were selected for their potential use as essential fatty acid (EFA) boosters, taking into account the requirements of fish larvae). The effect of these algal diets on total lipid content, lipid classes and fatty acid composition was studied. The total lipid content increased after feeding upon both diets but no significant differences were found between the two types. Neutral lipid and polar lipid contents increased and a positive correlation was observed between the neutral lipids content of rotifers and that of the food supplied. However, the content of polar lipids in rotifers did not depend upon that of the diet. The increase in neutral lipid content was found to be higher in rotifers fed upon diet B, compared to diet A which increased the phospholipid content. Non-enriched rotifers contained only small amounts of polyenoic fatty acids, i.e. 18:3n-6, 18:3n-3, 20:4n-6, 20:5n-3 and 22:6n-3, the contents of which increased significantly by feeding both diets. The EFA composition (20:4n-6, 20:5n-3 and 22:6n-3) of neutral lipids and phopholipids in rotifers reflected the EFA composition of each diet. Diet B-fed rotifers had the highest content in 20:4n-6 and 20:5n-3, whereas rotifers fed diet A and the highest 22:6n-3 content. The mixed diet I. galbana + N. gaditana enhanced substantially the composition of lipid classes i.e. neutral lipids and of n-3 PUFA of rotifers in comparison with Isochrysis or yeast diets.  相似文献   

3.
Because alpha-synuclein may function as a fatty acid binding protein, we measured fatty acid incorporation into astrocytes isolated from wild-type and alpha-synuclein gene-ablated mice. alpha-Synuclein deficiency decreased palmitic acid (16:0) incorporation 31% and arachidonic acid [20:4 (n-6)] incorporation 39%, whereas 22:6 (n-3) incorporation was unaffected. In neutral lipids, fatty acid targeting of 20:4 (n-6) and 22:6 (n-3) (docosahexaenoic acid) to the neutral lipid fraction was increased 1.7-fold and 1.6-fold, respectively, with an increase in each of the major neutral lipids. This was consistent with a 3.4- to 3.8-fold increase in cholesteryl ester and triacylglycerol mass. In the phospholipid fraction, alpha-synuclein deficiency decreased 16:0 esterification 39% and 20:4 (n-6) esterification 43% and decreased the distribution of these fatty acids, including 22:6 (n-3), into this lipid pool. alpha-Synuclein gene-ablation significantly decreased the trafficking of these fatty acids to phosphatidylinositol. This observation is consistent with changes in phospholipid fatty acid composition in the alpha-synuclein-deficient astrocytes, including decreased 22:6 (n-3) content in the four major phospholipid classes. In summary, these studies demonstrate that alpha-synuclein deficiency significantly disrupted astrocyte fatty acid uptake and trafficking, with a marked increase in fatty acid trafficking to cholesteryl esters and triacylglycerols and decreased trafficking to phospholipids, including phosphatidylinositol.  相似文献   

4.
The ability of juvenile turbot, Scophthalmus maximus (L.), to elongate and desaturate various polyunsaturated fatty acids (PUFA) was examined in relation to their lipid composition. Triacylglycerols were the most abundant lipid class present in the fish and phosphatidylcholine was the predominant phospholipid. In all lipid classes examined the levels of (n-3) PUFA exceeded that of (n-6) PUFA. 18C PUFA were minor components in comparison with 20:5(n-3) and 22:6(n-3). 20:4(n-6) was present in highest concentration in phosphatidylinositol in which it accounted for 16.9% of the fatty acids. When the fish were injected with either 14C-labelled 18:2(n-6), 18:3(n-3), 20:4(n-6), 20:5(n-3) or 22:6(n-3) the highest percentage recovery of radioactivity (69%) in body lipid was observed with 22:6(n-3). With all labelled substrates free fatty acids contained only a small proportion of the total recovered radioactivity whereas triacylglycerols were highly labelled. Phosphatidylcholine/sphingomyelin was the most highly labelled polar lipid fraction. With 14C-20:4(n-6) as injected substrate, 23.2% of the radioactivity recovered in total lipid was present in phosphatidylinositol in comparison with less than 6% with the other substrates. Only small proportions of radioactivity from 14C-18:2(n-6) and 14C-18:3(n-3) were recovered in the 20 and 22C fatty acids of triacylglycerols and total polar lipid. With 14C-20:5(n-3) as substrate, 27 and 33% of the total radioactivity recovered in the fatty acids of triacylglycerols and polar lipids respectively was present in 22C fatty acids. The corresponding values for l4C-20:4(n-6) as substrate were 19 and 18%. The results confirm the limited capacity of turbot to convert 18C PUFA to longer chain PUFA but demonstrate their ability to synthesize 22C PUFA from 20C PUFA. They also suggest a small but specific requirement for 20:4(n-6).  相似文献   

5.
Conjugated linoleic acid (CLA) isomers have unique effects on tissue lipids. Here we investigated the influence of individual CLA isomers on the lipid weight and fatty acid composition of lipid metabolizing (i.e. liver and retroperitoneal adipose) and lipid sensitive (i.e. spleen and heart) tissues. Female mice (8 week old; n=6/group) were fed either a control or one of the two CLA isomer supplemented (0.5%) diets for 8 weeks. The cis-9, trans-11-CLA diet reduced the 18:1n-9 wt% by 20-50% in liver, adipose tissue, and spleen, reduced the spleen n-3 polyunsaturated fatty acid (PUFA) by 90%, and increased the n-6 PUFA wt% by 20-50% in all tissues except heart. The trans-10, cis-12-CLA reduced both the n-6 and n-3 PUFA wt% in liver (>50%), reduced the heart n-3 PUFA wt% by 25%, and increased the wt% of spleen n-3 PUFA by 700%. The functional consequences of such changes in tissue fatty acid composition need to be investigated.  相似文献   

6.
The increase of n-6 polyunsaturated fatty acids (PUFA) in animal tissues has been proposed as a mechanism of lead (Pb) poisoning through lipid peroxidation or altered eicosanoids metabolism. We have studied fatty acid (FA) composition in liver and brain of mallards (Anas platyrhynchos) feeding for 3 weeks on diets containing combinations of low or high levels of vitamin E (20 or 200 UI/kg) and Pb (0 or 2 g/kg). Saturated FA, n-6 PUFA and total concentrations of FA were higher in livers of Pb-exposed mallards, but not in their brains. The percentage of n-6 PUFA in liver and brain was slightly higher in Pb-exposed mallards. The increase of n-6 PUFA in liver was associated with decreased triglycerides and increased cholesterol in plasma, thus could be in part attributed to feed refusal and fat mobilization. The hepatic ratios between adrenic acid (22:4 n-6) and arachidonic acid (20:4 n-6) or between adrenic acid and linoleic acid (18:2 n-6) were higher in Pb exposed birds, supporting the existing hypothesis of increased fatty acid elongation by Pb. Among the possible consequences of increased n-6 PUFA concentration in tissues, we found increased lipid peroxidation in liver without important histopathological changes, and decreased plasma alkaline phosphatase activity that may reflect altered bone metabolism in birds.  相似文献   

7.
The lipid composition of two species of Serrasalmid fish with different natural feeding habits were compared in relation to the polyunsaturated fatty acids (PUFA) supplied in their diets. Mylossoma aureum , a herbivorous piranha, was maintained on oatmeal flakes in which : 2(n-6) and : 3(n-3) were the only PUFA and accounted for 40–8 and 1.2%, respectively of dietary fatty acids. Serrasalmus nattereri , the carnivorous red piranha, was fed mosquito larvae containing .0-33.4% of their total fatty acids as : 2(n-6)+18 : 3(n-3) and 4.9-8.5% as 20 : 4(n-6)+20 : 5(n-3). The two species had similar lipid class compositions in liver, brain, viscera and carcass, except that lipids from M. aureum were generally richer in triacylglycerols. In both species, visceral and carcass lipid contained high levels of triacylglycerols whose principal PUFA was : 2(n-6). In M. aureum the major PUFA in liver total lipid and triacylglycerols was : 2(n-6) whilst the major PUFA in liver phospholipids were : 4(n-6) and : 5(n-6), with : 6(n-3) being a minor component. The level of : 6(n-3) in ethanolamine glycerophospholipids was significantly greater in brain than liver of M. aureum. Although absent from dietary lipid, : 6(n-3) was the major PUFA in phosphatidylcholine and ethanolamine glycerophospholipids from both the liver and brain of S, nattereri . In both species, the ratio of (n-6)/(n-3)PUFA was consistently lower in tissue lipids than in dietary lipids. The results are consistent with (i) the herbivorous M. aureum converting dietary C18 PUFA to their C20 and C22 homologues, (ii) the carnivorous S, nattereri forming : 6(n-3) from either 18:3(n-3) or 20: 5(n-3) and (iii) both species selectively desaturating and elongating (n-3) rather than (n-6) PUFA.  相似文献   

8.
Investigated were the changes in fatty acid composition, oxidation and enzymatic deterioration of lipids in frozen (−30°C) fish fillets from the Persian Gulf. The narrow barred Spanish mackerel ( Scomberomorus commersoni ) and white cheek shark ( Carcharhinus dussumieri ) were tested with storage times of 0, 1, 2, 3, 4, 5 and 6 months at −18°C. Statistical results showed that the major fatty acids among the saturated and monounsaturated fatty acids of each fish species were palmitic (C16:0) and oleic (C18:1n-9) acids, respectively. Both linoleic acid (C18:2n-6) and arachidonic acid (AA) (C20:4n-6) were predominant in total n-6 polyunsaturated fatty acids in both mackerel and shark. The EPA (eicosapentaenoic acid; C20:5 n-3) and DHA (docosahexaenoic acid; C22:6 n-3) acids were the major fatty acids among total n-3 acids in both fishes. During frozen storage, the PUFA (40.1 and 23.94%), n-3 (48 and 42.83%), ω 3/ ω 6 (41.36 and 50%), PUFA/SFA (56 and 42.23%) and EPA + DHA/C16 (55.55 and 46.66%) contents decreased in S. commersoni and C. dussumieri , respectively. Also peroxide, thiobarbituric acid (TBA) and free fatty acid (FFA) values significantly increased (P < 0.01) with the time of storage.  相似文献   

9.
Eight marine gastropod species from the littoral zone of the Red and Mediterranean Seas, and four freshwater gastropods from the Sea of Galilee were analysed for their fatty acid composition using TLC (silver nitrate impregnated silica gel) and gas chromatography–mass spectrometry (GC/MS). The major fatty acid components in all twelve samples were polyunsaturated fatty acids (PUFA). The total lipids of the Sea of Galilee species contained considerably more 22:6n-3 (from 10.33% to 12.63%) and 20:5n-3 (up to 2.67%) than those from marine species. The differences among the PUFA in these species appear to be due mainly to different environmental conditions, dietary habits and geographical spreading.  相似文献   

10.
We have studied the effects of diet supplementation with 10% fish oil on fatty acid composition of the main lipid classes of chick plasma lipoproteins bearing in mind the relationship between platelet aggregation and eicosanoid production from arachidonic acid. Fish oil drastically increased the percentages of 20:5 n-3 and 22:6 n-3 acids in the high density lipoprotein lipids. The 20:5/22:6 ratio increased in triacylglycerol fraction whereas in phospholipids and cholesterol esters both 20:5 and 22:6 acids increased in a similar proportion. The percentage of arachidonic acid was higher in phospholipids than in the other lipid classes from this lipoprotein fraction and was significantly reduced by fish oil feeding. Linoleic acid, which was the most abundant fatty acid in cholesterol esters, strongly decreased after fish oil consumption. Changes induced in low- and very low density lipoproteins were similar to that observed in the high density lipoproteins. However, in the very low density lipoproteins, the 20:5/22:6 ratio was not increased in triacylglycerols, in contrast to that found in the high- and low density fractions. Our results suggest that decreases observed by fish oil feeding in the percentages of arachidonic acid in phospholipids and linoleic acid in cholesterol esters in the three lipoprotein fractions may be of importance to explain some pharmacological effects of n-3 PUFA with regard to vascular diseases.  相似文献   

11.
Abstract: The fatty acid composition of phosphatidylethanolamine (PE), ethanolamine plasmalogens (EPs), phosphatidylserine (PS), phosphatidylcholine (PC), and sphingomyelin was studied in 22 human forebrains, ranging in age from 26 prenatal weeks to 8 postnatal years. Phospholipids were separated by two-dimensional TLC, and the fatty acid methyl esters studied by capillary column GLC. Docosahexaenoic acid (22:6n-3) increased with age in PE and PC, whereas arachidonic acid (20:4n-6) remained quite constant. In EP, 22:6n-3 increased less markedly than 20:4n-6, adrenic (22:4n-6) and oleic (18:1n-9) acids being the predominant fatty acids during postnatal age. In PS, 18:1n-9 increased dramatically throughout development, and 20:4n-6 and 22:4n-6 increased only until ∼6 months of age. Although 22:6n-3 kept quite constant during development in PS, its percentage decreased due to the accretion of other polyunsaturated fatty acids (PUFAs). As a characteristic myelin lipid, sphingomyelin was mainly constituted by very long chain saturated and monounsaturated fatty acids. Among them, nervonic acid (24:1n-9) was the major very long chain fatty acid in Sp, followed by 24:0, 26:1n-9, and 26:0, and its accretion after birth was dramatic. As myelination advanced, 18:1n-9 increased markedly in all four glycerophospholipids, predominating in EP, PS, and PC. In contrast, 22:6n-3 was the most important PUFA in PE in the mature forebrain.  相似文献   

12.
Two bivalve species Crassostrea gigas and Ruditapes philippinarum were fed eight weeks with three mono-specific algae diets: T-Isochrysis galbana, Tetraselmis suecica, Chaetoceros calcitrans, selected on the basis of their polyunsaturated fatty acid (PUFA) composition. The incorporation and the modification of dietary fatty acids in C. gigas and R. philippinarum gill lipids were analysed and compared. Essential PUFA (20:4n-6, 20:5n-3 and 22:6n-3) and non-methylene interrupted PUFAs (known to be synthesised from monounsaturated precursors) contents of gill polar lipid of both species were greatly influenced by the dietary conditioning. Interestingly, oysters and clams responded differentially to the mono-specific diets. Oysters maintained higher 20:5n-3 level and higher 22:2j/22:i and n-7/n-9 ratio in gill polar lipids than clams. To better discriminate dietary and species influences on the fatty acid composition, a Principal Component Analysis followed by a MANOVA on the two most explicative components was performed. These statistical analyses showed that difference in fatty acid compositions attributable to species were just as significant as the diet inputs. The differences of gill fatty acid compositions between oysters and clams are speculated to result of an intrinsic species characteristic and perhaps of a group characteristic: Fillibranch vs. Eulamellibranch.  相似文献   

13.
Matured females of two Lake Baikal endemic fish species, Comephorus baicalensis and Comephorus dybowski, have been investigated for lipid of the whole body and specific tissues (liver, muscles, ovaries), phospholipid classes and fatty acids of neutral and polar lipids. Total lipid in the body (38.9% fresh weight), liver (23.5%) and muscles (14.5%) of C. baicalensis were greater than those of C. dybowski (4.7, 8.7 and 2.6%, respectively); only their ovaries were similar (5.3 and 5.6% lipid, respectively). In both species, phosphatidylcholine and phosphatidylethanolamine were the major phospholipids, ranging from 60.7 to 75.1% of total phospholipid and 14.5–25.7%, respectively. In most cases, monounsaturated fatty acids (MUFA) were the major fatty acid group in C. baicalensis, whereas polyunsaturated fatty acids (PUFA) were the major group in C. dybowski. The MUFA 18:1(n-9) prevailed over other fatty acids in C. baicalensis and varied from 19% in polar lipids of muscles to 56.1% in neutral lipids of muscles. In polar lipid of C. dybowski, the PUFA 22:6(n-3) prevailed over other fatty acids in muscles and ovaries, while 16:0 dominated polar liver lipids and neutral lipids of all tissues. Other major fatty acids included 16:1(n-7), 18:1(n-7), and 20:5(n-3). Values of the (n-3)/(n-6) fatty acid ratio for neutral lipids of C. baicalensis (0.5–0.9) are well below the range of values characteristic either for marine or freshwater fish, while these values for polar lipids (1.6–1.8) are in the range typical of freshwater fish. Neutral lipid fatty acid ratios in C. dybowski (2.5–3.1) allow it to be assigned to freshwater fish, but polar lipids (2.8–3.7) leave it intermediary between freshwater and marine fish.  相似文献   

14.
Proximate composition of muscle was determined for the following deep-sea fish species: roughhead grenadier (Macrourus berglax), mora/deep-sea cod (Mora moro), Portuguese dogfish (Centroscymnus coelolepis), black dogfish (Centroscyllium fabricii), leafscale gulper shark (Centrophorus squamosus), greater lantern shark (Etmopterus princeps), smalleyed rabbitfish/ghostshark (Hydrolagus affinis), birdbeak dogfish (Deania calcea) and two species of smooth head (Alepocephalus bairdii and Alepocephalus agassizii). The first eight species contained less than 1% fat in the muscle, while the last two contained 3.0% and 3.6% fat, respectively. Fatty acid and lipid class composition was determined for the first five fish species and showed that the dominant class of lipids was phospholipids. The lipids consisted mainly of polyunsaturated fatty acids (PUFA), and docosahexaenoic acid (DHA) was the dominant fatty acid. Roughhead grenadier and mora showed resemblance to cod (Gadus morhua) regarding protein content, fat content and fatty acid composition. However, the muscle from the deep-sea fish species did contain a higher proportion of arachidonic acid (20:4n-6) than cod muscle.  相似文献   

15.
Feeding adult rats a 17% corn-oil diet for 8 weeks did not change brain polyunsaturated fatty acids (PUFA) compared to rats fed 2.2% corn oil (with 2.2% lard added). When the corn-oil diet was supplemented with 14.5% cod liver oil or 12.5% salmon oil, the fatty acid composition of brain PUFA was significantly altered, even if alpha-tocopherol was added to the salmon-oil diet. Comparing salmon-oil- and cod-liver-oil-fed animals with corn-oil-fed animals, arachidonic acid 22:4(n-6) and 22:5(n-6) were reduced, and 20:5(n-3), 22:5(n-3) and 22:6(n-3) were increased. Liver fatty acids were also significantly altered. Thus, the brain is not protected against a large excess of very-long-chain n-3 PUFA, which increase n-3/n-6 ratio and could lead to abnormal function, and which might be difficult to reverse.  相似文献   

16.
The composition of fatty acids in human milk lipids was determined in 41 women on the 3rd, 4th, 5th and 6th days after labour by the method of gas chromatography. In these investigations no significant differences were demonstrated in the fatty acids in the lipid fractions between these consecutive days. The level of polyunsaturated fatty acids of the n-6 and n-3 groups was about 11.9-13.6%, including linoleic acid (18:2, n-6) about 7.7-9.8%, and alpha-linolenic acid (18:3, n-3) about 0.7-1%. In the analysis group of n-6 fatty acids the determined acids were: linoleic acid (18:2, n-6), gamma-linolenic acid (18:3, n-6), eicosadienoic acid (20:2, n-6), eicosatrienoic acid (20:3, n-6), arachidonic acid (20:4, n-6), docosahexaenoic acid (22:6, n-6). From the group of n-3 acids the identified ones were: alpha-linolenic acid (18:3, n-3), eicosapentaenoic acid (20:5, n-3), docosapentaenoic acid (22:5, n-3) and docosahexaenoic acid (22:6, n-3). The obtained quotients of fatty acids n-6 through n-3 on the consecutive days were: 7.2:1-7.8:1, indicating a too low level of the n-3 acids in the investigated milk. The acids prevailing in human milk lipids were: oleic (18:1, n-9) and palmitic (16:0) which accounted for 37-39% and 25-26% respectively. The polyunsaturated to saturated fatty acid ratio (P:S) ranged from 0.28 to 0.33.  相似文献   

17.
We studied: (1) concentrations and fatty acid compositions of plasma non-esterified fatty acids, neutral lipids, and phospholipids, and (2) fatty acid composition of flight muscle phospholipids in wintering, premigratory, and spring and fall migrating western sandpipers ( Calidris mauri). Plasma neutral lipid and phospholipid levels were elevated in migrants, reflecting high rates of fat deposition. An important role of phospholipids in fattening is suggested by the fact that the amount of fatty acids in plasma phospholipids was similar to, or in spring as much as twice, that of neutral lipids. Changes in the ratio of plasma neutral lipids to phospholipids may indicate seasonal changes in triacylglycerol stores of invertebrate prey. Monounsaturation and total unsaturation of plasma neutral lipids and phospholipids increased during migration. Muscle phospholipids were more monounsaturated in spring and fall, but total unsaturation was reduced in fall. Arachidonic acid [20:4(n-6)] was especially abundant in muscle phospholipids in winter (29%) and declined during migration (19-22%), contributing to a decline in the ratio of n-6 to n-3 fatty acids. The abundance of plasma phospholipids and variability of neutral lipid to phospholipid ratio indicates that measurement of plasma phospholipids will improve methods for assessment of fattening rates of birds. The functional significance of changes in muscle phospholipids is unclear, but may relate to depletion of essential n-6 fatty acids during exercise.  相似文献   

18.
There is currently little information regarding the metabolic fates of yolk lipid and individual fatty acids during embryonic development of free-living avian species. Here we report the pattern of lipid utilization during embryonic development of the coot (Fulica atra) and the moorhen (Gallinula chloropus), two related species producing precocial offspring from eggs with a distinctive fatty acid composition and with an incubation period similar to that of the chicken. By the time of hatching, the proportions of the initial yolk lipid that had been transferred to the embryo were 88.2% and 79.8% for the coot and moorhen respectively. During the whole incubation period, 42.9% and 40.0% of the initial yolk lipid of the coot and moorhen respectively were lost from the system due to oxidation for energy, equating to 47.8% and 50.0% respectively of the actual amount of lipid transferred over this time. Thus, the lipid received by the embryos of both species is partitioned almost equally between the alternative fates of energy metabolism and incorporation into tissue lipids. In the coot, this 50:50 split between oxidation and tissue formation was maintained during the hatching process. The proportions of arachidonic (20:4n-6) and docosahexaenoic (22:6n-3) in the yolk lipids of these species were 2.5-3.5 times higher than in eggs of domestic poultry. In contrast to the situation in the chicken, there was no preferential uptake of 22:6n-3 from the yolk during coot and moorhen development. The fatty acid compositions of the whole body lipids of the coot and moorhen hatchlings were almost identical to those of the initial yolks indicating that, unlike the chicken, these species display relatively little overall biomagnification of 20:4n-6 and 22:6n-6 during development. It is suggested that the yolk fatty acid profiles of the coot and moorhen are particularly well matched to the requirements of the embryo, reducing the need for selective uptake of 22:6n-3 and for the overall biomagnification of 22:6n-3 and 20:4n-6.  相似文献   

19.
A method utilizing electrospray ionization coupled with tandem mass spectrometry was developed as a facile and rapid method to identify and quantify lipid remodeling in vivo. Electrospray/tandem mass spectrometric analyses were performed on lipids isolated from liver tissue and resident peritoneal cells from essential fatty acid sufficient and deficient mice. Essential fatty acid deficiency was chosen as the paradigm to evaluate the methodology because it epitomizes the most extreme dietary means of altering fatty acid composition of virtually all cellular lipid species. Qualitative and quantitative changes were measured in the phospholipid and cholesterol ester species directly in the chloroform/methanol lipid extract without any prior chromatographic separation. Lipid remodeling in liver and peritoneal cells from essential fatty acid deficient mice was qualitatively similar in cholesterol ester, phosphatidylcholine, and phosphatidylethanolamine. The monoenoic fatty acids palmitoleic acid (16:1 n-7) and oleic acid (18:1 n-9) were increased markedly, whereas all n-6 and n-3 polyunsaturated fatty acids were nearly depleted in phospholipid and cholesterol ester species. The n-9 polyunsaturated fatty acid surrogate, Mead acid (20:3 n-9), substituted for arachidonic acid (20:4 n-6) and docosahexaenoic acid (22:6 n-3) in phospholipid, but not in cholesterol ester, species. Another notable difference was that adrenic acid (22:4 n-6) and docosapentaenoic acid (22:5 n-6), both metabolites of arachidonic acid, accumulated in phospholipid and cholesterol ester species of peritoneal cells, but not in liver cells, of essential fatty acid sufficient mice. The overall body of data presented illustrates the implementation of electrospray/tandem mass spectrometry as a method for facile and direct quantification of changes in lipid species during lipid metabolic studies.  相似文献   

20.
Few studies have examined effects of feeding animals a diet deficient in n-6 polyunsaturated fatty acids (PUFAs) but with an adequate amount of n-3 PUFAs. To do this, we fed post-weaning male rats a control n-6 and n-3 PUFA adequate diet and an n-6 deficient diet for 15 weeks, and measured stable lipid and fatty acid concentrations in different organs. The deficient diet contained nutritionally essential linoleic acid (LA,18:2n-6) as 2.3% of total fatty acids (10% of the recommended minimum LA requirement for rodents) but no arachidonic acid (AA, 20:4n-6), and an adequate amount (4.8% of total fatty acids) of α-linolenic acid (18:3n-3). The deficient compared with adequate diet did not significantly affect body weight, but decreased testis weight by 10%. AA concentration was decreased significantly in serum (− 86%), brain (− 27%), liver (− 68%), heart (− 39%), testis (− 25%), and epididymal adipose tissue (− 77%). Eicosapentaenoic (20:5n-3) and docosahexaenoic acid (22:6n-3) concentrations were increased in all but adipose tissue, and the total monounsaturated fatty acid concentration was increased in all organs. The concentration of 20:3n-9, a marker of LA deficiency, was increased by the deficient diet, and serum concentrations of triacylglycerol, total cholesterol and total phospholipid were reduced. In summary, 15 weeks of dietary n-6 PUFA deficiency with n-3 PUFA adequacy significantly reduced n-6 PUFA concentrations in different organs of male rats, while increasing n-3 PUFA and monounsaturated fatty acid concentrations. This rat model could be used to study metabolic, functional and behavioral effects of dietary n-6 PUFA deficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号