首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
The thermal denaturation of recombinant human growth hormone (rhGH) was studied by differential scanning calorimetry and circular dichroism spectroscopy (CD). The thermal unfolding is reversible only below pH 3.5, and under these conditions a single two-state transition was observed between 0 and 100 degrees C. The magnitudes of the deltaH and deltaCp of this transition indicate that it corresponds to a partial unfolding of rhGH. This is also supported by CD data, which show that significant secondary structure remains after the unfolding. Above pH 3.5 the thermal denaturation is irreversible due to the aggregation of rhGH upon unfolding. This aggregation is prevented in aqueous solutions of alcohols such as n-propanol, 2-propanol, or 1,2-propanediol (propylene glycol), which suggests that the self-association of rhGH is caused by hydrophobic interactions. In addition, it was found that the native state of rhGH is stable in relatively high concentrations of propylene glycol (up to 45% v/v at pH 7-8 or 30% at pH 3) and that under these conditions the thermal unfolding is cooperative and corresponds to a transition from the native state to a partially folded state, as observed at acidic pH in the absence of alcohols. In higher concentrations of propylene glycol, the tertiary structure of rhGH is disrupted and the cooperativity of the unfolding decreases. Moreover, the CD and DSC data indicate that a partially folded intermediate with essentially native secondary structure and disordered tertiary structure becomes significantly populated in 70-80% propylene glycol.  相似文献   

2.
Intracellular fluids of marine elasmobranchs (sharks, skates and rays), holocephalans and the coelacanth contain urea at concentrations averaging 0.4m, high enough to significantly affect the structural and functional properties of many proteins. Also present in the cells of these fishes are a family of methylamine compounds, largely trimethylamine N-oxide with some betaine and sarcosine, and certain free amino acids, mainly beta-alanine and taurine, whose total concentration is approx. 0.2m. These methylamine compounds and amino acids have been found to be effective stabilizers of protein structure, and, at a 1:2 molar concentration ratio of these compounds to urea, perturbations of protein structure by urea are largely or fully offset. These counteracting effects of solutes on proteins are seen for: (1) thermal stability of protein secondary and tertiary structure (bovine ribonuclease); (2) the rate and extent of enzyme renaturation after acid denaturation (rabbit and shark lactate dehydrogenases); and (3) the reactivity of thiol groups of an enzyme (bovine glutamate dehydrogenase). Attaining osmotic equilibrium with seawater by these fishes has thus involved the selective accumulation of certain nitrogenous metabolites that individually have significant effects on protein structure, but that have virtually no net effects on proteins when these solutes are present at elasmobranch physiological concentrations. These experiments indicate that evolutionary changes in intracellular solute compositions as well as in protein amino acid sequences can have important roles in intracellular protein function.  相似文献   

3.
MB-1 is a de-novo protein designed to incorporate a large number of the nutritionally important amino acids methionine, lysine, leucine and threonine into a stable four-helix bundle protein. MB-1 has been expressed and purified from Escherichia coli, indicating it was resistant to intracellular proteases [Beauregard, M., Dupont, C., Teather, R.M. & Hefford, M.A. (1995) Bio/Technology 13, 974]. Here we report an analysis of the secondary, tertiary and quaternary structures in MB-1 using circular dichroism, fluorospectroscopy and size-exclusion chromatography. Our data indicate that the MB-1 structure is close to the target structure, an alpha-helical bundle, in many respects and is highly helical in solution. The single tyrosine incorporated into the designed protein as a spectrocopic probe of tertiary structure, is buried in a compact, folded core and becomes accessible on protein denaturation, as per design. Furthermore, MB-1 was found to be native-like in many respects: (a) protein denaturation induced by urea is cooperative and fully reversible; (b) its oligomeric state at moderate concentration is well defined; and (c) MB-1 has very low affinity for 8-anilino-1-naphthalenesulfonic acid (ANSA), leading to enhancement of ANSA fluorescence that resembles that of other native proteins. On the other hand, our analysis revealed two aspects that command further attention. The folding stability of MB-1 as assessed by urea and thermal denaturation is somewhat less than that found for natural globular proteins of similar size. Size-exclusion chromatography experiments and analysis of MB-1 denaturation indicate that MB-1 is dimeric, not monomeric as designed. In light of these results, the utility and the current limitations of our design approach are discussed.  相似文献   

4.
We have carried out equilibrium studies of the effect of the amino acid residue difference in the primary structure of bovine cytochrome-c (b-cyt-c) and horse cyt-c (h-cyt-c) on the mechanism of their folding <--> unfolding processes at pH 6.0 and 25 degrees C. It has been observed that guanidinium chloride (GdmCl)-induced denaturation of b-cyt-c follows a two-state mechanism and that of h-cyt-c is not a two-state process. This conclusion is reached from the coincidence and non-coincidence of GdmCl-induced transition curves of bovine and horse proteins, respectively, monitored by measurements of absorbance at 405, 530 and 695 nm and circular dichroism (CD) at 222, 416 and 405 nm. These measurements on h-cyt-c in the presence of GdmCl in the concentration range 0.75-2.0 M also suggest that the protein retains all the native far-UV CD but has slightly perturbed tertiary interaction. The intermediate in the presence of these low denaturant concentrations does not have the structural characteristics of a molten globule as judged by the 8-Anilino-1-napthalene sulfonic acid (ANS) binding and near-UV CD experiments. We have also carried out thermal denaturation studies of bovine and horse cyts-c in the presence of GdmCl monitored by absorbance at 405 nm and far-UV CD at 222 nm. The heat-induced denaturation measurements in the presence of the denaturant show (1) that denaturation of b-cyt-c is a two-state process and that of h-cyt-c does not follow a two-state mechanism, and (2) that the enthalpy change on denaturation of both proteins strongly depends on GdmCl concentration.  相似文献   

5.
A number of residues in globins family are well conserved but are not directly involved in the primary oxygen-carrying function of these proteins. A possible role for these conserved, non-functional residues has been suggested in promoting a rapid and correct folding process to the native tertiary structure. To test this hypothesis, we have studied pH-induced equilibrium unfolding of mutant apomyoglobins with substitutions of the conserved residues Trp14 and Met131, which are not involved in the function of myoglobin, by various amino acids. This allowed estimating their impact on the stability of various conformational states of the proteins and selecting conditions for a folding kinetics study. The results obtained from circular dichroism, tryptophan fluorescence, and differential scanning microcalorimetry for these mutant proteins were compared with those for the wild type protein and for a mutant with the non-conserved Val17 substituted by Ala. In the native folded state, all of the mutant apoproteins have a compact globular structure, but are destabilized in comparison to the wild type protein. The pH-induced denaturation of the mutant proteins occurs through the formation of a molten globule-like intermediate similar to that of the wild type protein. Thermodynamic parameters for all of the proteins were calculated using the three state model. Stability of equilibrium intermediates at pH ~4.0 was shown to be slightly affected by the mutations. Thus, all of the above substitutions influence the stability of the native state of these proteins. The cooperativity of conformational transitions and the exposed to solvent protein surface were also changed, but not for the substitution at Val17.  相似文献   

6.
Fluorocarbons are quintessentially man-made molecules, fluorine being all but absent from biology. Perfluorinated molecules exhibit novel physicochemical properties that include extreme chemical inertness, thermal stability, and an unusual propensity for phase segregation. The question we and others have sought to answer is to what extent can these properties be engineered into proteins? Here, we review recent studies in which proteins have been designed that incorporate highly fluorinated analogs of hydrophobic amino acids with the aim of creating proteins with novel chemical and biological properties. Fluorination seems to be a general and effective strategy to enhance the stability of proteins, both soluble and membrane bound, against chemical and thermal denaturation, although retaining structure and biological activity. Most studies have focused on small proteins that can be produced by peptide synthesis as synthesis of large proteins containing specifically fluorinated residues remains challenging. However, the development of various biosynthetic methods for introducing noncanonical amino acids into proteins promises to expand the utility of fluorinated amino acids in protein design.  相似文献   

7.
Protein design is currently used for the creation of new proteins with desirable traits. In our lab we focus on the synthesis of proteins with high essential amino acid content having potential applications in animal nutrition. One of the limitations we face in this endeavour is achieving stable proteins despite a highly biased amino acid content. We report here the synthesis and the characterization of three variants of MB-1Trp in which two solvent-exposed Leu have been replaced by Glu allowing for the formation of new salt bridges at the surface of the protein. Although both mutations were expected to be similar (i.e. same mutation in a comparable local environment), they appear to have different effects on MB-1Trp as shown by far-UV circular dichroism, thermal denaturation, fluorescence and proteolytic resistance measurements. For the mutation Leu68Glu, an increase in the protein melting temperature of 6 degrees C was observed. Surprisingly, the mutation in position Leu19Glu led to a decrease in melting temperature and a modification of tertiary structure.  相似文献   

8.
The significance of two interface arginine residues on the structural integrity of an obligatory dimeric enzyme thymidylate synthase (TS) from Lactobacillus casei was investigated by thermal and chemical denaturation. While the R178F mutant showed apparent stability to thermal denaturation by its decreased tendency to aggregate, the Tm of the R218K mutant was lowered by 5 degrees C. Equilibrium denaturation studies in guanidinium chloride (GdmCl) and urea indicate that in both the mutants, replacement of Arg residues results in more labile quaternary and tertiary interactions. Circular dichroism studies in aqueous buffer suggest that the protein interior in R218K may be less well-packed as compared to the wild type protein. The results emphasize that quaternary interactions may influence the stability of the tertiary fold of TS. The amino acid replacements also lead to notable alteration in the ability of the unfolding intermediate of TS to aggregate. The aggregated state of partially unfolded intermediate in the R178F mutant is stable over a narrower range of denaturant concentrations. In contrast, there is an exaggerated tendency on the part of R218K to aggregate in intermediate concentrations of the denaturant. The 3 A crystal structure of the R178F mutant reveals no major structural change as a consequence of amino acid substitution. The results may be rationalized in terms of mutational effects on both the folded and unfolded state of the protein. Site specific amino acid substitutions are useful in identifying specific regions of TS involved in association of non-native protein structures.  相似文献   

9.
The thermal denaturation of bacteriorhodopsin in the purple membrane of Halobacterium halobium has been studied by differential scanning calorimetry (DSC) and temperature-dependent spectroscopy in the pH range from 5 to 11. Monitoring of protein fluorescence and absorbance in the near-UV and visible regions indicates that changes primarily occur in tertiary structure with denaturation. Far-UV circular dichroism shows only small changes in the secondary structure, unlike most globular water-soluble proteins of comparable molecular weight. The DSC transition can best be described as a two-state denaturation of the trimer. Thermodynamic analysis of the calorimetric transition reveals some similarity between the unfolding of bacteriorhodopsin and water-soluble proteins. Specifically, a pH dependence of the midpoint temperature of denaturation is seen as well as a temperature-dependent enthalpy of denaturation. Proteolysis experiments on denatured purple membrane suggest that bacteriorhodopsin may be partially extruded from the membrane as it denatures. Exposure of buried hydrophobic residues to the aqueous environment upon denaturation is consistent with the observed temperature-dependent enthalpy.  相似文献   

10.
The present report describes application of advanced analytical methods to establish correlation between changes in human serum proteins of patients with coronary atherosclerosis (protein metabolism) before and after moderate beer consumption. Intrinsic fluorescence, circular dichroism (CD), differential scanning calorimetry and hydrophobicity (So) were used to study human serum proteins. Globulin and albumin from human serum (HSG and HSA, respectively) were denatured with 8 m urea as the maximal concentration. The results obtained provided evidence of differences in their secondary and tertiary structures. The thermal denaturation of HSA and HSG expressed in temperature of denaturation (Td, degrees C), enthalpy (DeltaH, kcal/mol) and entropy (DeltaS kcal/mol K) showed qualitative changes in these protein fractions, which were characterized and compared with fluorescence and CD. Number of hydrogen bonds (n) ruptured during this process was calculated from these thermodynamic parameters and then used for determination of the degree of denaturation (%D). Unfolding of HSA and HSG fractions is a result of promoted interactions between exposed functional groups, which involve conformational changes of alpha-helix, beta-sheet and aperiodic structure. Here evidence is provided that the loosening of the human serum protein structure takes place primarily in various concentrations of urea before and after beer consumption (BC). Differences in the fluorescence behavior of the proteins are attributed to disruption of the structure of proteins by denaturants as well as by the change in their compactability as a result of ethanol consumption. In summary, thermal denaturation parameters, fluorescence, So and the content of secondary structure have shown that HSG is more stable fraction than HSA.  相似文献   

11.
Temperature and solvent effects on reaction center structures were examined in two thermophilic photosynthetic bacteria, Chloroflexus aurantiacus and Chromatium tepidum, in order to gain insight into the interactions among the reaction center proteins and pigment systems. Thermal stability of the reaction centers was found to be proportional to the optimum growth temperature. Circular dichroism (CD) spectra in the 250-300 nm region indicated that thermal denaturation destroyed tertiary structures (helix-to-helix interactions or amino acid residue conformation) in the native reaction center, keeping helical structures intact. Absorption and circular dichroism spectral changes showed that alcohol denatured the so-called special pair and the accessory BChl a independently. The alcohol denaturation further indicates that the coordination between BChl a and amino acid residue in the protein is one of the important interactions maintaining the pigment organization of the reaction centers.  相似文献   

12.
Recently defined family of intrinsically disordered proteins (IDP) includes proteins lacking rigid tertiary structure meanwhile fulfilling essential biological functions. Here we show that apo-state of pike parvalbumin (alpha- and beta-isoforms, pI 5.0 and 4.2, respectively) belongs to the family of IDP, which is in accord with theoretical predictions. Parvalbumin (PA) is a 12-kDa calcium-binding protein involved into regulation of relaxation of fast muscles. Differential scanning calorimetry measurements of metal-depleted form of PA revealed the absence of any thermally induced transitions with measurable denaturation enthalpy along with elevated specific heat capacity, implying the lack of rigid tertiary structure and exposure of hydrophobic protein groups to the solvent. Calcium removal from the PAs causes more than 10-fold increase in fluorescence intensity of hydrophobic probe bis-ANS and is accompanied by a decrease in alpha-helical content and a marked increase in mobility of aromatic residues environment, as judged by circular dichroism spectroscopy (CD). Guanidinium chloride-induced unfolding of the apo-parvalbumins monitored by CD showed the lack of fixed tertiary structure. Theoretical estimation of energetics of the charge-charge interactions in the PAs indicated their pronounced destabilization upon calcium removal, which is in line with sequence-based predictions of disordered protein chain regions. Far-UV CD studies of apo-alpha-PA revealed hallmarks of cold denaturation of the protein at temperatures below 20 degrees C. Moreover, a cooperative thermal denaturation transition with mid-temperature at 10-15 degrees C is revealed by near-UV CD for both PAs. The absence of detectable enthalpy change in this temperature region suggests continuous nature of the transition. Overall, the theoretical and experimental data obtained show that PA in apo-state is essentially disordered nevertheless demonstrates complex denaturation behavior. The native rigid tertiary structure of PA is attained upon association of one (alpha-PA) or two (beta-PA) calcium ions per protein molecule, as follows from calorimetric and calcium titration data.  相似文献   

13.
The year 2011 marked the half-centenary of the publication of what came to be known as the Anfinsen postulate, that the tertiary structure of a folded protein is prescribed fully by the sequence of its constituent amino acid residues. This postulate has become established as a credo, and, indeed, no contradictions seem to have been found to date. However, the experiments that led to this postulate were conducted on only a single protein, bovine ribonuclease A (RNAse). We conduct molecular dynamics (MD) simulations on this protein with the aim of mimicking this experiment as well as making the methodology available for use with basically any protein. There have been many attempts to model denaturation and refolding processes of globular proteins in silico using MD, but only a few examples where disulphide-bond containing proteins were studied. We took the view that if the reductive deactivation and oxidative reactivation processes of RNAse could be modelled in silico, this would provide valuable insights into the workings of the classical Anfinsen experiment.  相似文献   

14.
E C Ong  G D Fasman 《Biochemistry》1976,15(3):477-486
The structural transitions of (Lysx, Leuy)n-DNA and (Lysx)n(Leuy)m-DNA complexes have been studied by thermal denaturation utilizing simultaneous absorption and circular dichroism (CD) measurements [R. Mandel and G.D. Fasman (1974), Biochem. Biophys. Res. Commun. 59, 672]. These complexes are used as models for nucleohistones. At amino acid/nucleotide ratios r less than 1, the copolymers bind to DNA in a ratio of one amino acid residue per nucleotide, and such binding stabilizes the DNA double helix against thermal denaturation relative to the unbound regions. The leucine residues in the copolymers stabilize the bound portion of the complex against thermal denaturation but to a lesser degree than does poly(L-lysine). This study confirms the hypothesis that absorption melting profiles reflect only the change in secondary structure (helix-coil transition) of DNA. It was found that, in the absence of a higher ordered structure (condensed), the CD melting profile also reflects this same conformational transition, and the melting temperatures, Tm, in CD are equal to those in absorption. However, when a higher ordered structure (tertiary) exists in the complex, then the CD melting profile will be dominated by the structural transitions related to the melting of the higher ordered asymmetric structure in the condensed state, followed by the melting of the secondary structure. Under such circumstances, the Tm obtained from absorption may be slightly different from that of the CD, since only the secondary structural changes are being reflected in absorption. The relevance of these studies to the structure of chromatin is discussed.  相似文献   

15.
The thermal denaturation of the dimeric enzyme triosephosphate isomerase (TIM) from Saccharomyces cerevisiae was studied by spectroscopic and calorimetric methods. At low protein concentration the structural transition proved to be reversible in thermal scannings conducted at a rate greater than 1.0 degrees C min(-1). Under these conditions, however, the denaturation-renaturation cycle exhibited marked hysteresis. The use of lower scanning rates lead to pronounced irreversibility. Kinetic studies indicated that denaturation of the enzyme likely consists of an initial first-order reaction that forms thermally unfolded (U) TIM, followed by irreversibility-inducing reactions which are probably linked to aggregation of the unfolded protein. As judged from CD measurements, U possesses residual secondary structure but lacks most of the tertiary interactions present in native TIM. Furthermore, the large increment in heat capacity upon denaturation suggests that extensive exposure of surface area occurs when U is formed. Above 63 degrees C, reactions leading to irreversibility were much slower than the unfolding process; as a result, U was sufficiently long-lived as to allow an investigation of its refolding kinetics. We found that U transforms into nativelike TIM through a second-order reaction in which association is coupled to the regain of secondary structure. The rate constants for unfolding and refolding of TIM displayed temperature dependences resembling those reported for monomeric proteins but with considerably larger activation enthalpies. Such large temperature dependences seem to be determinant for the occurrence of kinetically controlled transitions and thus constitute a simple explanation for the hysteresis observed in thermal scannings.  相似文献   

16.
The stabilities toward thermal and chemical denaturation of three recombinant isoforms of human apolipoprotein E (r-apoE2, r-apoE3 and r-apoE4), human plasma apoE3, the recombinant amino-terminal (NT) and the carboxyl-terminal (CT) domains of plasma apoE3 at pH 7 were studied using near and far ultraviolet circular dichroism (UV CD), fluorescence and size-exclusion chromatography. By far UV CD, thermal unfolding was irreversible for the intact apoE isoforms and consisted of a single transition. The r-apoE3 was found to be less stable as compared to the plasma protein and the stability of recombinant isoforms was r-apoE4相似文献   

17.
A hyaluronic acid-based anionic nanogel formed by self-assembly of cholesteryl-group-bearing HA is designed for protein delivery. The HA nanogel spontaneously binds various types of proteins without denaturation, such as recombinant human growth hormone, erythropoietin, exendin-4, and lysozyme. The HA nanogel shows unique colloidal properties, in particular that an injectable hydrogel is formed by salt-induced association of the HA nanogel. A pharmacokinetic study in rats shows that an in situ gel formulation, prepared by simply mixing rhGH and HA nanogel in phosphate buffer, maintains plasma rhGH levels within a narrow range over one week. Therefore, HA nanogels offer a simple method for easy formulation of therapeutic proteins and are effective for sustained protein release systems.  相似文献   

18.
Classical protein folding invokes a cooperative transition between distinct thermodynamic states that are individually populated at equilibrium and separated by an energy barrier. It has been proposed, however, that the small protein, BBL, undergoes one-step downhill folding whereby it folds non-cooperatively to its native state without encountering an appreciable energy barrier. Only a single conformational ensemble is populated under given conditions, and so the denatured state ensemble progressively changes into the native structure. A wide dispersion of thermal denaturation midpoints that was observed for an extrinsically labelled fragment of BBL is proposed to be evidence for its one-state, downhill folding, a phenomenon that is also suggested to be functionally important for BBL and its homologues. We found, however, that thermal denaturation of unlabelled wild-type BBL was highly cooperative, with very similar transition midpoints for the melting of secondary and tertiary interactions, as well as for individual residues when monitored by NMR. Similar results were also observed for two other homologues, E3BD and POB. Further, the extrinsic fluorophores perturbed the unfolding energetics of labelled BBL, and complicated its equilibrium behaviour. One-step downhill folding may well occur for some proteins that do not have distinct folded states but not for BBL and its well-folded homologues.  相似文献   

19.
The thermal and chemical unfolding pathways of two β carbonic anhydrases, Rv3588c and Rv1284 of Mycobacterium tuberculosis have been compared by fluorescence and circular dichroism. Chemical and thermal denaturation of the tertiary and secondary structures of these two ubiquitous enzymes of the pathogen reveals that the unfolding of Rv3588c is mediated through the formation of a molten globule intermediate with depleted tertiary structure. However, Rv1284 directly unfolds from the native to the unfolded state. Calculation of the thermodynamic parameters suggest that overall Rv3588c is more stable than Rv1284. Stern–Volmer analysis together with the fluorescence spectra of the proteins suggest that Trp115 in Rv1284 is more buried than Trp10 in Rv3588c. The tryptophan residues in both the proteins are surrounded by positively charged amino acid residues.  相似文献   

20.
Our current knowledge of protein unfolding is overwhelmingly related to reversible denaturation. However, to engineer thermostable enzymes for industrial applications and medical diagnostics, it is necessary to consider irreversible denaturation processes and/or the entire quaternary structure. In this study we have used lactate oxidase (LOD), which is employed in lactic acid sensors, as a model example to design thermostable variants by rational design. Twelve mutant proteins were tested and one of them displayed a markedly greater thermostability than all the mutants we had previously obtained by random mutagenesis. This mutant was designed so as to strengthen the interaction between the subunits and stabilize the quaternary structure. Since LOD is difficult to crystallize, its three-dimensional structure remains unknown. This study shows that it is possible to carry out rational design to improve thermostability using a computer-aided quaternary structure model based on the known tertiary structure of a related protein. Critical factors required for increasing the thermal stability of proteins by rational design, where the 3-D structure is not available, are discussed. Revisions requested 18 August 2005; Revisoins received 6 September 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号