首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aspartic proteinases from flowers of Cynara cardunculus have been extensively studied and long used as coagulants in the manufacture of several traditional Spanish and Portuguese cheeses. These endopeptidases are called cardosins or cynarases, depending on the authors. However, the proteinases of another plant of the genus Cynara, the artichoke (Cynara scolymus), are less known, probably because the flower of this plant is usually consumed as a vegetable. In the study described here, three proteinases (cynarases A, B and C) with milk-clotting properties were purified from the stigma of artichoke. All three proteinases are glycoproteins and composed of a one large and one small subunit. The enzymatic properties of cynarase A, a glycoprotein containing N-linked high mannose type glycans, which express maximum activity at pH 5.0 and 70 degrees C, were studied in detail. Catalytic and inhibition studies indicated that this cynarase is of the aspartic acid type. The results indicate artichoke extract could also be used in the milk industry in the same way as the extract obtained from the flower of C. cardunculus.  相似文献   

2.
Basic artichoke (Cynara scolymus L.) peroxidase (AKP-C), when purified from the plant, has an unusually intense and sharp Soret absorption peak. The resonance Raman spectrum [López-Molina, D., et al. (2003) J. Inorg. Biochem. 94, 243-254] suggested a mixture of pentacoordinate high-spin (5cHS) and 6-aquo hexacoordinate high-spin (6cHS) ferric heme species. The rate constant (k(1)) of compound I formation with hydrogen peroxide (H(2)O(2)) was also lower than expected. Further stopped-flow studies have shown this reaction to be biphasic: a nonsaturating fast phase and a slow phase with complex H(2)O(2) concentration dependence. Addition of calcium ions (Ca(2+)) changed the absorption spectrum, suggesting the formation of a fully 5cHS species with a k(1) more than 5 orders of magnitude greater than that in the absence of Ca(2+) using the chelator ethylenediaminetetraacetic acid. Ca(2+) titrations gave a dissociation constant for a single Ca(2+) of approximately 20 microM. The circular dichroism spectrum of AKP-C was not significantly altered by Ca(2+), indicating that any structural changes will be minor, but removal of Ca(2+) did suppress the alkaline transition between pH 10 and 11. A kinetic analysis of the reaction of Ca(2+)-free AKP-C with H(2)O(2) supports an equilibrium between a slow-reacting 6cHS form and a more rapidly reacting 5cHS species, the presence of which was confirmed in nonaqueous solution. AKP-C, as purified, is a mixture of Ca(2+)-bound 5cHS, 6-aquo 6cHS, and Ca(2+)-free 5cHS species. The possibility that Ca(2+) concentration could control peroxidase activity in the plant is discussed.  相似文献   

3.
A high molecular weight inulin has been prepared from artichoke (Cynara scolymus L.) agroindustrial wastes using environmentally benign aqueous extraction procedures. Physico-chemical analysis of the properties of artichoke inulin was carried out. Its average degree of polymerization was 46, which is higher than for Jerusalem artichoke, chicory, and dahlia inulins. GC-MS confirmed that the main constituent monosaccharide in artichoke inulin was fructose and its degradation by inulinase indicated that it contained the expected beta-2,1-fructan bonds. The FT-IR spectrum was identical to that of chicory inulin. These data indicate that artichoke inulin will be suitable for use in a wide range of food applications. The health-promoting prebiotic effects of artichoke inulin were demonstrated in an extensive microbiological study showing a long lasting bifidogenic effect on Bifidobacterium bifidum ATCC 29521 cultures and also in mixed cultures of colonic bacteria.  相似文献   

4.
Bacteria have been isolated from shoot tips of symptomless globe artichoke plants. These were identified as Pseudomonas fluorescens, Pseudomonas marginalis, Pseudomonas spp., Serratia liquefaciens, Enterobacter agglomerans/Erwinia, Agrobacterium radiobacter, an unidentified member of Rhizobiaceae and another classified in the “corynebacteria” group. The most frequently isolated species was P. fluorescens, biovars II and III. The endogenous character of these bacteria was studied in plants growing in vitro and in the open field. P. fluorescens, P. marginalis, S. liquefaciens and E. agglomerans/Erwinia caused symptoms in plants growing in vitro, but only P. fluorescens biovar II and P. marginalis produced symptoms in plants growing in open fields. Differences in pathogenicity were observed on inoculated plants growing in vitro or in the open field. This suggests that several endophytic bacterial species may be responsible for the high levels of contaminants found during the micropropagation of globe artichoke.  相似文献   

5.
The methanolic extract from the leaves of artichoke (Cynara scolymus L.) was found to suppress serum triglyceride elevation in olive oil-loaded mice. Through bioassay-guided separation, sesquiterpenes (cynaropicrin, aguerin B, and grosheimin) were isolated as the active components together with new sesquiterpene glycosides (cynarascolosides A, B, and C). The oxygen functional groups at the 3- and 8-positions and exo-methylene moiety in alpha-methylene-gamma-butyrolactone ring were found to be essential for the anti-hyperlipidemic activity of guaiane-type sesquiterpene. In addition, inhibition of gastric emptying was shown to be partly involved in anti-hyperlipidemic activity.  相似文献   

6.
The effectiveness of two arbuscular mycorrhizal (AM) fungal isolates (Glomus intraradices and Glomus viscosum) in sustaining plant growth and the physiological activities of the micropropagated globe artichoke (Cynara cardunculus L. var. scolymus (L.) Fiori) were investigated during acclimatization and 90 days after plant establishment. All the mycorrhizal microplants survived transplant shock thus confirming the positive role of AM fungi colonization on ex vitro establishment. The growth increased in mycorrhizal plants, especially in plants inoculated with Glomus viscosum. Mycorrhizal plantlets showed higher stomatal conductance, which is probably necessary to supply the carbon needs of fungal symbionts. The SPAD (soil plant analysis development) data could be useful for plant management as a predictor for tissue nitrogen levels. The higher SPAD values in mycorrhizal plants are strictly related to a higher photosynthetic potential, and consequently to their better nitrogen nutrient status due to the symbiotic relationship. Regardless of the mycorrhizal performance in the host–fungus combination, the most efficient fungus for the artichoke microplants was Glomus viscosum.  相似文献   

7.
We present the first genetic maps of globe artichoke (Cynara cardunculus var. scolymus L. 2n=2x=34), constructed with a two-way pseudo-testcross strategy. A F1 mapping population of 94 individuals was generated between a late-maturing, non-spiny type and an early-maturing spiny type. The 30 AFLP, 13 M-AFLP and 9 S-SAP primer combinations chosen identified, respectively, 352, 38 and 41 polymorphic markers. Of 32 microsatellite primer pairs tested, 12 identified heterozygous loci in one or other parent, and 7 were fully informative as they segregated in both parents. The female parent map comprised 204 loci, spread over 18 linkage groups and spanned 1330.5 cM with a mean marker density of 6.5 cM. The equivalent figures for the male parent map were 180 loci, 17 linkage groups, 1239.4 and 6.9 cM. About 3% of the AFLP and AFLP-derived markers displayed segregation distortion with a P value below 0.01, and were not used for map construction. All the SSR loci were included in the linkage analysis, although one locus did show some segregation distortion. The presence of 78 markers in common to both maps allowed the alignment of 16 linkage groups. The maps generated provide a firm basis for the mapping of agriculturally relevant traits, which will then open the way for the application of a marker-assisted selection breeding strategy in this species.  相似文献   

8.
The effects of calcium ions (Ca2+) on the stability of artichoke (Cynara scolymus L.) peroxidase (AKPC) have been studied. The thermal stability of AKPC was improved by the addition of Ca2+; the melting temperature increased by 20 °C and the deactivation energy by 26 kJ mol−1. AKPC was stable in a selection of organic solvents but was less active with 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) than under aqueous conditions. Ca2+-free AKPC retained more activity in the presence of organic solvents due to its better maintenance of the rate of compound I formation with hydrogen peroxide (H2O2) compared to AKPC-Ca2+. AKPC retained at least 75% activity over 24 h in the pH range 3.0–10.5 and about 50% over 1 month at pH 7.0 or 5.5, irrespective of the Ca2+ content. AKPC-Ca2+ was considerably more resistant to inactivation by H2O2 than Ca2+-free AKPC suggesting that the presence of Ca2+ boosts turnover under oxidizing conditions. AKPC has been applied as an alternative to horseradish peroxidase (HRP) in glucose concentration assays; the presence of Ca2+ or of the Ca2+ chelating agent ethylenediaminetetraacetic acid made no difference to the final result. The possibility is discussed that addition and removal of a labile Ca2+ from AKPC could be used to control enzyme activity both in vivo and in vitro.  相似文献   

9.
A kinetic study of o-dianisidine oxidation by hydrogen peroxide in the presence of horseradish peroxidase within the pH range of 3.7-9.0 has been carried out. It was shown that the reaction of o-dianisidine peroxidase oxidation obeys the Michaelis--Menten kinetics; the kcat and Km values within the pH range used were determined. The optimum of peroxidase catalytic activity during o-dianisidine oxidation was observed at pH 5.0-6.0. The kinetic pattern of the reaction is discussed. It was demonstrated that deprotonation of the group at pK 6.5 decreases the kcat value 60 times. At pH greater than 8.0 an additional ionogenic group controls the enzyme activity.  相似文献   

10.
The reaction of H2O2 with reduced cytochrome c oxidase was investigated with rapid-scan/stopped-flow techniques. The results show that the oxidation rate of cytochrome a3 was dependent upon the peroxide concentration (k = 2 X 10(4) M-1 X s-1). Cytochrome a and CuA were oxidised with a maximal rate of approx. 20 s-1, indicating that the rate of internal electron transfer was much slower with H2O2 as the electron acceptor than with O2 (k greater than or equal to 700 s-1). Although other explanations are possible, this result strongly suggests that in the catalytic cycle with oxygen as a substrate the internal electron-transfer rate is enhanced by the formation of a peroxo-intermediate at the cytochrome a3-CuB site. It is shown that H2O2 took up two electrons per molecule. The reaction of H2O2 with oxidised cytochrome c oxidase was also studied. It is shown that pulsed oxidase readily reacted with H2O2 (k approximately 700 M-1 X s-1). Peroxide binding is followed by an H2O2-independent conformational change (k = 0.9 s-1). Resting oxidase partially bound H2O2 with a rate similar to that of pulsed oxidase; after H2O2 binding the resting enzyme was converted into the pulsed conformation in a peroxide-independent step (k = 0.2 s-1). Within 5 min, 55% of the resting enzyme reacted in a slower process. We conclude from the results that oxygenated cytochrome c oxidase probably is an enzyme-peroxide complex.  相似文献   

11.
Reactions of ferric horseradish peroxidase with hydrogen cyanide and hydrogen peroxide were studied as a function of pressure. Activation volumes are small and differ in sign (delta V = 1.7 +/- 0.5 ml/mol for peroxidase + HCN and -1.5 +/- 0.5 ml/mol for peroxidase + H2O2). The temperature dependence of cyanide binding to horseradish peroxidase was also determined. A comparison is made of relevant parameters for cyanide binding and compound I formation.  相似文献   

12.
The influence of pH on the kinetics of the initial rate of calcium uptake by isolated kidney mitochondria was studied using the ruthenium red-ethylene glycol bis(β-aminoethyl ether) N,N-tetraacetic acid quench method (K. Reed and F. Bygrave, 1975, Eur. J. Biochem.55, 497–504). In the absence of phosphate, the Km is increased 50% and the V is decreased 57% when the pH is decreased from pH 7.4 to 7.0. Conversely, when the pH is increased to 7.8, the Km is decreased 25% while the V is not affected. The presence of 0.1 or 0.4 mm phosphate in the incubation medium abolishes the change in Km at a low pH while the V remains depressed by 36 and 25%, respectively. The presence of phosphate does not affect the decrease in the Km seen with an increased medium pH. Mitochondria incubated in steady-state conditions with a medium free calcium of 0.7 μm also show significant changes in calcium exchange and distribution with pH. Two kinetic calcium pools are found in isolated mitochondria. Decreasing pH from 7.4 to 7.1 decreases mitochondria total calcium 32%, decreases the rapidly exchanging pool 28%, and depresses both the mitochondrial membrane and an intramitochondrial calcium exchange by 54 and 22%, respectively. Raising the pH to 7.7 increases both exchangeable pools (63 and 46%), and increases the mitochondrial membrane calcium exchange 44%. These results are consistent with previous studies on the influence of intracellular pH on calcium metabolism of kidney cells in which the mitochondrial pool was markedly affected by pH (R. Studer, and A. Borle, 1979, J. Membrane Biol.48, 325–341). Alterations in cellular pH may modify mitochondrial calcium transport and cellular calcium metabolism and thus affect cell functions which are calcium dependent.  相似文献   

13.
In search of a technique for rapid clonal propagation and sanitation of Cynara scolymus L. we have been confronted with the problem of vitrification.
We only succeeded in overcoming this problem by raising the agar concentration of our medium to 1.1% instead of 0.6%. By using the Chardakov-method and direct measurement of the water potential with a thermocouple psychrometer we were able to prove that this result was attributable to the matric potential.  相似文献   

14.
15.
In the absence of reductant substrates, and with excess H2O2, peroxidase (donor: hydrogen-peroxide oxidoreductase, EC 1.11.1.7) shows the kinetic behaviour of a suicide inactivation, H2O2 being the suicide substrate. From the complex (compound I-H2O2), a competition is established between two catalytic pathways (the catalase pathway and the compound III-forming pathway), and the suicide inactivation pathway (formation of inactive enzyme). A kinetic analysis of this system allows us to obtain a value for the inactivation constant, ki = (3.92 +/- 0.06) x 10(-3) x s-1. Two partition ratios (r), defined as the number of turnovers given by one mol of enzyme before its inactivation, can be calculated: (a) one for the catalase pathway, rc = 449 +/- 47; (b) the other for the compound III-forming pathway, rCoIII = 2.00 +/- 0.07. Thus, the catalase activity of the enzyme and, also, the protective role of compound III against an H2O2-dependent peroxidase inactivation are both shown to be important.  相似文献   

16.
A kinetic study has been carried out over the pH range of 2.63-9.37 for the reaction of horseradish peroxidase with hydrogen peroxide to form compound I of th;e enzyme. Analysis of the results, indicates that there are two kinetic influencing, ionizable groups on the enzyme with pKa values of 3.2 and 3.9. Protonation of these groups results in a decrease in the rate of reaction of the enzyme with H2O2. A previous study of the kinetics of cyanide binding to horseradish peroxidase (Ellis, W.D. & Dunford, H.B.: Biochemistry 7, 2054-2062 (1968)) has been extended to down to pH 2.55, and analysis of these results also indicates the presence of two kinetically important ionizable groups on the enzyme with pKa values of 2.9 and 3.9.  相似文献   

17.
The kinetics of the forward ATP sulfurylase-catalyzed reaction were examined using a new assay based on 32PPi released from [gamma-32P]MgATP in the presence of inorganic sulfate. Replots yielded Vmaxf = 6.6 units mg protein-1, KmA = 0.13 mM, Kia = 0.33 mM, and KmB = 0.55 mM, where A = MgATP and B = SO2-4. Thiosulfate, a dead-end inhibitor of the reaction, was competitive with sulfate and noncompetitive with respect to MgATP. The ratio kcat/KmA was determined for several alternative inorganic substrates, B, where A = MgATP and B = SO2-4, SeO2-4, MoO2-4, WO2-4, or CrO2-4. For SO2-4 and SeO2-4, the ratio was 5-6.5 X 10(4) M-1 S-1; for the others, the ratio was 5.8-7.3 X 10(5) M-1 S-1. The results support a random addition of MgATP and inorganic substrate. The kinetics of the reverse reaction were examined using a new assay based on 35SO2-4 release from [35S]APS (adenosine 5'-phosphosulfate) in the presence of MgPPi. Reciprocal plots were linear, intersecting below the horizontal axis. Replots yielded Vmaxr = 50 units mg protein-1, KmQ = 0.3 microM, Kiq = 0.04 microM, and KmP = 4 microM, where Q = APS and P = PPi (total of all species). MgATP and SO2-4 were both competitive with APS and noncompetitive with respect to MgPPi. Taken together with earlier results suggesting that APS is competitive with both MgATP and SO2-4 and that MgPPi is noncompetitive with respect to both substrates, the qualitative results point to a random A-B, ordered P-Q kinetic mechanism. The Scatchard plot for [35S]APS binding was curved, indicating either negative cooperativity or more than a single class of sites. [gamma-32P]MgATP displayed half-site saturation in the presence of saturating FSO-3.  相似文献   

18.
The rate of reaction of [Cr(III)Y]aq (Y is EDTA anion) with hydrogen peroxide was studied in aqueous nitrate media [μ = 0.10 M (KNO3)] at various temperatures. The general rate equation, Rate = k1 + k2K1[H+]?11 + K1[H+]?1 [Cr(III)Y]aq[H2O2] holds over the pH range 5–9. The decomposition reaction of H2O2 is believed to proceed via two pathways where both the aquo and hydroxo-quinquedentate EDTA complexes are acting as the catalyst centres. Substitution-controlled mechanisms are suggested and the values of the second-order rate constants k1 and k2 were found to be 1.75 × 10?2 M?1 s?1 and 0.174 M?1 s?1 at 303 K respectively, where k2 is the rate constant for the aquo species and k2 is that for the hydroxo complex. The respective activation enthalpies (ΔH*1 = 58.9 and ΔH*2 = 66.5 KJ mol?1) and activation entropies (ΔS*1 = ?85 and ΔS*2 = ?40 J mol?1 deg?1) were calculated from a least-squares fit to the Eyring plot. The ionisation constant pK1, was inferred from the kinetic data at 303 K to be 7.22. Beyond pH 9, the reaction is markedly retarded and ceases completely at pH ? 11. This inhibition was attributed in part to the continuous loss of the catalyst as a result of the simultaneous oxidation of Cr(III) to Cr(VI).  相似文献   

19.
K L Kim  D S Kang  L B Vitello  J E Erman 《Biochemistry》1990,29(39):9150-9159
The steady-state kinetics of the cytochrome c peroxidase catalyzed oxidation of horse heart ferrocytochrome c by hydrogen peroxide have been studied at both pH 7.0 and pH 7.5 as a function of ionic strength. Plots of the initial velocity versus hydrogen peroxide concentration at fixed cytochrome c are hyperbolic. The limiting slope at low hydrogen peroxide give apparent bimolecular rate constants for the cytochrome c peroxidase-hydrogen peroxide reaction identical with those determined directly by stopped-flow techniques. Plots of the initial velocity versus cytochrome c concentration at saturating hydrogen peroxide (200 microM) are nonhyperbolic. The rate expression requires squared terms in cytochrome c concentration. The maximum turnover rate of the enzyme is independent of ionic strength, with values of 470 +/- 50 s-1 and 290 +/- 30 s-1 at pH 7.0 and 7.5, respectively. The limiting slope of velocity versus cytochrome c concentration plots provides a lower limit for the association rate constant between cytochrome c and the oxidized intermediates of cytochrome c peroxidase. The limiting slope varies from 10(6) M-1 s-1 at 300 mM ionic strength to 10(8) M-1 s-1 at 20 mM ionic strength and extrapolates to 5 x 10(8) M-1 s-1 at zero ionic strength. The data are discussed in terms of both a two-binding-site mechanism and a single-binding-site, multiple-pathway mechanism.  相似文献   

20.
J T Lo  W L Mattice 《Biopolymers》1976,15(1):15-19
The positive circular dichroism band observed near 228 nm with poly(L -proline) responds in a similar fashion to HCl and CaCl2. The spectra in the HCl solutions are compatible with a simple binding equation and a pK near ?2 for the dissociation of a proton from a protonated peptide bond in poly(L -proline). The data obtained in CaCl2 is susceptible to the same analysis, suggesting a pK near ?1.5 for the dissociation of a calcium ion from its complex with poly(L -proline).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号