首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Basic artichoke (Cynara scolymus L.) peroxidase (AKP-C), when purified from the plant, has an unusually intense and sharp Soret absorption peak. The resonance Raman spectrum [López-Molina, D., et al. (2003) J. Inorg. Biochem. 94, 243-254] suggested a mixture of pentacoordinate high-spin (5cHS) and 6-aquo hexacoordinate high-spin (6cHS) ferric heme species. The rate constant (k(1)) of compound I formation with hydrogen peroxide (H(2)O(2)) was also lower than expected. Further stopped-flow studies have shown this reaction to be biphasic: a nonsaturating fast phase and a slow phase with complex H(2)O(2) concentration dependence. Addition of calcium ions (Ca(2+)) changed the absorption spectrum, suggesting the formation of a fully 5cHS species with a k(1) more than 5 orders of magnitude greater than that in the absence of Ca(2+) using the chelator ethylenediaminetetraacetic acid. Ca(2+) titrations gave a dissociation constant for a single Ca(2+) of approximately 20 microM. The circular dichroism spectrum of AKP-C was not significantly altered by Ca(2+), indicating that any structural changes will be minor, but removal of Ca(2+) did suppress the alkaline transition between pH 10 and 11. A kinetic analysis of the reaction of Ca(2+)-free AKP-C with H(2)O(2) supports an equilibrium between a slow-reacting 6cHS form and a more rapidly reacting 5cHS species, the presence of which was confirmed in nonaqueous solution. AKP-C, as purified, is a mixture of Ca(2+)-bound 5cHS, 6-aquo 6cHS, and Ca(2+)-free 5cHS species. The possibility that Ca(2+) concentration could control peroxidase activity in the plant is discussed.  相似文献   

2.
The calcium binding by parvalbumin of whiting (Gadus merlangus) has been studied using tryptophanyl fluorescence characteristics. Titration of Ca2+-free parvalbumin with Ca2+ leads to a very pronounced blue shift, narrowing and intensification of the fluorescence spectrum. These spectral changs proceed in two stages reflecting the existence of at least three forms which can be interpreted as (a) the protein without Ca2+, (b) with one Ca2+ and (c) with two bound Ca2+ ions/molecule. The fluorescence of these forms has been identified and the fluorescence spectra measured at varied Ca2+ concentrations were resolved into three components corresponding to these spectral forms. The dependence of the relative concentration of the three fomrs on Ca2+ concentrations agree well with the two-step binding of Ca2+ to parvalbumin: Protein + Ca in equilibrium K1 protein x Ca; Protein x Ca + Ca in equilibrium K2 Ca x protein x Ca. The equilibrium binding constants K1 and K2 obtained by the computer fit are approximately 5 X 10(8) M-1 and 6 X 10(6) M-1. This scheme and the K1 and K2 value are in a good agreement with the independent experimental data resulting from EGTA titration of Ca2+-saturated parvalbumin and pH titratin of parvalbumin in the presence of EGTA and CA2+.  相似文献   

3.
1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) increases synthesis of heat shock proteins in monocytes and U937 cells and protects these cells from thermal injury. We examined whether 1,25-(OH)2D3 would also modulate the susceptibility of U937 cells to H2O2-induced oxidative stress. Cell viability was assessed by trypan blue exclusion and [3H]thymidine incorporation into DNA. Prior incubation for 24 h with 1,25-(OH)2D3 (25 pM or higher) unexpectedly increased H2O2 toxicity. Since cellular Ca2+ may be a mediator of cell injury we investigated effects of altering extracellular Ca2+ ([Ca2+]e) on 1,25-(OH)2D3-enhanced H2O2 toxicity as well as effects of 1,25-(OH)2D3 and H2O2 on cytosolic free Ca2+ concentration ([Ca2+]f). Basal [Ca2+]f in medium containing 1.5 mM Ca as determined by fura-2 fluorescence was higher in 1,25-(OH)2D3-pretreated cells than control cells (137 versus 112 nM, P less than 0.005). H2O2 induced a rapid increase in [Ca2+]f (to greater than 300 nM) in both 1,25-(OH)2D3-treated and control cells, which was prevented by a reduction in [Ca2+]e to less than basal [Ca2+]f. The 1,25(OH)2D3-induced increase in H2O2 toxicity was also prevented by preincubation with 1,25-(OH)2D3 in Ca2+-free medium or by exposing the cells to H2O2 in the presence of EGTA. Preexposure of cells to 45 degrees C for 20 min, 4 h earlier, partially prevented the toxic effects of H2O2 particularly in 1,25-(OH)2D3-treated cells, even in the presence of physiological levels of [Ca2+]e. Thus 1,25-(OH)2D3 potentiates H2O2-induced injury probably by increasing cellular Ca2+ stores. The 1,25-(OH)2D3-induced amplification of the heat shock response likely represents a mechanism for counteracting the Ca2+-associated enhanced susceptibility to oxidative injury due to 1,25-(OH)2D3.  相似文献   

4.
The enzymatic activity of proteinase K is controlled by calcium   总被引:4,自引:0,他引:4  
The fungal proteinase K (EC 3.4.21.14) is a very potent unusually stable member of the subtilisin family. Its X-ray structure determined at 0.15-nm resolution shows two bound Ca2+ ions. Ca1 is in near-ideal pentagonal bipyramidal configuration with Asp200 carboxylate and Pro175 peptide C = O in an apical, and Val177 peptide C = O and four water molecules in an equatorial position, whereas Ca2 displays incomplete octahedral coordination with the carboxylate of Asp260, the peptide C = O of Val16 and the two water molecules. Scatchard analysis of the titration of Ca2+-free proteinase K with Ca2+ yields a single dissociation constant (7.6 +/- 2.5) x 10(-8) M associated with the tightly bound Ca1 whereas Ca2 is so weakly bound that it cannot be titrated. If proteinase K is depleted of Ca2+ by treatment with EDTA, followed by gel filtration, its enzymatic activity drops within 6 h to 20% of its original value, without autolysis. Addition of excess Ca2+ immediately raises the residual activity to 28%, but full activity is not achieved. Removal of Ca2+ triggers a conformational change of the substrate recognition site because there is a direct connection, via secondary structure hydrogen bonds, between the Ca1 binding site and the substrate-recognition site. This is indicated further by circular dichroism and fluorescence-spectroscopic data, and by reversed-phase FPLC, carried out in the presence and absence of Ca2+, but the overall structure of the enzyme is not affected. Depletion of Ca2+ also influences binding of longer peptide inhibitors of the chloromethane type, it increases the rate of autolysis after about 48 h, it reduces the thermal stability (measured by activity tests from 65 degrees C to 46 degrees C), and it enhances the deactivation by 8 M urea which inactivates to only 65%, whereas sodium dodecyl sulfate totally inactivates at a concentration of 12.5%.  相似文献   

5.
The diheme enzyme MauG catalyzes a six-electron oxidation required for posttranslational modification of a precursor of methylamine dehydrogenase (preMADH) to complete the biosynthesis of its protein-derived tryptophan tryptophylquinone (TTQ) cofactor. The crystal structure of the MauG-preMADH complex revealed the presence of a Ca(2+) in proximity to the two hemes [Jensen, L. M. R., Sanishvili, R., Davidson, V. L., and Wilmot, C. M. (2010) Science 327, 1392-1394]. This Ca(2+) did not readily dissociate; however, after extensive treatment with EGTA or EDTA MauG was no longer able to catalyze TTQ biosynthesis and exhibited altered absorption and resonance Raman spectra. The changes in spectral features are consistent with Ca(2+)-dependent changes in heme spin state and conformation. Addition of H(2)O(2) to the Ca(2+)-depleted MauG did not yield spectral changes characteristic of formation of the bis-Fe(IV) state which is stabilized in native MauG. After addition of Ca(2+) to the Ca(2+)-depleted MauG, full TTQ biosynthesis activity and reactivity toward H(2)O(2) were restored, and the spectral properties returned to those of native MauG. Kinetic and equilibrium studies of Ca(2+) binding to Ca(2+)-depleted MauG indicated a two-step mechanism. Ca(2+) initially reversibly binds to Ca(2+)-depleted MauG (K(d) = 22.4 μM) and is followed by a relatively slow (k = 1.4 × 10(-3) s(-1)) but highly favorable (K(eq) = 4.2) conformational change, yielding an equilibrium dissociation constant K(d,eq) value of 5.3 μM. The circular dichroism spectra of native and Ca(2+)-depleted MauG were essentially the same, consistent with Ca(2+)-induced conformational changes involving domain or loop movements rather than general unfolding or alteration of secondary structure. These results are discussed in the context of the structures of MauG and heme-containing peroxidases.  相似文献   

6.
J R Petithory  W P Jencks 《Biochemistry》1988,27(23):8626-8635
The binding of Ca2+ and the resulting change in catalytic specificity that allows phosphorylation of the calcium ATPase of sarcoplasmic reticulum by ATP were examined by measuring the amount of phosphoenzyme formation from [32P]ATP, or 45Ca incorporation into vesicles, after the simultaneous addition of ATP and EGTA at different times after mixing enzyme and Ca2+ (25 degrees C, pH 7.0, 5 mM MgSO4, 0.1 M KCl). A "burst" of calcium binding in the presence of high [Ca2+] gives approximately 12% phosphorylation and internalization of two Ca2+ at very short times after the addition of Ca2+ with this assay. This shows that calcium binding sites are available on the cytoplasmic-facing side of the free enzyme. Calcium binding to these sites induces the formation of cE.Ca2, the stable high-affinity form of the enzyme, with k = 40 s-1 at saturating [Ca2+] and a half-maximal rate at approximately 20 microM Ca2+ (from Kdiss = 7.4 X 10(-7) M for Ca.EGTA). The formation of cE.Ca2 through a "high-affinity" pathway can be described by the scheme E 1 in equilibrium cE.Ca1 2 in equilibrium cE.Ca2, with k1 = 3 X 10(6) M-1 s-1, k2 = 4.3 X 10(7) M-1 s-1, k-1 = 30 s-1, k-2 = 60 s-1, K1 = 9 X 10(-6) M, and K2 = 1.4 X 10(-6) M. The approach to equilibrium from E and 3.2 microM Ca2+ follows kobsd = kf + kr = 18 s-1 and gives kf = kr = 9 s-1. The rate of exchange of 45Ca into the inner position of cE.Ca2 shows an induction period and is not faster than the approach to equilibrium starting with E and 45Ca. The dissociation of 45Ca from the inner position of cE.45Ca.Ca in the presence of 3.2 microM Ca2+ occurs with a rate constant of 7 s-1. These results are inconsistent with a slow conformational change of free E to give cE, followed by rapid binding-dissociation of Ca2+.  相似文献   

7.
Interactions between Ca2+, calmodulin and turkey gizzard myosin light chain kinase have been studied by equilibrium gel filtration and analyzed in terms of the theory of free energy coupling as formulated by Huang and King for calmodulin-regulated systems (Current Topics in Cellular Regulation 27, 1966-1971, 1985). Direct binding studies revealed that upon interaction with the enzyme, calmodulin acquires strong positive cooperativity in Ca2+-binding. The determination of the Ca2+-binding constants is inherently approximative due to the apparent homotropic cooperativity; therefore a statistical chi 2 analysis was carried out to delimit the formation-, and subsequently the stoichiometric Ca2+-binding constants. Whereas the first two stoichiometric Ca2+-binding constants of enzyme-bound CaM do not differ or are at the upmost 10-fold higher than those in free calmodulin, the third Ca2+ ion binds with an at least 70-fold and more likely 3000-fold higher affinity constant. The binding constant for the fourth Ca2+ is only 5-fold higher than the corresponding one in free calmodulin, thus creating a plateau at 3 bound Ca2+ in the isotherm. Direct binding of Ca2+-free calmodulin to myosin light chain kinase at 10(-7) M free Ca2+ yielded a l/l stoichiometry and an affinity constant of 2.2 x 10(5) M-1. It is thus anticipated that in resting smooth muscle ([Ca2+] less than or equal to 10(-7) M) more than half of the enzyme is bound to metal-free calmodulin. Analysis of the enzymatic activation of myosin light chain kinase at different concentrations of calmodulin and Ca2+ revealed that this Ca2+-free complex is inactive and that activation is concomitant with the formation of the enzyme.calmodulin.Ca3 complex.  相似文献   

8.
Intracellular passive Ca2+, buffering was measured in voltage-clamped rat ventricular myocytes. Cells were loaded with indo-1 (K+ salt) to an estimated cytosolic concentration of 44 +/- 5 microM (Mean +/- SEM, n = 5), and accessible cell volume was estimated to be 24.5 +/- 3.6 pl. Ca2+ transport by the sarcoplasmic reticulum (SR) Ca-ATPase and sarcolemmal Na-Ca exchange was inhibited by treatment with thapsigargin and Na-free solutions, respectively. Extracellular [Ca2+] was maintained at 10 mM and, in some experiments, the mitochondrial uncoupler "1799" was used to assess the degree of mitochondrial Ca2+ uptake. To perform single cell titrations, intracellular Ca2+ ([Ca2+]i) was increased progressively by a train of depolarizing voltage clamp pulses from -40 to +10 mV. The total Ca2+ gain with each pulse was calculated by integration of the Ca current and then analyzed as a function of the rapid change in [Ca2+]i during the pulse. In the range of [Ca2+]i from 0.1 to 2 microM, overall cell buffering was well described as a single lumped Michaelis-Menten type species with an apparent dissociation constant, KD, of of 0.63 +/- 0.07 microM (n = 5) and a binding capacity, Bmax, of 162 +/- 15 mumol/l cell H2O. Correction for buffering attributable to cytosolic indo-1 gives intrinsic cytosolic Ca2+ buffering parameters of KD = 0.96 +/- 0.18 microM and Bmax = 123 +/- 18 mumol/l cell H2O. The fast Ca2+ buffering measured in this manner agrees reasonably with the characteristics of known rapid Ca buffers (e.g., troponin C, calmodulin, and SR Ca-ATPase), but is only about half of the total Ca2+ buffering measured at equilibrium. Inclusion of slow Ca buffers such as the Ca/Mg sites on troponin C and myosin can account for the differences between fast Ca2+ buffering in phase with the Ca current measured in the present experiments and equilibrium Ca2+ buffering. The present data indicate that a rapid rise of [Ca2+]i from 0.1 to 1 microM during a contraction requires approximately 50 microM Ca2+ to be added to the cytosol.  相似文献   

9.
Klimacek M  Nidetzky B 《Biochemistry》2002,41(31):10158-10165
Mannitol dehydrogenases (MDH) are a family of Zn(2+)-independent long-chain alcohol dehydrogenases that catalyze the regiospecific NAD(+)-dependent oxidation of a secondary alcohol group in polyol substrates. pH and primary deuterium kinetic isotope effects on kinetic parameters for reaction of recombinant MDH from Pseudomonas fluorescens with D-mannitol have been measured in H(2)O and D(2)O at 25 degrees C and used to determine the relative timing of C-H and O-H bond cleavage steps during alcohol conversion. The enzymatic rates decreased at low pH; apparent pK values for log(k(cat)/K(mannitol)) and log k(cat) were 9.2 and 7.7 in H(2)O, respectively, and both were shifted by +0.4 pH units in D(2)O. Proton inventory plots for k(cat) and k(cat)/K(mannitol) were determined at pL 10.0 using protio or deuterio alcohol and were linear at the 95% confidence level. They revealed the independence of primary deuterium isotope effects on the atom fraction of deuterium in a mixed H(2)O-D(2)O solvent and yielded single-site transition-state fractionation factors of 0.43 +/- 0.05 and 0.47 +/- 0.01 for k(cat)/K(mannitol) and k(cat), respectively. (D)(k(cat)/K(mannitol)) was constant (1.80 +/- 0.20) in the pH range 6.0-9.5 and decreased at high pH to a limiting value of approximately 1. Measurement of (D)(k(cat)/K(fructose)) at pH 10.0 and 10.5 using NADH deuterium-labeled in the 4-pro-S position gave a value of 0.83, the equilibrium isotope effect on carbonyl group reduction. A mechanism of D-mannitol oxidation by MDH is supported by the data in which the partly rate-limiting transition state of hydride transfer is stabilized by a single solvation catalytic proton bridge. The chemical reaction involves a pH-dependent internal equilibrium which takes place prior to C-H bond cleavage and in which proton transfer from the reactive OH to the enzyme catalytic base may occur. Loss of a proton from the enzyme at high pH irreversibly locks the ternary complex with either alcohol or alkoxide bound in a conformation committed of undergoing NAD(+) reduction at a rate about 2.3-fold slower than the corresponding reaction rate of the protonated complex. Transient kinetic studies for D-mannitol oxidation at pH(D) 10.0 showed that the solvent isotope effect on steady-state turnover originates from a net rate constant of NADH release that is approximately 85% rate-limiting for k(cat) and 2-fold smaller in D(2)O than in H(2)O.  相似文献   

10.
Wu D  Zhang XH  Zhu PH 《生理学报》1999,51(4):459-462
本工作研究了去细胞外钙对取自9天来亨鸡胚的培养肌管磷脂酰肌醇水解的影响,80mmol/LK^+暴露可以显著和蔼同磷脂酰肌醇的水解。在暴露于无钙任氏液的肌管中,磷脂酰肌醇的水解随时间延长而呈指数递减。时间常数约为26分钟。在胞外无钙时,80mmol/LK引起的磷胆酰肌醇水解与对照相比略有下降,结果表明,高钾暴露能够增强培养肌管的磷脂酰醇的水解;但与成熟的肌纤维不同,细胞外钙是必须的。  相似文献   

11.
Horseradish peroxidase (HRP) is a commercially important enzyme that is available from a number of supply houses in a variety of grades of purity and isoenzymic combinations. The present article describes a comparative study made on nine HRP preparations. Six of these samples were predominantly composed of basic HRP, pl 8.5, and three of acidic HRP, pl 3.5. Two of the basic preparations were of lower purity than the others. The apparent molar catalytic activity of basic HRP with 0.5 mMABTS and 0.2 mM H(2)O(2) was around 950 s(-1) (about 770 s(-1) for the less pure samples) and with a 5 mM guaiacol and 0.6 mM H(2)O(2) was about 180 s(-1) for all the samples. A similar value (approximately 1000 s(-1)) was observed for acidic HRP but only at higher concentrations of ABTS (20 mM). With 20 mM guaiacol the molar catalytic activity of the acid isoenzyme was 65 s(-1). The apparent K(M) for ABTS of the acidic isoenzyme was 4 mM whereas for the basic isoenzyme it was 0.1 mM. All the enzymes were inactivated by H(2)O(2) when it was supplied as the only substrate. Under these conditions the partition ratio (r = number of catalytic cycles given by the enzyme before its inactivation), apparent dissociation constant (K(l)), and apparent rate constant of inactivation (k(inact)) were about twice as large for the acidic samples (1350, 2.6 mM, 9 . 10(-3) s(-1)) as for the basic (650, 1.3 mM, 5 . 10(-3) s(-1)). The apparent catalytic constant (k(cat)) was 3-4 times larger, and the efficiency of catalysis (k(cat)/K(l)) was double for the acidic isoenzyme, but the efficiency of inactivation (k(inact)/K(l)) was similar. The data obtained provide useful information for those using HRP isoenzymes for biotechnological applications (e.g., biosensors, bioreactors, or assays). (c) 1996 John Wiley & Sons, Inc.  相似文献   

12.
The effects of tetraethylammonium (TEA) on the delayed K+ current and on the Ca2+-activated K+ current of the Aplysia pacemaker neurons R-15 and L-6 were studied. The delayed outward K+ current was measured in Ca2+-free ASW containing tetrodotoxin (TTX), using brief depolarizing clamp pulses. External TEA blocks the delayed K+ current reversibly in a dose-dependent manner. The experimental results are well fitted with a Michaelis-Menten expression, assuming a one-to-one reaction between TEA and a receptor site, with an apparent dissociation constant of 6.0 mM. The block depends on membrane voltage and is reduced at positive membrane potentials. The Ca2+-activated K+ current was measured in Ca2+-free artificial seawater (ASW) containing TTX, using internal Ca2+ ion injection to directly activate the K+ conductance. External TEA and a number of other quaternary ammonium ions block the Ca2+-activated K+ current reversibly in a dose-dependent manner. TEA is the most effective blocker, with an apparent dissociation constant, for a one-to-one reaction with a receptor site, of 0.4 mM. The block decreases with depolarization. The Ca2+-activated K+ current was also measured after intracellular iontophoretic TEA injection. Internal TEA blocks the Ca2+-activated K+ current (but the block is only apparent at positive membrane potentials), is increased by depolarization, and is irreversible. The effects of external and internal TEA can be seen in measurements of the total outward K+ current at different membrane potentials in normal ASW.  相似文献   

13.
The effects of calcium ions (Ca2+) on the stability of artichoke (Cynara scolymus L.) peroxidase (AKPC) have been studied. The thermal stability of AKPC was improved by the addition of Ca2+; the melting temperature increased by 20 °C and the deactivation energy by 26 kJ mol−1. AKPC was stable in a selection of organic solvents but was less active with 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) than under aqueous conditions. Ca2+-free AKPC retained more activity in the presence of organic solvents due to its better maintenance of the rate of compound I formation with hydrogen peroxide (H2O2) compared to AKPC-Ca2+. AKPC retained at least 75% activity over 24 h in the pH range 3.0–10.5 and about 50% over 1 month at pH 7.0 or 5.5, irrespective of the Ca2+ content. AKPC-Ca2+ was considerably more resistant to inactivation by H2O2 than Ca2+-free AKPC suggesting that the presence of Ca2+ boosts turnover under oxidizing conditions. AKPC has been applied as an alternative to horseradish peroxidase (HRP) in glucose concentration assays; the presence of Ca2+ or of the Ca2+ chelating agent ethylenediaminetetraacetic acid made no difference to the final result. The possibility is discussed that addition and removal of a labile Ca2+ from AKPC could be used to control enzyme activity both in vivo and in vitro.  相似文献   

14.
Ca2+ inhibits (-)[3H]desmethoxyverapamil, d-cis-[3H]diltiazem and (+/-)[3H]bepridil binding to skeletal muscle transverse-tubule membranes with a half-maximum inhibition constant, K0.5 = 5 +/- 1 microM. This value is close to that of the high affinity Ca2+ binding site which controls the ionic selectivity of the Ca2+ channel found in electrophysiological experiments suggesting that the Ca2+ coordination site which regulates the ionic selectivity is also the one which alters binding of the Ca2+ channel inhibitors investigated here. Ca2+ and (-)D888 bind to distinct sites. Occupation of the Ca2+ coordination site decreases the affinity of (-)D888 for its receptor by a factor of 5. Other divalent cations have the same type of inhibition behavior with the rank order of potency Ca2+ (K0.5 = 5 microM) greater than Sr2+ (K0.5 = 25 microM) greater than Ba2+ (K0.5 = 50 microM) greater than Mg2+ (K0.5 = 170 microM).  相似文献   

15.
Needle-shaped crystals of the Ca2+-binding protein (CBP) isolated from rabbit skeletal muscle sarcoplasmic reticulum were studied with regard to the influence of Ca2+, K+, and H+ on its solubility and cation binding. The solubility of CBP is sharply decreased with concentration of Ca2+, whereas K+ increased it. Aggregation of the CBP and crystal formation is correlated with the binding of Ca2+. The Ca2+ bound to the crystalline CBP is two to three times higher than that of the soluble form. A strong apparent positive cooperative behavior of Ca2+ binding by CBP was observed concomitant with the shift in equilibrium from the soluble to the crystalline form. From the steepest Hill slope we obtained Hill coefficients of 3.3 for soluble CBP and 14 for the transition between soluble and crystalline forms of CBP. A detailed treatment is presented to validate the applicability of Hill plots for the combined binding and crystallization process. Two-thirds of the Ca2+-binding sites were K+ sensitive and one-third were K+ insensitive. An increase in H+ concentration decreased the Ca2+ binding by crystalline CBP without affecting its solubility, with a pK value of 6.2 determined for this process. These results indicate that the equilibrium between the soluble and crystalline forms of CBP is determined by the amount and nature of the bound cations, Ca2+, K+, and H+. They suggest the possibility that a cycle of aggregation and solubilization of CBP attends the uptake and release of Ca2+ in the sarcoplasmic reticulum, respectively.  相似文献   

16.
Thermodynamics of the hydrolysis of sucrose   总被引:1,自引:0,他引:1  
A thermodynamic investigation of the hydrolysis of sucrose to fructose and glucose has been performed using microcalorimetry and high-pressure liquid chromatography. The calorimetric measurements were carried out over the temperature range 298-316 K and in sodium acetate buffer (0.1 M, pH 5.65). Enthalpy and heat capacity changes were obtained for the hydrolysis of aqueous sucrose (process A): sucrose(aq) + H2O(liq) = glucose(aq) + fructose (aq). The determination of the equilibrium constant required the use of a thermochemical cycle calculation involving the following processes: (B) glucose 1-phosphate2-(aq) = glucose 6-phosphate2-(aq); (C) sucrose(aq) + HPO4(2-)(aq) = glucose 1-phosphate2-(aq) + fructose(aq); and (D) glucose 6-phosphate2-(aq) + H2O(liq) = glucose(aq) + HPO4(2-)(aq). The equilibrium constants determined at 298.15 K for processes B and C are 17.1 +/- 1.0 and 32.4 +/- 3.0, respectively. Equilibrium data for process D was obtained from the literature, and in conjunction with the data for processes B and C, used to calculate a value of the equilibrium constant for the hydrolysis of aqueous sucrose. Thus, for process A, delta G0 = -26.53 +/- 0.30 kJ mol-1, K0 = (4.44 +/- 0.54) x 10(4), delta H0 = -14.93 +/- 0.16 kJ mol-1, delta So = 38.9 +/- 1.2 J mol-1 K-1, and delta CoP = 57 +/- 14 J mol-1 K-1 at 298.15 K. Additional thermochemical cycles that bear upon the accuracy of these results are examined.  相似文献   

17.
Ca2+ and human cardiac troponin I (cTnI) peptide binding to human cardiac troponin C (cTnC) have been investigated with the use of 2D [1H,15N] HSQC NMR spectroscopy. The spectral intensity, chemical shift, and line-shape changes were analyzed to obtain the dissociation ( K(D)) and off-rate ( k(off)) constants at 30 degrees C. The results show that sites III and IV exhibit 100-fold higher Ca2+ affinity than site II ( K(D(III,IV)) approximately 0.2 microM, K(D(II)) approximately 20 microM), but site II is partially occupied before sites III and IV are saturated. The addition of the first two equivalents of Ca2+ saturates 90% of sites III and IV and 20% of site II. This suggests that the Ca2+ occupancy of all three sites may contribute to the Ca2+-dependent regulation in muscle contraction. We have determined a k(off) of 5000 s(-1) for site II Ca2+ dissociation at 30 degrees C. Such a rapid off-rate had not been previously measured. Three cTnI peptides, cTnI(34-71), cTnI(128-147), and cTnI(147-163), were titrated to Ca2+-saturated cTnC. In each case, the binding occurs with a 1:1 stoichiometry. The determined K(D) and k(off) values are 1 microM and 5 s(-1) for cTnI(34-71), 78+/-10 microM and 5000 s(-1) for cTnI(128-147), and 150+/-10 microM and 5000 s(-1) for cTnI(147-163), respectively. Thus, the dissociation of Ca2+ from site II and cTnI(128-147) and cTnI(147-163) from cTnC are rapid enough to be involved in the contraction/relaxation cycle of cardiac muscle, while that of cTnI(34-71) from cTnC may be too slow for this process.  相似文献   

18.
G Tiger  C J Fowler 《Life sciences》1991,48(13):1283-1291
The calcium and potassium ion dependency of the inositol phospholipid breakdown response to stimulatory agents has been investigated in rat cerebral cortical miniprisms. The calcium channel agonist BAY K-8644 (10 microM) potentiated the response to carbachol at 6 mM K+ when Ca2(+)-free, but not when 2.52 mM Ca2+ assay buffer was used. In Ca2(+)-free buffer, verapamil (10 microM) inhibited the response to carbachol at both 6 and 18 mM K+ but higher concentrations (30-300 microM) were needed when 2.52 mM Ca2+ was used. At these higher concentrations, however, verapamil inhibited the binding of 2 nM [3H]pirenzepine to muscarinic recognition sites. N-Methyl-D-Aspartate (NMDA, 100 microM) significantly reduced the basal phosphoinositide breakdown rate at 18 mM K+ at 1.3 mM Ca2+, but was without effect on the basal rate at other K+ and Ca2+ concentrations. In the presence of NMDA (100 microM) or quisqualate (100 microM), the responses to carbachol were reduced, the degree of reduction showing a complex dependency upon the assay K+ and Ca2+ concentrations used. These results indicate that the inositol phospholipid breakdown response to carbachol in cerebral cortical miniprisms can be modulated in a manner dependent upon the extracellular calcium and potassium concentrations used.  相似文献   

19.
The effects of D2O on the elementary steps in the contractile and transport ATPase [EC 3.6.1.3] reactions were studied, and the following results were obtained: 1. The rate of H-meromyosin ATPase in the steady state decreased in D2O to 60% of that in H2O. Deuterium oxide did not affect the size or rate of the initial burst of Pi liberation, i.e. the amount or rate of formation of the reactive myosin-phosphate-ADP complex, MADPP. Moreover, neither the rate of change in the fluorescence spectrum of H-meromyosin induced by ATP (the rate of formation of the second enzyme-ATP complex, M2ATP) nor the rate constant of decomposition of MADPP into M degrees + ADP + Pi was affected by D2O. However, the equilibrium constant of the step M2ATP in equilibrium MADPP decreased in D2O to about 1/2 the value in H2O. 2. In the case of the Na+-K+-dependent ATPase reactin, neither the rate constant of formation of the second enzyme-ATP complex, E2ATP, nor that of decomposition of a phosphorylated intermediate, EADP approximately P, was affected by D2O. However, the equilibrium constant of the step E2ATP in equilibrium EADP approximately P decreased in D2O to about 1/2.5-1/4 of the value in H2O. These results suggest a similarity between the modes of binding of phosphate in MADPP in the myosin ATPase reaction and in EADP approximatley P in the Na+-K+-dependent ATPase reaction.  相似文献   

20.
The effects of exposure of cultured P388D1 cells to H2O2 on intracellular free calcium ([Ca++]i) was investigated utilizing the intracellular fluorescent calcium chelator "Quin 2." [Ca++]i rose from approximately 150 nM to greater than 2 microM over a time course that was strongly dependent on the concentration of H2O2 used (5 X 10(-5) to 5 X 10(-3) M). After exposure of P388D1 cells to 5 X 10(-3) M H2O2, Quin 2 was fully saturated between 15 and 30 min exposure. During this time, no apparent change in the rate of equilibration of 45Ca++ from the extracellular medium could be detected, whereas in cells preloaded with 45Ca, net 45Ca was lost from the cells at a greater rate than controls. Measurements of total cellular calcium by atomic absorption spectroscopy confirmed that there was a net loss of calcium from the cells during the first 30 min. At time points greater than 45 min after exposure to H2O2 the influx of extracellular 45Ca and net intracellular Ca++, Na+ and K+ rapidly increased. Half times for H2O2 catabolism by the cells varied from about 8 min at 5.0 X 10(-4) M H2O2 to 14.0 min at 5.0 X 10(-3) M. When the total [Ca++]i-buffering capacity of the Quin 2 pool was varied by increasing the loading of intracellular Quin 2 by 68-fold (1.1 X 10(2) - 7.6 X 10(3) amol per cell), the rate of rise of [Ca++]i was depressed by only 1.6-fold following exposure to 5 mM H2O2. During the rise of intracellular [Ca++]i, cell morphology was observed by both light and scanning electron microscopy and revealed that "surface blebs" appeared during this phase of injury. Both the rise in [Ca++]i and "blebbing" were observable before any loss in cell viability was detected by either loss of Trypan blue exclusion or loss of preloaded 51Cr from the cells. From these results we conclude the following, H2O2 exposure induces a dose-dependent disturbance of intracellular calcium homeostatis; the rise in [Ca++]i is mediated by exposure to H2O2 in the early phase of the injury, and is not dependent on the continuing presence of the oxidant; the rate of rise of [Ca++]i is largely independent of the quantity of calcium mobilized to the Quin 2 pool; during the early phase (less than 30 min) of rise of [Ca++]i, only intracellular calcium is involved in the response; these events occur concomitantly with gross morphological changes to the plasma membrane.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号