首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In myasthenia gravis a highly conserved area of the nicotinic receptor (AcChR) dominates the autoantibody response (main immunogenic region, MIR), and it is formed by residues within the sequence segment 67-76 of the AcChR alpha-subunit. We have studied the binding of eight anti-MIR mAb to synthetic peptides containing the sequence segment 67-76 of the human alpha-subunit, and peptide analogues containing single residue substitutions of this sequence. We used also a peptide where both Asp70 and Asp71 were substituted by glycine residues. The binding of six anti-MIR mAb was strongly influenced by several substitutions. All these mAb required residues Asn68, and Pro69 for binding. Five of them required also Asp71 and Tyr72. Substitution of Asp70, which is an Ala residue in Torpedo AcChR, was irrelevant for the binding of an anti-Torpedo and an anti-Electrophorus mAb, and moderately reduced the binding of an anti-human mAb (no. 203). Substitution of Trp67 moderately reduced the binding of some of these mAbs. A mAb of this group (the antihuman mAb no. 198) bound in a manner only slightly influenced by ionic strength, whereas the binding of the other five mAb of this group was very sensitive to the ionic strength. Two anti-Electrophorus MIR mAb bound similarly to all peptide analogues in low ionic strength. At high ionic strength only the peptide analogue where Asp 70 was changed to a Gly residue bound significantly. This may indicate that the Electrophorus MIR has an uncharged residue at this position, as does Torpedo AcChR. Residues at position 73, 74, 75, and 76 were of little or no importance for the binding of all anti-MIR mAb. A free amino terminus was essential for the binding of most mAb. The results of competition experiments between different peptides and native AcChR for mAb binding were consistent with those obtained in direct binding experiments.  相似文献   

2.
Myasthenia gravis (MG) is caused by autoantibodies against the nicotinic acetylcholine receptor (AChR) of the neuromuscular junction. The anti-AChR antibodies are heterogeneous. However, a small region on the extracellular part of the AChR alpha subunit, called the main immunogenic region (MIR), seems to be the major target of the anti-AChR antibodies, but not of the specific T-cells, in experimental animals and possibly in MG patients. The major loop of the overlapping epitopes for all testable anti-MIR monoclonal antibodies (MAbs) was localized within residues 67-76 (WNPADYGGIK for Torpedo and WNPDDYGGVK for human AChR) of the alpha subunit. The N-terminal half of alpha 67-76 is the most critical, Asn68 and Asp71 being indispensable for binding. Yet anti-MIR antibodies are functionally and structurally quite heterogeneous. Anti-MIR MAbs do not affect channel gating, but they are very potent in mediating acceleration of AChR degradation (antigenic modulation) in cell cultures and in transferring experimental MG in animals. Fab fragments of anti-MIR MAbs bound to the AChR prevent the majority of the MG patients' antibodies from binding to and causing loss of the AChR. Whether this inhibition means that most MG antibodies bind on the same small region or is a result of broad steric/allosteric effects is under current investigation.  相似文献   

3.
Monoclonal antibodies (mAbs) to the main immunogenic region (MIR) bind to fusion proteins containing region 37-200 of the alpha chain of Torpedo, mouse, and chicken nicotinic acetylcholine receptor. In the case of the mouse alpha chain, these mAbs react with sequence 61-216 but not with 74-216. A synthetic peptide M1, containing residues 61-76 of the mouse alpha chain, also binds these anti-MIR mAbs, showing that all or part of their binding site is included in this region. The conformational dependence and epitope specificity of the mAbs are discussed.  相似文献   

4.
5.
Monoclonal antibodies to the main immunogenic region of the nicotinic acetylcholine receptor have been studied with regard to their binding to synthetic peptides. It was found that monoclonal antibody 210 to the main immunogenic region binds to the synthetic fragment spanning residues 66 to 76 of the alpha subunits of the acetylcholine receptor from human muscle, but not to the homologous sequence from Xenopus. This parallels the reactivities of antibodies to the main immunogenic region with intact receptors from two species, and confirms the biological significance of the weak interactions observed between antibodies to this region and synthetic peptides. It also suggests that N alpha 68 and D alpha 71 are critical contact residues.  相似文献   

6.
A comparative 1H-NMR spectral study of a synthetic decapeptide containing the main immunogenic region of the Torpedo acetylcholine receptor (AChR; WNPADYGGIK, representing the alpha 67-76 fragment of Torpedo AChR) with four analogous peptides (WNP3-D5YGGIK, WNPAA5YGGIK, WNPADYGGA9K, and WNPD4DYGGV9K) has been carried out in dimethyl sulfoxide. One- and two-dimensional nmr experiments [correlated spectroscopy (COSY), relayed COSY, and phase-sensitive nuclear Overhauser enhancement spectroscopy (NOESY)] were performed to obtain complete assignments of the proton resonances. The presence of strong and multiple short- and long-range NOEs, and especially a strong long-range NOE between the two Asn2-C alpha H and Gly7-C alpha H protons, argues in favor of a rigid folded structure in all five cases. Temperature dependence measurements indicate the existence of three intramolecular interactions involving the Asp3, Gly8, and Lys10 amide protons.  相似文献   

7.
Antibodies to synthetic peptides were employed in order to map domains on the alpha-subunit of the acetylcholine receptor to which several monoclonal antibodies are directed. Five peptides corresponding to residues 1-20, 126-143, 169-181, 330-340 and 351-368 of the receptor alpha-subunit were synthesized and antibodies against them were elicited. The anti-peptide antibodies were employed along with the monoclonal antibodies to identify fragments of S. aureus V8 protease digested- alpha-subunit in immunoblotting experiments. Our results demonstrate that a highly immunogenic region of the alpha-subunit is located on a carboxy-terminal 14 kDa portion of the alpha-subunit. This region also seems to undergo antigenic changes during muscle development. A monoclonal antibody directed against the cholinergic binding site of the acetylcholine receptor reacted with an 18 kDa segment of the alpha-subunit which bound alpha-bungarotoxin as well as antibodies directed against peptide 169-181.  相似文献   

8.
Cooke JP 《Life sciences》2007,80(24-25):2347-2351
An endothelial nicotinic acetycholine receptor (nAChR) mediates endothelial proliferation, survival, migration and tube formation in vitro, and angiogenesis in vivo. Exogenous nicotine stimulates this angiogenic pathway. This action of nicotine may contribute to tumor angiogenesis and tumor growth; atherosclerotic plaque neovascularization and progression; and other tobacco-related diseases. The endothelial nAChR mediates an angiogenic pathway that is interdependent with growth factor mediated pathways, as shown by pharmacological and molecular studies. The characterization of this new angiogenic pathway may provide a new therapeutic avenue for disorders of insufficient or pathological angiogenesis.  相似文献   

9.
The amino acid sequences of the polypeptide chains of the acetylcholine receptor have recently been published. From the hydrophilicity profiles, it has been proposed that residues 161-166 of the alpha-chain might be an important antigenic site. We have synthesised a peptide containing this sequence and raised antisera to it. Here we report that this peptide does not represent an important antigenic site on the molecule, and that this region is probably inaccessible to antibodies. Based on the known DNA sequences and hydrophilicity profiles of the receptor chains, we suggest that many regions of high hydrophilicity may represent inter-domain regions of proteins.  相似文献   

10.
This paper studies the effect of histidine chemical modification of the membrane-bound acetylcholine receptor from Discopyge tschudii on its specific alpha-bungarotoxin binding. The acylating reagent ethoxyformic anhydride (diethyl pyrocarbonate, DEP), was used. DEP-treatment induces a loss of binding capacity, time and DEP-concentration dependent. After a 30 min period of derivatization with 2 mM final DEP-concentration, at pH 7.4, the decrease reaches 70%; the loss of binding capacity is faster at pH 7.4 than at pH 6.0, as expected, since the amount of unprotonated species is higher under the first condition. Moreover, when ethoxyformylation is carried out at different pH values, the most important neurotoxin binding decrease occurs between pH 6.0 and 8.0. Furthermore, ethoxyformylation reversion restores such capacity. Consistent with the modification of a binding site, the ethoxyformylation does not bear on the affinity but reduces the number of receptors. Ethoxyformylation in the presence of carbamylcholine shows some ligand protective effect. These results, as a whole, strongly indicate a relevant role for histidine residues at the alpha-bungarotoxin binding site of the nicotinic acetylcholine receptor.  相似文献   

11.
12.
The effect of salt and pH titration on the selectivity of spin-labeled analogues of phosphatidic acid, phosphatidylserine, phosphatidylcholine, and stearic acid for the nicotinic acetylcholine receptor (nAcChoR) reconstituted into dioleoylphosphatidylcholine was examined at 0 degrees C using electron spin resonance spectroscopy. The order of selectivity at pH 7.4 and 0 mM NaCl was phosphatidylserine > stearic acid > phosphatidic acid > phosphatidylcholine. The addition up to 2 M NaCl or titration of pH from 5.0 to > 9.0 did not alter the selectivity of the phospholipids for the nAcChoR. For stearic acid, conversely, titration of pH from 5.0 to 9.0 at 0 mM NaCl and titration of NaCl from 0 to 2 M at pH 9.0 both increased selectivity for the nAcChoR. It is concluded that electrostatic interactions do not account for the selectivity of the negatively charged phospholipids, phosphatidylserine, and phosphatidic acid for the nAcChoR. This is consistent with the known orientation of the transmembrane sequences M1 and M4, which predicts a balance in the number of negative and positive charges in the lipid-protein interface and suggests that the two positive charges on each M3 helix are not exposed to the lipid-protein interface.  相似文献   

13.
Activation of a nicotinic acetylcholine receptor.   总被引:7,自引:2,他引:7       下载免费PDF全文
We studied activation of the nicotinic acetylcholine (ACh) receptor on cells of a mouse clonal muscle cell line (BC3H1). We analyzed single-channel currents through outside-out patches elicited with various concentrations of acetylcholine (ACh), carbamylcholine (Carb) and suberyldicholine (Sub). Our goal is to determine a likely reaction scheme for receptor activation by agonist and to determine values of rate constants for transitions in that scheme. Over a wide range of agonist concentrations the open-time duration histograms are not described by single exponential functions, but are well-described by the sum of two exponentials, a brief-duration and a long-duration component. At high concentration, channel openings occur in groups and these groups contain an excess number of brief openings. We conclude that there are two open states of the ACh receptor with different mean open times and that a single receptor may open to either open state. The concentration dependence of the numbers of brief and long openings indicates that brief openings do not result from the opening of channels of receptors which have only one agonist molecule bound to them. Closed-time duration histograms exhibit a major brief component at low concentrations. We have used the method proposed by Colquhoun and Sakmann (1981) to analyze these brief closings and to extract estimates for the rates of channel opening (beta) and agonist dissociation (k-2). We find that this estimate of beta does not predict our closed-time histograms at high agonist concentration (ACh: 30-300 microM; Carb: 300-1,000 microM). We conclude that brief closings at low agonist concentrations do not result solely from transitions between the doubly-liganded open and the doubly-liganded closed states. Instead, we postulate the existence of a second closed-channel state coupled to the open state.  相似文献   

14.
Photoaffinity labeling is a powerful tool for the characterization of the molecular basis of ligand binding to acceptor molecules, which provides important insights for mapping the bimolecular interfaces. The autoimmune disease myasthenia gravis is caused by autoantibodies against the acetylcholine receptor (AChR). The majority of the anti-AChR antibodies bind to the "main immunogenic region" (MIR) of the AChR. To identify the contact points between the complementarity determining regions of the anti-MIR antibodies that recognize the MIR contact sites of the AChR, we present here three photoreactive dodecapeptide MIR analogues containing the photolabel p-benzoyl-L-phenylalanine (Bpa) moiety, either in position 1 or 11. The structure of the produced 12-mers was analyzed using two-dimensional (1)H-NMR spectroscopy, whereas their binding to anti-MIR monoclonal antibodies (mAbs) was determined by immunochemical assays. In all cases the modifications resulted in conservation of the beta-turn conformation of the N-terminus, which has been proved essential for antibody recognition and increased anti-MIR binding relative to the MIR decapeptide.  相似文献   

15.
The crystal structure of the Fab fragment of a rat monoclonal antibody, number 192, with a very high affinity (Kd = 0.05 nM) for the main immunogenic region of the human muscle acetylcholine receptor (AChR), has been determined and refined to 2.4 A resolution by X-ray crystallographic methods. The overall structure is similar to a Fab (NC6.8) from a murine antibody, used as a search model in molecular replacement. Structural comparisons with known antibody structures showed that the conformations of the hypervariable regions H1, H2, L1, L2, L3 of Fab192 adopt the canonical structures 1, 1, 2, 1, and 1, respectively. The surface of the antigen-binding site is relatively planar, as expected for an antibody against a large protein antigen, with an accessible area of 2865 A2. Analysis of the electrostatic surface potential of the antigen-binding site shows that the bottom of the cleft formed in the center of the site appears to be negatively charged. The structure will be useful in the rational design of very high affinity humanized mutants of Fab192, appropriate for therapeutic approaches of the model autoimmune disease myasthenia gravis.  相似文献   

16.
17.
The membrane penetration depths of tryptophan residues in the nicotinic acetylcholine receptor from Torpedo californica have been analyzed in reconstituted membranes containing purified receptor and defined lipids. Dioleoylphosphatidylcholine and three spin-labeled phosphatidylcholines with the nitroxide group at three different positions on the fatty acyl chain were used for reconstitution of the receptor. The spin-labeled phospholipids serve as quenchers of tryptophan fluorescence. Differential quenching of the intrinsic fluorescence of the acetylcholine receptor by the spin-labeled phospholipids has been utilized to analyze the average membrane penetration depth of tryptophans by the parallax method [Chattopadhyay, A., & London, E. (1987) Biochemistry 26, 39-45]. Analyses of the quenching data indicate that the tryptophan residues on the average are at a shallow location (10.1 A from the center of the bilayer) in the membrane. In addition, the generally low levels of quenching imply that the majority of tryptophan residues are located in the putative extramembranous region of the receptor. These results are consistent with several proposed models for the tertiary structure of the acetylcholine receptor and are relevant to ongoing analyses of the overall conformation and orientation of the acetylcholine receptor in the membrane.  相似文献   

18.
Synthetic peptides corresponding to sequence segments of the nicotinic acetylcholine receptor (nAChR) alpha subunits have been used to identify regions that contribute to formation of the binding sites for cholinergic ligands. We have previously defined alpha-bungarotoxin (alpha-BTX) binding sequences between residues 180 and 199 of a putative rat neuronal nAChR alpha subunit, designated alpha 5 [McLane, K. E., Wu, X., & Conti-Tronconi, B. M. (1990) J. Biol. Chem. 265, 9816-9824], and between residues 181 and 200 of the chick neuronal alpha 7 and alpha 8 subunits [McLane, K. E., Wu, X., Schoepfer, R., Lindstrom, J., & Conti-Tronconi, B. M. (1991) J. Biol. Chem. (in press)]. These sequences are relatively divergent compared with the Torpedo and muscle nAChR alpha 1 alpha-BTX binding sites, which indicates a serious limitation of predicting functional domains of proteins based on homology in general. Given the highly divergent nature of the alpha 5 sequence, we were interested in determining the critical amino acid residues for alpha-BTX binding. In the present study, the effects of single amino acid substitutions of Gly or Ala for each residue of the rat alpha 5(180-199) sequence were tested, using a competition assay, in which peptides compete for 125I-alpha-BTX binding with native Torpedo nAChR.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
B G Wallace  Z Qu  R L Huganir 《Neuron》1991,6(6):869-878
Agrin causes acetylcholine receptors (AChRs) on chick myotubes in culture to aggregate, forming specializations that resemble the postsynaptic apparatus at the vertebrate skeletal neuromuscular junction. Here we report that treating chick myotubes with agrin caused an increase in phosphorylation of the AChR beta, gamma, and delta subunits. H-7, a potent inhibitor of several protein serine kinases, blocked agrin-induced phosphorylation of the gamma and delta subunits, but did not prevent either agrin-induced AChR aggregation or phosphorylation of the beta subunit. Experiments with anti-phosphotyrosine antibodies demonstrated that agrin caused an increase in tyrosine phosphorylation of the beta subunit that began within 30 min of adding agrin to the myotube cultures, reached a plateau by 3 hr, and was blocked by treatments known to block agrin-induced AChR aggregation. Anti-phosphotyrosine antibodies labeled agrin-induced specializations as they do the postsynaptic apparatus. These results suggest that agrin-induced tyrosine phosphorylation of the beta subunit may play a role in regulating AChR distribution.  相似文献   

20.
Antigenic modulation of acetylcholine receptor (AChR), i.e., acceleration of its internalization and degradation rate by antibody-cross-linking, is considered to be one of the two main causes of AChR loss in myasthenia gravis (MG). The majority of the antibodies to AChR are directed to the main immunogenic region (MIR) on the alpha-subunit of the receptor. We here examine the relative contribution of the anti-MIR antibody fraction (as well as of another fraction) to the antigenic modulation caused by MG patients' sera. Fab fragments of an anti-MIR monoclonal antibody (mAb) or a mAb to the beta-subunit (neither of which causes antigenic modulation) were allowed to shield their corresponding regions on the AChR on the mouse muscle cell line BC3H1. The 27 MG sera subsequently added thus bound to all other regions except to the protected one, and the resulting antigenic modulation was measured. The anti-MIR mAb protected the AChR by 68 +/- 16%. This is interpreted as the contribution to antigenic modulation of the anti-MIR antibody fraction in the human sera. This percentage correlated very well with the occurrence of the anti-MIR antibodies in the same sera. The anti-beta mAb gave only small protection of the AChR. No significant pattern differences were observed between sexes, early and recent onset of the disease, or high and low antibody titers. It is concluded that as far as it concerns the one of the pathogenic mechanisms in MG, i.e., the antigenic modulation, the MIR seems to be the main pathogenic region. The observation that a single mAb can efficiently protect the AChR in this system may prove to be of therapeutic interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号