首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The effect of white light on the malate oxidase of Sarcina lutea (Micrococcus luteus) membranes has been examined using a carotenoid-containing and a carotenoidless mutant. At least three photosensitive sites have been detected. Two of these are associated with the malate dehydrogenase complex (malate-menaquinone reductase) and are unaffected by membrane carotenoid. A third site which has been detected beyond the dehydrogenase complex, is protected by carotenoid since it can only be demonstrated in carotenoidless systems. A repair mechanism has been found for one of the two sites in the dehydrogenase complex.  相似文献   

2.
The combined effects of ionic strength, divalent cations, pH and toxin concentration on the pore-forming activity of Cry1Ac and Cry1Ca were studied using membrane potential measurements in isolated midguts of Manduca sexta and a brush border membrane vesicle osmotic swelling assay. The effects of ionic strength and divalent cations were more pronounced at pH 10.5 than at pH 7.5. At the higher pH, lowering ionic strength in isolated midguts enhanced Cry1Ac activity but decreased considerably that of Cry1Ca. In vesicles, Cry1Ac had a stronger pore-forming ability than Cry1Ca at a relatively low ionic strength. Increasing ionic strength, however, decreased the rate of pore formation of Cry1Ac relative to that of Cry1Ca. The activity of Cry1Ca, which was small at the higher pH, was greatly increased by adding calcium or by increasing ionic strength. EDTA inhibited Cry1Ac activity at pH 10.5, but not at pH 7.5, indicating that trace amounts of divalent cations are necessary for Cry1Ac activity at the higher pH. These results, which clearly demonstrate a strong effect of ionic strength, divalent cations and pH on the pore-forming activity of Cry1Ac and Cry1Ca, stress the importance of electrostatic interactions in the mechanism of pore formation by B. thuringiensis toxins.  相似文献   

3.
To obtain information on the importance of membrane and zeta potentials as repelling or facilitating forces during the uptake of cationic trace elements, the heavy metal content and the growth resistance of the acidotolerant fungus Bispora. sp. to heavy metals were compared at pH 1.0 and pH 7.0. Cu, Co, Ni, Cd, Cr, and La contents of the fungus were significantly lower at pH 1.0 than at pH 7.0. A similar pH effect occurred with cationic macro elements such as Na, Mg, Ca, Fe, and Mn. Only K and Zn exhibited higher levels at pH 1.0 in the fungus than at pH 7.0. Macro and micro elements present in the medium in anionic form (sulfate, chloride) showed the opposite pattern to cations: Contents were higher at pH 1.0 than at pH 7.0. Minerals present at pH 1.0 predominantly in the electrical neutral, protonated form (phosphate, borate) exhibited a similar cell content at both acid and neutral pH (P) or a higher content at neutral pH than at acid pH (B). The resistance of fungal growth to the cations Cu, Zn, Ni, Co, Cr, and Cd was significantly higher at pH 1.0 than at pH 7.0. Such a difference was not observed with Hg, present in the medium at both pH values as electrically silent HgCl2. The anionic tungstate exhibited the opposite pattern to cationic heavy metals: The resistance of growth was higher at pH 7.0 than at pH 1.0. A greater growth resistance to heavy metals was correlated with a lower uptake of these elements, and vice versa; Uptake of heavy metals correlated with a lower resistance of fungal growth to these elements. The results are in agreement with the hypothesis that membrane and zeta potentials of the fungus are important factors controlling the uptake of heavy metals and thereby the resistance of growth to these elements: At pH 1.0 positive potentials of fungal hyphae impede the uptake of cationic heavy metals, but facilitate the uptake of anionic species. At neutral pH values the negative potentials facilitate the uptake of cations, but impede the uptake of anions.  相似文献   

4.
Summary Internodal cells ofChara, grown in culture either at pH 5.7, 6.5 or 7.5, were studied to determine their chloride influx capability, the quantitative aspects of charasome morphology and the degree to which these two parameters could be correlated. In cells grown at pH 5.7 the charasomes were relatively small, were widely spaced on the plasma membrane, and contributed only a 0.6% increase to the surface area of the plasma membrane in the acid region of the cell. In contrast, the charasome membrane surface area of cells grown at pH 7.5 had increased × 19, the density of charasomes on the cell surface increased × 42, thus producing a × 3.57 increase in the acid region plasma membrane surface area. Chloride influx in cells grown at pH 7.5 was × 8.7–12.7 greater than in cells grown at pH 5.7. Cells that had been starved of chloride exhibited a × 2.4 average increase in the rate of chloride influx. Our observations establish the existence of a positive correlation between the rate of chloride influx and the increase in membrane surface area due to charasomes, although other factors, such as the effect of pH on transport-related enzymes, and the effect of charasome structure on chemical equilibria, may also be of importance.  相似文献   

5.
Summary Transepithelial current fluctuations were recorded inNecturus gallbladder, clamped at negative as well as positive potentials up to 64 mV. With NaCl-Ringer's (+10mm TAP) on both sides a mucosa-negative potential enhanced the relaxation noise component, present at zero potential, and produced peaking in the power spectrum at potentials above –36mV. Concomitantly at these potentials an inductive as well as a capacitive low-frequency feature appeared in the impedance locus. Clamping at positive potentials of 18 mV suppressed the relaxation noise component. At potentials above 51mV the spectral values increased predominantly at low frequencies. In this case the power spectrum showed only a 1/f noise component. The experiments confirm the previous finding that a K+ efflux through fluctuating apical K+ channels exists under normal conditions. With serosal KCl-Ringer's the initial Lorentzian component was enhanced at negative but suppressed at positive potentials. The increase at negative potentials was less pronounced than in experiments with NaCl-Ringer's on both sides, indicating saturation of the fluctuating K+ current component. With mucosal KCl-Ringer's a negative potential depressed the initial relaxation noise component, whereas it was enhanced at +18 mV clamp potential. In the latter case an additional Lorentzian component became apparent at higher frequencies. At potentials of 36 mV and above the low-frequency Lorentzian disappeared whereas the corner frequency of the high-frequency component increased. The latter experiments demonstrate that the relaxation noise component inNecturus gallbladder consists of two superimposed Lorentzians. As the relaxation times of these two components behave differently under an electrical field, there may exist two different types of K+ channels. It is demonstrated that peaking in the plateau of power spectra can be explained by frequency-dependent attenuation effects, caused by a polarization impedance.  相似文献   

6.
In homogenates of resting rapeseeds no lipase activity (glycerolester hydrolase, EC 3.1.1.3) could be detected using a titrimetric assay procedure. Following a 30-h lag-phase after imbibition, lipase activity increased sharply, reaching its maximum at day 4 after sowing. Simultaneously triglyceride content of the cotyledons decreased sharply. At any time during the 11-day period of seedling growth examined, only an alkaline lipase activity with a pH optimum around 9 was present. White light had essentially no effect on the development of lipase activity. However, the disappearance of lipase activity from the cotyledons after fat utilization was found to depend on nitrogen nutrition of the seedlings. The activities of the glyoxysomal enzymes catalase and malate synthetase showed the usual rise and fall patterns with peak activities at day 4 after sowing, independently of the mineral nutrition of the seedlings.About 90% of the lipase activity was associated with a microsomal membrane fraction. Resolution of this fraction by sucrose density gradient centrifugation (62,000 g for 14 h) yielded three distinct membrane fractions. Maximum activities of membrane marker enzymes were recovered from the gradients at following densities: The major portion of microsomal protein and lipase activity at 1.085 kg/l; microsomal malate synthetase and phosphorylcholineglyceride transferase at 1.116 kg/l; NADH-cytochrome c reductase and phosphorylcholinecytidyl transferase at 1.133 kg/l. Evidently in rapeseed cotyledons lipase activity is associated only with a discrete microsomal membrane fraction which sediments differently from membrane fractions of the endoplasmic reticulum.  相似文献   

7.
Ionizable groups and conductances of the rod photoreceptor membrane   总被引:1,自引:0,他引:1       下载免费PDF全文
The ionizable groups and conductances of the rod plasma membrane were studied by measuring membrane potential and input impedance with micropipettes that were placed in the rod outer segments. Reduction of the pH from 8.0 to 6.8 or from 7.8 to 7.3 resulted in membrane depolarization in the dark from 8.0 to 6.8 or from 7.8 to 7.3 resulted in membrane depolarization in the dark (by 2- 3 mV) and an increased size of the light response (also by 2-3 mV). The dark depolarization was accompanied by and increased resting input impedance (by 11-35 Mω). When the pH was decreased in a perfusate in which Cl(-) was replaced by isethionate, the membrane depolarized. When the pH was decreased in a perfusate in which Na(+) was replaced by choline, an increase of input impedance was observed (11-50 Mω) even though a depolarization did not occur. These results are consistent with the interpretation that the effects of decreased extracellular pH result mainly from a decrease in rod membrane K(+) conductance that is presumably cause by protonation of ionizable groups having a pK(a) between 7.3 and 7.8. Furthermore, from these results and results obtained by using CO(2) and NH(3) to affect specifically the internal pH of the cell, it seems unlikely that altered cytoplasmic [H(+)] is a cytoplasmic messenger for excitation of the rod. When the rods were exposed to perfusate in which Na(+) was replaced by choline, the resting (dark) input impedance increased (by 26 Mω +/- 5 Mω SE), and the light-induced changes in input impedance became undetectable. Replacement of Cl(-) by isethionate had no detectable effect on either the resting input impedance or the light-induced changes in input impedance. These results confirm previous findings that the primary effect of light is to decrease the membrane conductance to Na(+) and show that, if any other changes in conductance occur, they depend upon the change in Na(+) conductance. The results are consistent with the following relative resting conductances of the rod membrane: G(Na(+)) similar to G(K(+)) more than 2-5 G(Cl(-)).  相似文献   

8.
利用脉孢菌生物钟体系,研究了色噪音对其进行诱导所产生的日夜节律振荡信号及其内信号随机共振的行为.结果表明,色噪音的相关时间对该体系内信号随机共振的强弱起较大的影响作用.当无外信号存在时,色噪音的相关时间对体系内信号随机共振强度起抑制的作用,且随相关时间的增大,抑制作用增强.当外信号加到体系中时,由于相关时间和外信号的协同作用,相关时间不仅对其内信号随机共振强度起抑制的作用,而且还影响内信号随机共振峰的数目,即随相关时间的增大,可使单峰随机共振变为随机双共振.存在最佳的外信号频率使体系的内信号随机共振强度得到最大的增强,而其他频率的外信号却起抑制作用.色内噪音和色外噪音相比,前者对该体系进行诱导所得的内信号随机共振强度比后者的更强,而且体系对前者更敏感.另外,存在极限的噪音强度使白噪音和色噪音对该体系内信号随机共振的影响差异得以消失.所得结果可为治疗生物钟紊乱综合症提供理论依据,同时可更好地理解其他节奏机理,如心脏搏动节奏、呼吸节奏以及荷尔蒙水平的波动节奏等.  相似文献   

9.
In pots containing sandy soils at two levels (pH 5 and 7) to which 0.5 mg Se L-1 soil had been added, an increase in the proportion of clay soil or peat soil led to a decrease in the uptake of Se by spring wheat grain (Triticum aestivum L., var. Drabant) and winter rape plants (Brassica napus L., var. Emil). The effect was most pronounced for the smallest additions of clay and peat soils. Differences in Se uptake between the two pH levels were greatest in treatments where the additions of clay and peat soils were small. At the high pH, an increase in clay content from 7% to 39% resulted in a decrease in Se uptake of 79% for wheat and 70% for rape. At the low pH, the uptake decreased by 72% and 77%, respectively. At the higher pH, an increase in the content of organic matter from 1.4% to 39% resulted in decreases in Se uptake of 88% for wheat grain and 69% for rape. At the low pH, Se uptake decreased by 63% and 48%, respectively. Adding peat soil to clay soil had little effect on Se uptake. Among the limed, unmixed clay, sand and peat soils to which Se had not been added, uptake was highest from the sandy soil, i.e. 8.3 ng Se/g wheat grain and 42 ng Se/g rape. The lowest uptake rates were obtained in the clay soil, i.e. 3.0 ng Se/g for wheat grain and 9.0 ng Se/g for rape.  相似文献   

10.
The membrane operational impedance spectrum of Chara corallina Klein ex Willd. (R. Brown) cells is investigated using Laplace transform analysis. The spectrum changes with both amplitude and sign of the electrical stimulation when time- and voltage-dependent K+ channels contribute to the membrane conductance. We compare the advantages and disadvantage of this technique for studying membrane impedance with those of the alternating current method and the white noise method.  相似文献   

11.
Ultrastructural localization of peroxidatic activity was investigated in the chytrid Entophlyctis variabilis with the 3,3-diaminobenzidine (DAB) cytochemical prodedure. The subcellular distribution of reaction product varied with changes in pH of the DAB medium and with the developmental stage of the fungus. Incubations in the DAB reaction medium at pH 9.2 produced an electron dense reaction product within single membrane bounded organelles which resembled microbodies but which varied in shapes from elongate to oval. At this pH the cell wall also stained darkly. When the pH of the DAB medium was lowered to pH 8.2 or 7.0, DAB oxidation product was localized within mitochondrial cristae as well as in microbodies and zoosporangial walls. As soon as zoospores were completely cleaved out of the zoosporangial cytoplasm, endoplasmic reticulum (ER) also stained. When the wall appeared around the encysted zoospore, ER staining was no longer found. The influence of the catalase inhibitor, aminotriazole, and the inhibitors of heme enzymes, sodium azide and sodium cyanide, on the staining patterns within cells incubated in the DAB media indicates that microbody staining is due to both catalase and peroxidase, mitochondrial staining is due to cytochrome c, and ER staining is due to peroxidase.Abbreviations DAB 3,3-diaminobenzidine-HCl - ER endoplasmic reticulum  相似文献   

12.
Summary Previous studies in our laboratory have shown that CryIC, a lepidopteran-specific toxin from Bacillus thuringiensis, triggers calcium and chloride channel activity in SF-9 cells (Spodoptera frugiperda, fall armyworm). Chloride currents were also observed in SF-9 membrane patches upon addition of CryIC toxin to the cytoplasmic side of the membrane. In the present study the ability of activated CryIC toxin to form channels was investigated in a receptor-free, artificial phospholipid membrane system. We demonstrate that this toxin can partition in planar lipid bilayers and form ion-selective channels with a large range of conductances. These channels display complex activity patterns, often possess subconducting states and are selective to either anions or cations. These properties appeared to be pH dependent. At pH 9.5, cation-selective channels of 100 to 200 pS were most frequently observed. Among the channels recorded at pH 6.0, a 25–35 pS anion-selective channel was often seen at pH 6.0, with permeation and kinetic properties similar to those of the channels previously observed in cultured lepidopteran cells under comparable pH environment and for the same CryIC toxin doses. We conclude that insertion of CryIC toxin in SF-9 cell native membranes and in artificial planar phospholipid bilayers may result from an identical lipid-protein interaction mechanism.The assistance of A. Mazza and G.A.R. Mealing is gratefully acknowledged. The trypsin-activated, HPLC-purified CryIC toxin isolated from B. thuringiensis var. entomocidus crystal was a kind gift from M. Pusztai, Institute for Biological Sciences, NRC, Ottawa.  相似文献   

13.
M. Sabater  F. Sabater 《Planta》1986,167(1):76-80
The pH-driven accumulation of [3H]indolyl-3-acetic acid (IAA) has been found to occur in membrane vesicles of lupin (Lupinus albus L.) hypocotyls. Most of this association of auxin with membranes is very sensitive to osmotic shock, high concentrations of permeable weak acids, incubation at 20° C for 20 min and to some ionophores. Long incubation times also depress the ability to accumulate radioactive IAA but this ability can be partially restored by a treatment that presumably reconstitutes the pH gradient across the membranes. Two specific inhibitors of auxin transport, N-1-naphtylphthalamic acid and 2,3,5-triiodobenzoic acid, stimulate net IAA uptake with an optimum at about 10-6 M (pH 5.0). At least two auxin carriers appear to be present in the lupin membrane vesicles. An uptake carrier seems to be saturated at 10-7 M IAA in the presence of N-1-naphtylphthalamic acid, but higher IAA concentrations are needed to saturate an efflux carrier. The uptake carrier also shows a high affinity for IAA and 2,4-dichlorophenoxyacetic acid and a low affinity for 1-naphthylacetic acid.Abbreviations CCCP carbonylcyanide m-chlorophenylhydrazone - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indolyl-3-acetic acid - NAA naphthalene-1-acetic acid - NIG nigeriein - NPA N-1-naphthylphthalamic acid - TIBA 2,3,5-triiodobenzoic acid - VAL valinomycin  相似文献   

14.
Phenotypic switching between white and opaque cells is important for adaptation to different host environments and for mating in the opportunistic fungal pathogen Candida albicans. Genes that are specifically activated in one of the two cell types are likely to be important for their phenotypic characteristics. The WH11 gene is a white-phase-specific gene that has been suggested to be involved in the maintenance of the white-phase phenotype. To elucidate the role of WH11 in white-opaque switching, we constructed mutants of the C. albicans strain WO-1 in which the WH11 gene was deleted. The wh11 mutants were still able to form both white and opaque cells whose cellular and colony phenotypes were indistinguishable from those of the wild type. Deletion of WH11 also did not affect the activation and deactivation of the white-phase-specific WH11 promoter and the opaque-phase-specific OP4 and SAP1 promoters in the appropriate cell type. Finally, switching from the white to the opaque phase and vice versa occurred with the same frequency in wild-type and wh11 mutants. Therefore, the WH11 gene is not required for phenotypic switching, and its protein product seems to have other roles in white cells, which are dispensable after the switch to the opaque phase.Communicated by E. Cerdá-Olmedo  相似文献   

15.

Alkaliphily, the ability of an organism to thrive optimally at high ambient pH, has been well-documented in several lineages: archaea, bacteria and fungi. The molecular mechanics of such adaptation has been extensively addressed in alkaliphilic bacteria and alkalitolerant fungi. In this study, we consider an additional property that may have enabled fungi to prosper at alkaline pH: altered contents of membrane lipids and cytoprotectant molecules. In the alkaliphilic Sodiomyces tronii, we showed that at its optimal growth pH 9.2, the fungus accumulates abundant cytosolic trehalose (4–10% dry weight) and phosphatidic acids in the membrane lipids, properties not normally observed in neutrophilic species. At a very high pH 10.2, the major carbohydrate, glucose, was rapidly substituted by mannitol and arabitol. Conversely, lowering the pH to 5.4–7.0 had major implications both on the content of carbohydrates and membrane lipids. It was shown that trehalose dominated at pH 5.4. Fractions of sphingolipids and sterols of plasma membranes rapidly elevated possibly indicating the formation of membrane structures called rafts. Overall, our results reveals complex dynamics of the contents of membrane lipids and cytoplasmic sugars in alkaliphilic S. tronii, suggesting their adaptive functionality against pH stress.

  相似文献   

16.
A. L. Moore  S. B. Wilson 《Planta》1978,141(3):297-302
The permeability of the inner membrane of turnip mitochondria to H+ and OH- ions has been investigated using an acid pulse technique. The rate of decay of a H+ pulse across the inner membrane is exponential having first-order kinetics and gives t 1/2 values of approx 54 s at neutral pH and at 25° C. Valinomycin or 1799 alone have little effect on t 1/2 values, whereas in combination, values of <15 s are observed. Nigericin produces a similar effect. The effective proton conductance of the inner membrane near pH 7 at 25° C is 0.27 nmol H+ min-1 mg protein-1 mV-1. The results suggest that at neutral pH, the inner membrane of plant mitochondria is relatively impermeable to H+ and OH- ions.  相似文献   

17.
The fine structure of the atypical cyanobacterium Gloeobacter violaceus has been studied on frozen-etched replicas and compared to that of a typical unicellular strain: Synechocystis 6701. The complementary fracture faces of G. violaceus cytoplasmic membrane contain particles less numerous and more heterogenous in size than either the cytoplasmic membrane or the thylakoid membranes of Synechocystis. The most frequently observed particles of the exoplasmic fracture (EF) face of the G. violaceus cytoplasmic membrane are 11 nm in diameter and occasionally form short alignments. This particle class is similar in appearance to the numerous, aligned EF particles of Synechocystis thylakoid membranes. In replicas of cross-fractured G. violaceus, a layer 50–70 nm thick, composed of rod-like elements, underlies the inner surface of the cytoplasmic membrane. The rods, 12–14 nm in diameter, are oriented perpendicularly to the cytoplasmic membrane and show a 6 nm repeat along their length.Isolated phycobilisomes of G. violaceus appear, after fixation and negative staining, as bundles of 6 parallel rodshaped elements connected to an ill-defined basal structure. The bundles are 40–45 nm wide and 75–90 nm long. The rods are 10–12 nm in width; their length varies between 50 and 70 nm. These rods are morphologically similar to those observed at the periphery of hemidiscoidal phycobilisomes of other cyanobacteria, with a strong repeat at 6 nm intervals and a weaker one at 3 nm intervals along their length.The calculated molar ratio of phycobiliproteins in isolated G. violaceus phycobilisomes corresponds to 1:3.9:2.9 for allophycocyanin, phycocyanin and phycoerythrin respectively. When excited at 500 nm, isolated phycobilisomes exhibit a major fluorescence emission band centered at 663 nm.Abbreviations PBS phycobilisome(s) - PBP phycobiliprotein(s) - AP allophycocyanin - PC phycocyanin - PE phycoerythrin - K–PO4 buffer KH2PO4 titrated with KOH to a given pH  相似文献   

18.
Glass microelectrodes were inserted into the growing zone of sporangiophores of Phycomyces blakesleeanus that had been submersed in artificial pond water. The membrane potential (inside negative) increased with increasing pH of the bathing solution from an average of ?98 mV at pH 5 up to ?131 mV at pH 7. Removal of Ca2+ from the medium hyperpolarized the membrane potential in the wild type, but caused a significant depolarization in the blue-light-insensitive madC mutant. KCN, diethylstilbestrol, and N,N′-dicyclohexylcarbodiimide depolarized the membrane potential in both the wild type and the madC mutant, while fusicoccin had no effect. Endogenous ion current of up to 2 μA cm?2 was measured in the growing zone of sporangiophores with an extracellular vibrating electrode. The current density and current pattern varied with the pH of the medium. At pH 5 most sporangiophores had weak inward current along the growing zone, whereas at pH 7 most sporangiophores had strong outward current. The response of the membrane potential to specific inhibitors and the presence of an endogenous ion current indicate an electrogenic H+-ATPase in the plasma membrane. The results show a negative correlation between growth rate of sporangiophores growing in buffered aqueous medium and magnitude of membrane potential, as well as density of outward current. They also indicate an important role of protons in controlling the growth of Phycomyces sporangiophores.  相似文献   

19.
Summary Reducing the pH of the bathing solution from 8.2 to pH 6 can induce an inversion of the extracellular current pattern that develops at the surface ofChara corallina internodal cells. A similar result can be obtained on some cells by changing the medium to a pH value of 10. In noninvertingChara cells the currents were strongly reduced when the pH value of the medium was changed between 3 and 11. Simultaneous measurements of theChara transmembrane potential in the acid and alkaline regions revealed that a light-induced electrical potential gradient of approximately 24 mV was present in the axial (or longitudinal) direction. Correlated to the external current pattern inversion was an inversion of this internal longitudinal voltage gradient. Reillumination ofNitella cells, after a period of darkness, often resulted in a complete inversion of the extracellular current pattern. These results are discussed in terms of spatial and temporal control of membrane transport processes, and in particular the control of current loops that pass through these cells.  相似文献   

20.
In this study, live cells of Brevibacterium flavum were immobilized for the production of glutamic acid. The reason for such a choice was that glutamic acid fermentation is an extensively studied fermentation and one which requires the viability of entire cellular faculties for the acid production. Brevibacterium flavum was chosen because it is an industrially used bacterium, and is very potent via a vis glutamic acid production. Studies were performed to find aeration and agitation conditions for optimal growth and glutamic acid productivity. Experiments were also done to find the optimum harvesting time. The cell activity peaks during the run of fermentation, and the time at which the peak occurs, was found. Conventional methods for immobilizing the cells on collagen were found to be lacking. The pH and drying were the two main reasons for loss of viability of the cells; the latter being more important. A modified immobilization procedure has been devised, which can immobilize live cells at any given pH and ionic strength, in contrast to the conventional method which requires the pH to be above 11 or below 3. This new method involves dialysis of collagen in suitable dialysis bags against water at pH7 (or buffer at any desired pH). The dialysed collagen blended at 20,000 rpm, resulted in a very smooth dispersion, unnoticeably different from collagen dispersion prepared at pH 11. The dispersed collagen was then cast and dried at an elevated temperature, and high air flow rate over the cast membrane, decreasing the time of drying from 6–8 hr ( in the conventional method) to 1.5–2 hr. The membrane has been tested for glutamic acid producing capabilities in a column reactor with the membrane spirally wound. The reactor has been operated under continuous conditions for 5–10 days with stable activities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号