首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
M A Schembri  P Klemm 《The EMBO journal》2001,20(12):3074-3081
Fimbriae are thread-like polymers displayed in large amounts on the bacterial surface and used by many pathogens to attach to receptors on host tissue surfaces. Fimbriae contain disulfide bridges, contrary to many Escherichia coli surface proteins produced in bulk amounts. Here we investigate whether fimbriae expression can affect expression of other genes. Analysis of gene expression in two E.coli strains, differing in the fim locus, indicated the flu gene to be affected. The flu gene encodes the antigen 43 (Ag43) surface protein, specifically involved in bacterial aggregation, and microcolony and biofilm formation. Ag43 production is repressed by the global regulator OxyR, which monitors the cell's thiol-disulfide status. Only the thiol form of OxyR represses Ag43 production. We demonstrate that production of several different disulfide-containing fimbriae results in the abolition of Ag43 production. No effect was observed in an oxyR mutant. We conclude that fimbriae expression per se constitutes a signal transduction mechanism that affects a number of unrelated genes via the thiol-disulfide status of OxyR. Thus, phase variation in fimbrial expression is coordinated with the expression of other disease- and colonization-related genes.  相似文献   

2.
3.
4.
5.
Antigen 43 (Ag43), the product of the flu gene, is a surface-displayed autotransporter protein of Escherichia coli. Ag43 is responsible for the autoaggregation and flocculation of static liquid cultures of many E. coli strains. The expression of Ag43 has been reported to be phase variable and controlled by the product of the oxyR gene. Type 1 fimbriae are thin adhesive thread-like surface organelles responsible for bacterial receptor recognition and tissue colonization. Like that of Ag43, the expression of type 1 fimbriae is phase variable. Interestingly, previous results have suggested that the expression of type 1 fimbriae and the expression of Ag43 are mutually exclusive. In the present report, we show, by use of well-defined mutants, that fimbriation abolishes Ag43-mediated autoaggregation but does not affect Ag43 expression. Autoaggregation is shown to require an intercellular Ag43-Ag43 interaction, and the physical presence of fimbriae on the cells seems to abrogate this interaction. The Ag43 or OxyR status does not appear to influence fimbria expression, and our results suggest that the expression of Ag43 and the expression of fimbriae are independent processes.  相似文献   

6.
Here we report the characterization of an Escherichia coli gene (agn43) which encodes the principal phase-variable outer membrane protein termed antigen 43 (Ag43). The agn43 gene encodes a precursor protein of 107 kDa containing a 52-amino-acid signal sequence. Posttranslational processing generates an alpha43 subunit (predicted Mr of 49,789) and a C-terminal domain (beta43) with features typical of a bacterial integral outer membrane protein (predicted Mr of 51, 642). Secondary structure analysis predicts that beta43 exists as an 18-stranded beta barrel and that Ag43 shows structural organization closely resembling that of immunoglobulin A1 protease type of exoprotein produced by pathogenic Neisseria and Haemophilus spp. The correct processing of the polyprotein to alpha43 and beta43 in OmpT, OmpP, and DegP protease-deficient E. coli strains points to an autocatalytic cleavage mechanism, a hypothesis supported by the occurrence of an aspartyl protease active site within alpha43. Ag43, a species-specific antigen, possesses two RGD motifs of the type implicated in binding to human integrins. The mechanism of reversible phase variation was studied by immunochemical analysis of a panel of well-defined regulatory mutants and by analysis of DNA sequences upstream of agn43. Evidence strongly suggests that phase variation is regulated by both deoxyadenosine methylase (Dam) and by OxyR. Thus, oxyR mutants are locked on for Ag43 expression, whereas dam mutants are locked off for Ag43 expression. We propose a novel mechanism for the regulation of phase switching in which OxyR competes with Dam for unmethylated GATC sites in the regulatory region of the agn43 gene.  相似文献   

7.
8.
Antigen 43 (Ag43) is a self-recognizing surface adhesin found in most Escherichia coli strains. Expression of Ag43 confers aggregation and fluffing of cells, promotes biofilm formation and is associated with enhanced resistance to antimicrobial agents. Ag43 is an autotransporter protein and consists of two moieties: a transporter, the beta-module, and a passenger domain, the alpha-module. Here we have employed various molecular approaches to probe structure/function aspects of Ag43. An entire family of Ag43 variants was identified. The gene encoding Ag43 (flu) was cloned from a diverse range of E. coli subtypes and found to encode variant proteins with different properties. Several novel variants were identified and characterized that were unable to promote cell-cell aggregation. By employing a combination of linker insertion mutagenesis and domain swapping between clumping and non-clumping variants, we have pinpointed the region of the protein responsible for autoaggregation to be located within the N-terminal one-third of the passenger domain. Our data suggest that ionic interactions between charged residues residing in interacting pairs of Ag43alpha domains may be important for the self-recognition process. Based on its similarity to other related proteins, we predict the passenger, Ag43alpha, domain primarily to consist of an extended beta-helix structure in which numerous repeats or rungs are stacked in parallel orientation in an extended cylindrical formation. Finally, we found that in spite of their different aggregative pattern all Ag43 variants promoted biofilm formation to abiotic surfaces.  相似文献   

9.
Abstract Escherichia coli is a versatile organism capable of causing a variety of intestinal and extraintestinal diseases, as well as existing as part of the commensal flora. A variety of factors permit specific attachment to host receptors including fimbrial adhesins and outer membrane proteins such as autotransporters. One of the better characterized autotransporters is Antigen 43 (Ag43), the major phase-variable surface protein of E. coli. Ag43 is associated with bacterial cell-cell aggregation and biofilm formation. Nevertheless, the precise biological significance and contribution to intestinal colonization remain to be elucidated. Here we investigated the contribution of Ag43 to E. coli adherence to intestinal epithelial cells and colonization of the mouse intestine. These investigations revealed that Ag43 increased in vitro adherence of E. coli to epithelial cells by promoting bacterial cell-cell aggregation but that Ag43 did not promote specific interactions with the mammalian cells. Furthermore, Ag43 did not contribute significantly to colonization of the mouse intestine and expression of Ag43 was lost a few days after colonization of the mouse was established. Unexpectedly, considering its similarity to other adhesins, our findings suggest that Ag43 does not act as a direct colonization factor by binding to mammalian cells.  相似文献   

10.
Antigen 43 (Ag43) is a surface-displayed autotransporter protein of Escherichia coli. By virtue of its self-association characteristics, this protein is able to mediate autoaggregation and flocculation of E. coli cells in static cultures. Additionally, surface display of Ag43 is associated with a distinct frizzy colony morphology in E. coli. Here we show that Ag43 can be expressed in a functional form on the surface of the environmentally important Pseudomonas fluorescens strain SBW25 with ensuing cell aggregation and frizzy colony types. Using green fluorescence protein-tagged cells, we demonstrate that Ag43 can be used as a tool to provide interspecies cell aggregation between E. coli and P. fluorescens. Furthermore, Ag43 expression enhances biofilm formation in P. fluorescens to glass surfaces. The versatility of this protein was also reflected in Ag43 surface display in a variety of other gram-negative bacteria. Display of heterologous Ag43 in selected bacteria might offer opportunities for rational design of multispecies consortia where the concerted action of several bacterial species is required, e.g., waste treatment and degradation of pollutants.  相似文献   

11.
12.
13.
14.
The O‐antigen of Salmonella lipopolysaccharide is a major antigenic determinant and its chemical composition forms the basis for Salmonella serotyping. Modifications of the O‐antigen that can affect the serotype include those carried out by the products of glycosyltransferase operons (gtr), which are present on specific Salmonella and phage genomes. Here we show that expression of the gtr genes encoded by phage P22 that confers the O1 serotype is under the control of phase variation. This phase variation occurs by a novel epigenetic mechanism requiring OxyR in conjunction with the DNA methyltransferase Dam. OxyR is an activator or a repressor of the system depending on which of its two binding sites in the gtr regulatory region is occupied. Binding is decreased by methylation at Dam target sequences in either site, and this confers heritability of the expression state to the system. Most Salmonella gtr operons share the key regulatory elements that are identified here as essential for this epigenetic phase variation.  相似文献   

15.
Antigen 43 facilitates formation of multispecies biofilms   总被引:8,自引:0,他引:8  
Antigen 43 (Ag43) is a surface-displayed autotransporter protein of Escherichia coli. By virtue of its self-association characteristics, this protein is able to mediate autoaggregation of E. coli cells in static cultures. Here, we show that Ag43 can be expressed in a functional form on the surface of Pseudomonas fluorescens . Ag43 expression dramatically enhances the biofilm-forming potential of both E. coli and P. fluorescens to abiotic surfaces in simple microtitre well assays and in flow chambers. Importantly, Ag43-expressing E. coli and P. fluorescens cells tagged with Gfp and Rfp were shown to form interwoven biofilms in flow chambers. The three-dimensional structures of the biofilms were analysed by laser-confocal microscopy. Heterogeneous expression of Ag43 induced interspecies cell-to-cell contact that generated multispecies biofilm formation. Our data indicate that this versatile molecular tool can be used for the rational design of multispecies biofilms. More specifically, this novel technology offers opportunities for the design of multispecies consortia in which the concerted action of several bacterial species is required, e.g. waste treatment and degradation of pollutants.  相似文献   

16.
OxyR属于LysR型转录因子家族的氧化胁迫调控蛋白,是细菌抵抗氧化胁迫压力的重要调控因子。OxyR能够通过调控过氧化氢酶和过氧化物酶等抗氧化基因的表达清除H2O2、参与铁代谢控制胞内过氧化物的产生以及修复生物大分子氧化损伤,从而抵抗氧化胁迫。OxyR的基因表达调控功能依赖于其还原态和氧化态之间的转变,改变调控蛋白对下游基因调控区的亲和能力。氧化态OxyR识别启动子区的结合序列,激活或抑制过氧化氢酶等基因的表达。还原态和氧化态的转换依赖于在氧化状态下分子间二硫键的形成。本文综述了近年来细菌OxyR调控基因表达的最新研究进展,有助于深入理解OxyR在细菌抵抗氧化胁迫的作用方式,为相关致病菌的防治奠定分子基础。  相似文献   

17.
A spontaneous Xanthomonas campestris pv. phaseoli H(2)O(2)-resistant mutant emerged upon selection with 1 mM H(2)O(2). In this report, we show that growth of this mutant under noninducing conditions gave high levels of catalase, alkyl hydroperoxide reductase (AhpC and AhpF), and OxyR. The H(2)O(2) resistance phenotype was abolished in oxyR-minus derivatives of the mutant, suggesting that elevated levels and mutations in oxyR were responsible for the phenotype. Nucleotide sequence analysis of the oxyR mutant showed three nucleotide changes. These changes resulted in one silent mutation and two amino acid changes, one at a highly conserved location (G197 to D197) and the other at a nonconserved location (L301 to R301) in OxyR. Furthermore, these mutations in oxyR affected expression of genes in the oxyR regulon. Expression of an oxyR-regulated gene, ahpC, was used to monitor the redox state of OxyR. In the parental strain, a high level of wild-type OxyR repressed ahpC expression. By contrast, expression of oxyR5 from the X. campestris pv. phaseoli H(2)O(2)-resistant mutant and its derivative oxyR5G197D with a single-amino-acid change on expression vectors activated ahpC expression in the absence of inducer. The other single-amino-acid mutant derivative of oxyR5L301R had effects on ahpC expression similar to those of the wild-type oxyR. However, when the two single mutations were combined, as in oxyR5, these mutations had an additive effect on activation of ahpC expression.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号