首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The T4 dam+ gene has been cloned (S. L. Schlagman and S. Hattman, Gene 22:139-156, 1983) and transferred into an Escherichia coli dam-host. In this host, the T4 Dam DNA methyltransferase methylates mainly, if not exclusively, the sequence 5'-GATC-3'; this sequence specificity is the same as that of the E. coli Dam enzyme. Expression of the cloned T4 dam+ gene suppresses almost all the phenotypic traits associated with E. coli dam mutants, with the exception of hypermutability. In wild-type hosts, 20- to 500-fold overproduction of the E. coli Dam methylase by plasmids containing the cloned E. coli dam+ gene results in a hypermutability phenotype (G.E. Herman and P. Modrich, J. Bacteriol. 145:644-646, 1981; M.G. Marinus, A. Poteete, and J.A. Arraj, Gene 28:123-125, 1984). In contrast, the same high level of T4 Dam methylase activity, produced by plasmids containing the cloned T4 dam+ gene, does not result in hypermutability. To account for these results we propose that the E. coli Dam methylase may be directly involved in the process of methylation-instructed mismatch repair and that the T4 Dam methylase is unable to substitute for the E. coli enzyme.  相似文献   

2.
W Guschlbauer 《Gene》1988,74(1):211-214
Previous comparison of the amino acid sequences of the GATC-methylating Escherichia coli Dam methyltransferase (MTase) with those of other adenine MTases (M.EcoRV, M.DpnII and T4Dam) localized four conserved regions. Regions III and IV have similarities with many other MTases. The sequence DPPY (or NPPY) is always present in region IV. It was suggested to be the AdoMet binding site. Publication of the nucleotide and amino acid sequences of M.CviBIII, M.DpnA and MutH give further credence to this assignment: M.DpnA, which also methylates GATC, has strong similarities with regions III and IV; M.CviBIII, a cytosine methylase, has a characteristic NPPY sequence in region IV, and only limited resemblance in region III; MutH, the GATC-specific endonuclease in DNA mismatch repair, has significant similarities uniquely in region III. The presently available evidence suggests that region III is the GAT(C) binding site and region IV is the AdoMet binding site. This hypothesis is strengthened by recent genetic findings.  相似文献   

3.
Proteins encoded by three genes in the DpnII restriction enzyme cassette of Streptococcus pneumoniae were purified and characterized. Large amounts of the proteins were produced by subcloning the cassette in an Escherichia coli expression system. All three proteins appear to be dimers composed of identical polypeptide subunits. One is the DpnII endonuclease, and the other two are DNA adenine methylase active at 5' GATC 3' sites. Inactivation of enzyme activity by insertions into the genes and comparison of the DNA sequence with the amino-terminal sequence of amino acid residues in the proteins demonstrated the following correspondence between genes and enzymes. The promoter-proximal gene in the operon, dpnM, encodes a 33 X 10(3) Mr polypeptide that gives rise to a potent DNA methylase. The next gene, dpnA, encodes the 31 x 10(3) Mr polypeptide of a weaker and less-specific methylase. The third gene, dpnB, encodes the 34 x 10(3) Mr polypeptide of the endonuclease. Although the endonuclease polypeptide is initiated from an ordinary ribosome-binding site, each of the methylase polypeptide begins at an atypical site with a consensus sequence entirely different from that of Shine & Dalgarno. This presumptive novel ribosome-binding site is well recognized in both S. pneumoniae and E. coli.  相似文献   

4.
Cloning and structure of the BepI modification methylase.   总被引:7,自引:7,他引:0       下载免费PDF全文
The gene coding for a CGCG specific DNA methylase has been cloned in E. coli from Brevibacterium epidermidis. The enzyme, named BepI methylase, is probably the cognate methylase of the FnuDII isoschizomer BepI endonuclease isolated from this strain. The expression of BepI methylase in E. coli is dependent on the orientation of the cloned fragment suggesting that the gene is transcribed from a promoter on the plasmid vector. No BepI endonuclease could be detected in the clones producing BepI methylase. The nucleotide sequence of the BepI methylase gene has been determined, it predicts a protein of 403 amino acids (MR: 45,447). Analysis of the amino acid sequence deduced from the nucleotide sequence revealed similarities between the BepI methylase and other cytosine methylases. M. BepI methylates the external cytosine in its recognition sequence.  相似文献   

5.
The DdeI restriction-modification system was previously cloned and has been maintained in E. coli on two separate and compatible plasmids (1). The nucleotide sequence of the endonuclease and methylase genes has now been determined; it predicts proteins of 240 amino acids, Mr = 27,808, and 415 amino acids, Mr = 47,081, respectively. Inspection of the DNA sequence shows that the 3' end of the methylase gene had been deleted during cloning. The clone containing the complete methylase gene was made and compared to that containing the truncated gene; only clones containing the truncated form support the endonuclease gene in E. coli. Bal-31 deletion studies show that methylase expression in the Dde clones is also dependent upon orientation of the gene with respect to pBR322. The truncated and complete forms of the methylase protein were purified and compared; the truncated form appears to be more stable and active in vitro. Finally, comparison of the deduced amino acid sequence of M. DdeI with that of other known cytosine methylases shows significant regions of homology.  相似文献   

6.
The BamHI restriction modification system was previously cloned into E. coli and maintained with an extra copy of the methylase gene on a high copy vector (Brooks et al., (1989) Nucl. Acids Res. 17, 979-997). The nucleotide sequence of a 3014 bp region containing the endonuclease (R) and methylase (M) genes has now been determined. The sequence predicts a methylase protein of 423 amino acids, Mr 49,527, and an endonuclease protein of 213 amino acids, Mr 24,570. Between the two genes is a small open reading frame capable of encoding a 102 amino acid protein, Mr 13,351. The M. BamHI enzyme has been purified from a high expression clone, its amino terminal sequence determined, and the nature of its substrate modification studied. The BamHI methylase modifies the internal C within its recognition sequence at the N4 position. Comparisons of the deduced amino acid sequence of M. BamHI have been made with those available for other DNA methylases: among them, several contain five distinct regions, 12 to 22 amino acids in length, of pronounced sequence similarity. Finally, stability and expression of the BamHI system in both E. coli and B. subtilis have been studied. The results suggest R and M expression are carefully regulated in a 'natural' host like B. subtilis.  相似文献   

7.
Cloning the BamHI restriction modification system.   总被引:11,自引:7,他引:4       下载免费PDF全文
BamHI, a Type II restriction modification system from Bacillus amyloliquefaciensH recognizes the sequence GGATCC. The methylase and endonuclease genes have been cloned into E. coli in separate steps; the clone is able to restrict unmodified phage. Although within the clone the methylase and endonuclease genes are present on the same pACYC184 vector, the system can be maintained in E. coli only with an additional copy of the methylase gene present on a separate vector. The initial selection for BamHI methylase activity also yielded a second BamHI methylase gene which is not homologous in DNA sequence and hybridizes to different genomic restriction fragments than does the endonuclease-linked methylase gene. Finally, the interaction of the BamHI system with the E. coli Dam and the Mcr A and B functions, have been studied and are reported here.  相似文献   

8.
We describe here the cloning, characterization and expression in E. coli of the gene coding for a DNA methylase from Spiroplasma sp. strain MQ1 (M.SssI). This enzyme methylates completely and exclusively CpG sequences. The Spiroplasma gene was transcribed in E. coli using its own promoter. Translation of the entire message required the use of an opal suppressor, suggesting that UGA triplets code for tryptophan in Spiroplasma. Sequence analysis of the gene revealed several UGA triplets, in a 1158 bp long open reading frame. The deduced amino acid sequence revealed in M.SssI all common domains characteristic of bacterial cytosine DNA methylases. The putative sequence recognition domain of M.SssI showed no obvious similarities with that of the mouse DNA methylase, in spite of their common sequence specificity. The cloned enzyme methylated exclusively CpG sequences both in vivo and in vitro. In contrast to the mammalian enzyme which is primarily a maintenance methylase, M.SssI displayed de novo methylase activity, characteristic of prokaryotic cytosine DNA methylases.  相似文献   

9.
The gene coding for the pneumococcal DNA adenine methylase that recognizes the sequence 5'-GATC-3' was cloned in a strain of Streptococcus pneumoniae that lacked both restriction endonucleases DpnI and DpnII. The gene was cloned as a 3.7-kilobase fragment of chromosomal DNA from a DpnII-containing strain inserted in both possible orientations in the multicopy plasmid vector pMP5 to give recombinant plasmids pMP8 and pMP10. Recombinant plasmids were selected by their resistance to DpnII cleavage. Cells carrying the recombinant plasmids modified phage in vivo so that it was restricted by DpnI- but not DpnII-containing hosts. They also showed levels of DNA methylase activity five times higher than that in cells of the original DpnII strain. No DpnII activity was observed in the clones; therefore, it was concluded that the insert did not contain an intact DpnII endonuclease gene and that methylation of host DNA did not turn on a latent form of the gene.  相似文献   

10.
Cloning and characterization of the HpaII methylase gene.   总被引:10,自引:9,他引:1       下载免费PDF全文
The HpaII restriction-modification system from Haemophilus parainfluenzae recognizes the DNA sequence CCGG. The gene for the HpaII methylase has been cloned into E. coli and its nucleotide sequence has been determined. The DNA of the clones is fully protected against cleavage by the HpaII restriction enzyme in vitro, indicating that the methylase gene is active in E. coli. The clones were isolated in an McrA-strain of E. coli; attempts to isolate them in an McrA+ strain were unsuccessful. The clones do not express detectable HpaII restriction endonuclease activity, suggesting that either the endonuclease gene is not expressed well in E. coli, or that it is not present in its entirety in any of the clones that we have isolated. The derived amino acid sequence of the HpaII methylase shows overall similarity to other cytosine methylases. It bears a particularly close resemblance to the sequences of the HhaI, BsuFI and MspI methylases. When compared with three other methylases that recognize CCGG, the variable region of the HpaII methylase, which is believed to be responsible for sequence specific recognition, shows some similarity to the corresponding regions of the BsuFI and MspI methylases, but is rather dissimilar to that of the SPR methylase.  相似文献   

11.
Two genes, coding for the HincII from Haemophilus influenzae Rc restriction-modification system, were cloned and expressed in Escherichia coli RR1. Their DNA sequences were determined. The HincII methylase (M.HincII) gene was 1,506 base pairs (bp) long, corresponding to a protein of 502 amino acid residues (Mr = 55,330). The HincII endonuclease (R.HincII) gene was 774 bp long, corresponding to a protein of 258 amino acid residues (Mr = 28,490). The amino acid residues predicted from the R.HincII and the N-terminal amino acid sequence of the enzyme found by analysis were identical. These methylase and endonuclease genes overlapped by 1 bp on the H. influenzae Rc chromosomal DNA. The clone, named E. coli RR1-Hinc, overproduced R.HincII. The R.HincII activity of this clone was 1,000-fold that from H. influenzae Rc. The amino acid sequence of M.HincII was compared with the sequences of four other adenine-specific type II methylases. Important homology was found between tne M.HincII and these other methylases.  相似文献   

12.
The DNA of Serratia marcescens has N6-adenine methylation in GATC sequences. Among 2-aminopurine-sensitive mutants isolated from S. marcescens Sr41, one was identified which lacked GATC methylation. The mutant showed up to 30-fold increased spontaneous mutability and enhanced mutability after treatment with 2-aminopurine, ethyl methanesulfonate, or UV light. The gene (dam) coding for the adenine methyltransferase (Dam enzyme) of S. marcescens was identified on a gene bank plasmid which alleviated the 2-aminopurine sensitivity and the higher mutability of a dam-13::Tn9 mutant of Escherichia coli. Nucleotide sequencing revealed that the deduced amino acid sequence of Dam (270 amino acids; molecular mass, 31.3 kDa) has 72% identity to the Dam enzyme of E. coli. The dam gene is located between flanking genes which are similar to those found to the sides of the E. coli dam gene. The results of complementation studies indicated that like Dam of E. coli and unlike Dam of Vibrio cholerae, the Dam enzyme of S. marcescens plays an important role in mutation avoidance by allowing the mismatch repair enzymes to discriminate between the parental and newly synthesized strands during correction of replication errors.  相似文献   

13.
Genetic organization of the KpnI restriction--modification system.   总被引:5,自引:4,他引:1       下载免费PDF全文
The KpnI restriction-modification (KpnI RM) system was previously cloned and expressed in E. coli. The nucleotide sequences of the KpnI endonuclease (R.KpnI) and methylase (M. KpnI) genes have now been determined. The sequence of the amino acid residues predicted from the endonuclease gene DNA sequence and the sequence of the first 12 NH2-terminal amino acids determined from the purified endonuclease protein were identical. The kpnIR gene specifies a protein of 218 amino acids (MW: 25,115), while the kpnIM gene codes for a protein of 417 amino acids (MW: 47,582). The two genes transcribe divergently with a intergeneic region of 167 nucleotides containing the putative promoter regions for both genes. No protein sequence similarity was detected between R.KpnI and M.KpnI. Comparison of the amino acid sequence of M.KpnI with sequences of various methylases revealed a significant homology to N6-adenine methylases, a partial homology to N4-cytosine methylases, and no homology to C5-methylases.  相似文献   

14.
15.
16.
A DNA fragment that carried the genes coding for FokI endonuclease and methylase was cloned from the chromosomal DNA of Flavobacterium okeanokoites, and the coding regions were assigned to the nucleotide sequence by deletion analysis. The methylase gene was 1,941 base pairs (bp) long, corresponding to a protein of 647 amino acid residues (Mr = 75,622), and the endonuclease gene was 1,749 bp long, corresponding to a protein of 583 amino acid residues (Mr = 66,216). The assignment of the methylase gene was further confirmed by analysis of the N-terminal amino acid sequence. The endonuclease gene was downstream from the methylase gene in the same orientation, separated by 69 bp. The promoter site, which could be recognized by Escherichia coli RNA polymerase, was upstream from the methylase gene, and the sequences adhering to the ribosome-binding sequence were identified in front of the respective genes. Analysis of the gene products expressed in E. coli cells by gel filtration and sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the molecular weights of both enzymes coincided well with the values estimated from the nucleotide sequences, and that the monomeric forms were catalytically active. No significant similarity was found between the sequences of the two enzymes. Sequence comparison with other related enzymes indicated that FokI methylase contained two copies of a segment of tetra-amino acids which is characteristic of adenine-specific methylase.  相似文献   

17.
18.
19.
In vivo and in vitro evidence is presented implicating a function of GATC methylation in the Escherichia coli replication origin, oriC, during initiation of DNA synthesis. Transformation frequencies of oriC plasmids into E. coli dam mutants, deficient in the GATC-specific DNA methylase, are greatly reduced compared with parental dam+ cells, particularly for plasmids that must use oriC for initiation. Mutations that suppress the mismatch repair deficiency of dam mutants do not increase these low transformation frequencies, implicating a new function for the Dam methylase. oriC DNA isolated from dam- cells functions 2- to 4-fold less well in the oriC-specific in vitro initiation system when compared with oriC DNA from dam+ cells. This decreased template activity is restored 2- to 3-fold if the DNA from dam- cells is first methylated with purified Dam methylase. Bacterial origin plasmids or M13-oriC chimeric phage DNA, isolated from either base substitution or insertion dam mutants of E. coli, exhibit some sensitivity to digestion by DpnI, a restriction endonuclease specific for methylated GATC sites, showing that these dam mutants retain some Dam methylation activity. Sites of preferred cleavage are found within the oriC region, as well as in the ColE1-type origin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号