共查询到20条相似文献,搜索用时 0 毫秒
1.
Fertilization, the union of sperm and egg to form a new organism, is a critical process that bridges generations. Although the cytological and physiological aspects of fertilization are relatively well understood, little is known about the molecular interactions that occur between gametes. C. elegans has emerged as a powerful system for the identification of genes that are necessary for fertilization. C. elegans spe-42 mutants are sterile, producing cytologically normal spermatozoa that fail to fertilize oocytes. Indeed, male mating behavior, sperm transfer to hermaphrodites, sperm migration to the spermatheca, which is the site of fertilization and sperm competition are normal in spe-42 mutants. spe-42 mutant sperm make direct contact with oocytes in the spermatheca, suggesting that SPE-42 plays a role during sperm-egg interactions just prior to fertilization. No other obvious defects were observed in spe-42 mutant worms. Cloning and sequence analysis revealed that SPE-42 is a novel predicted 7-pass integral membrane protein with homologs in many metazoan species, suggesting that its mechanism of action could be conserved. 相似文献
2.
Aravinthan DT Samuel Venkatesh N Murthy Michael O Hengartner 《BMC developmental biology》2001,1(1):8-6
Background
Of the animals typically used to study fertilization-induced calcium dynamics, none is as accessible to genetics and molecular biology as the model organism Caenorhabditis elegans. Motivated by the experimental possibilities inherent in using such a well-established model organism, we have characterized fertilization-induced calcium dynamics in C. elegans.Results
Owing to the transparency of the nematode, we have been able to study the calcium signal in C. elegans fertilization in vivo by monitoring the fluorescence of calcium indicator dyes that we introduce into the cytosol of oocytes. In C. elegans, fertilization induces a single calcium transient that is initiated soon after oocyte entry into the spermatheca, the compartment that contains sperm. Therefore, it is likely that the calcium transient is initiated by contact with sperm. This calcium elevation spreads throughout the oocyte, and decays monotonically after which the cytosolic calcium concentration returns to that preceding fertilization. Only this single calcium transient is observed.Conclusion
Development of a technique to study fertilization induced calcium transients opens several experimental possibilities, e.g., identification of the signaling events intervening sperm binding and calcium elevation, identifying the possible roles of the calcium elevation such as the completion of meiosis, the formation of the eggshell, and the establishing of the embryo's axis of symmetry. 相似文献3.
A single immunoglobulin-domain protein required for clustering acetylcholine receptors in C. elegans
At Caenorhabditis elegans neuromuscular junctions (NMJs), synaptic clustering of the levamisole-sensitive acetylcholine receptors (L-AChRs) relies on an extracellular scaffold assembled in the synaptic cleft. It involves the secreted protein LEV-9 and the ectodomain of the transmembrane protein LEV-10, which are both expressed by muscle cells. L-AChRs, LEV-9 and LEV-10 are part of a physical complex, which localizes at NMJs, yet none of its components localizes independently at synapses. In a screen for mutants partially resistant to the cholinergic agonist levamisole, we identified oig-4, which encodes a small protein containing a single immunoglobulin domain. The OIG-4 protein is secreted by muscle cells and physically interacts with the L-AChR/LEV-9/LEV-10 complex. Removal of OIG-4 destabilizes the complex and causes a loss of L-AChR clusters at the synapse. Interestingly, OIG-4 partially localizes at NMJs independently of LEV-9 and LEV-10, thus providing a potential link between the L-AChR-associated scaffold and local synaptic cues. These results add a novel paradigm for the immunoglobulin super-family as OIG-4 is a secreted protein required for clustering ionotropic receptors independently of synapse formation. 相似文献
4.
Herrero MB Mandal A Digilio LC Coonrod SA Maier B Herr JC 《Developmental biology》2005,284(1):126-142
This study demonstrates the retention of mouse sperm lysozyme-like protein (mSLLP1) in the equatorial segment of spermatozoa following the acrosome reaction and a role for mSLLP1 in sperm-egg binding and fertilization. Treatment of cumulus intact oocytes with either recmSLLP1 or its antiserum resulted in a significant (P < or = 0.05) inhibition of fertilization. Co-incubation of zona-free mouse oocytes with capacitated mouse spermatozoa in the presence of varying concentrations of anti-recmSLLP1 serum or recmSLLP1 also inhibited sperm-oolemma binding. A complete inhibition of binding and fusion of spermatozoa to the oocyte occurred at 12.5 muM concentration of recmSLLP1, while conventional chicken and human lysozymes did not block sperm-egg binding. mSLLP1 showed receptor sites in the perivitelline space as well as on the microvillar region of the egg plasma membrane. The retention of mSLLP1 in the equatorial segment of acrosome-reacted sperm, the inhibitory effects of both recmSLLP1 and antibodies to SLLP1 on in vitro fertilization with both cumulus intact and zona-free eggs, and the definition of complementary SLLP1-binding sites on the egg plasma membrane together support the hypothesis that a c lysozyme-like protein is involved in the binding of spermatozoa to the egg plasma membrane during fertilization. 相似文献
5.
The Caenorhabditis elegans spe-38 gene encodes a novel four-pass integral membrane protein required for sperm function at fertilization 总被引:1,自引:0,他引:1
Chatterjee I Richmond A Putiri E Shakes DC Singson A 《Development (Cambridge, England)》2005,132(12):2795-2808
A mutation in the Caenorhabditis elegans spe-38 gene results in a sperm-specific fertility defect. spe-38 sperm are indistinguishable from wild-type sperm with regards to their morphology, motility and migratory behavior. spe-38 sperm make close contact with oocytes but fail to fertilize them. spe-38 sperm can also stimulate ovulation and engage in sperm competition. The spe-38 gene is predicted to encode a novel four-pass (tetraspan) integral membrane protein. Structurally similar tetraspan molecules have been implicated in processes such as gamete adhesion/fusion in mammals, membrane adhesion/fusion during yeast mating, and the formation/function of tight-junctions in metazoa. In antibody localization experiments, SPE-38 was found to concentrate on the pseudopod of mature sperm, consistent with it playing a direct role in gamete interactions. 相似文献
6.
The sperm interacts with three oocyte-associated structures during fertilization: the cumulus cell layer surrounding the oocyte, the egg extracellular matrix (the zona pellucida), and the oocyte plasma membrane. Each of these interactions is mediated by the sperm head, probably through proteins both on the sperm surface and within the acrosome, a specialized secretory granule. In this study, we have used subcellular fractionation in order to generate a proteome of the sperm head subcellular compartments that interact with oocytes. Of the proteins we identified for which a gene knockout has been tested, a third have been shown to be essential for efficient reproduction in vivo. Many of the other presently untested proteins are likely to have a similarly important role. Twenty-five percent of the cell surface fraction proteins are previously uncharacterized. We have shown that at least two of these novel proteins are localized to the sperm head. In summary, we have identified over 100 proteins that are expressed on mature sperm at the site of sperm-oocyte interactions. 相似文献
7.
Sensory organs are often composed of neuronal sensory endings accommodated in a lumen formed by ensheathing epithelia or glia. Here we show that lumen formation in the C. elegans amphid sensory organ requires the gene daf-6. daf-6 encodes a Patched-related protein that localizes to the luminal surfaces of the amphid channel and other C. elegans tubes. While daf-6 mutants display only amphid lumen defects, animals defective for both daf-6 and the Dispatched gene che-14 exhibit defects in all tubular structures that express daf-6. Furthermore, DAF-6 protein is mislocalized, and lumen morphogenesis is abnormal, in mutants with defective sensory neuron endings. We propose that amphid lumen morphogenesis is coordinated by neuron-derived cues and a DAF-6/CHE-14 system that regulates vesicle dynamics during tubulogenesis. 相似文献
8.
Wagner J Allman E Taylor A Ulmschneider K Kovanda T Ulmschneider B Nehrke K Peters MA 《American journal of physiology. Cell physiology》2011,301(6):C1389-C1403
Caenorhabditis elegans defecation is a rhythmic behavior, composed of three sequential muscle contractions, with a 50-s periodicity. The motor program is driven by oscillatory calcium signaling in the intestine. Proton fluxes, which require sodium-proton exchangers at the apical and basolateral intestinal membranes, parallel the intestinal calcium flux. These proton shifts are critical for defecation-associated muscle contraction, nutrient uptake, and longevity. How sodium-proton exchangers are activated in time with intestinal calcium oscillation is not known. The posterior body defecation contraction mutant (pbo-1) encodes a calcium-binding protein with homology to calcineurin homologous proteins, which are putative cofactors for mammalian sodium-proton exchangers. Loss of pbo-1 function results in a weakened defecation muscle contraction and a caloric restriction phenotype. Both of these phenotypes also arise from dysfunctions in pH regulation due to mutations in intestinal sodium-proton exchangers. Dynamic, in vivo imaging of intestinal proton flux in pbo-1 mutants using genetically encoded pH biosensors demonstrates that proton movements associated with these sodium-proton exchangers are significantly reduced. The basolateral acidification that signals the first defecation motor contraction is scant in the mutant compared with a normal animal. Luminal and cytoplasmic pH shifts are much reduced in the absence of PBO-1 compared with control animals. We conclude that pbo-1 is required for normal sodium-proton exchanger activity and may couple calcium and proton signaling events. 相似文献
9.
Thomas G. Honegger 《Development genes and evolution》1983,192(1):13-20
Summary Fertilization in the freshwater hydrozoanHydra carnea has been examined by light, scanning and transmission electron microscopy. Sperm penetrate the jelly coat which covers the entire egg surface only at the site of the emission of the polar bodies. The egg surface exhibits a small depression, the so called fertilization pit at this site. Sperm-egg fusion takes place only at the bottom of the fertilization pit.Hydra sperm lack a structurally distinct acrosome and in most of the observed cases, fusion was initiated by contact between the membrane of the lateral part of the sperm head and the egg surfacce. Neither microvilli nor a fertilization cone are formed at the site of gamete fusion. The process of membrane fusion takes only a few seconds and within 1 to 2 min sperm head and midpiece are incorporated in the egg.Electron dense material is released by the egg upon insemination but cortical granule exocytosis does not occur and a fertilization envelope is not formed. The possible polyspermy-preventing mechanisms in hydrozoans are discussed.
Hydra eggs can be cut into halves whereupon the egg membranes reseal at the cut edges and the fragments assume a spherical shape. Fragments containing the female pronucleus can be inseminated and exhibit normal cleavage and development. The observation that in such isolated parts the jelly coat will not fuse along the cut edges was used to determine its role in site-specific gamete fusion. These experiments indicate that site-specificity of gamete fusion can be attributed to special membrane properties at the fertilization pit. 相似文献
10.
11.
BACKGROUND: Sexual reproduction in animals requires the production of highly specialized motile sperm cells that can navigate to and fertilize ova. During sperm differentiation, nonmotile spermatids are remodeled into motile spermatozoa through a process known as spermiogenesis. In nematodes, spermiogenesis, or sperm activation, involves a rapid cellular morphogenesis that converts unpolarized round spermatids into polarized amoeboid spermatozoa capable of both motility and fertilization. RESULTS: Here we demonstrate, by genetic analysis and in vivo and in vitro cell-based assays, that the temporal and spatial localization of spermiogenesis are critical determinants of male fertility in C. elegans, a male/hermaphrodite species. We identify swm-1 as a factor important for male but not hermaphrodite fertility. We show that whereas in wild-type males, activation occurs after spermatids are transferred to the hermaphrodite, swm-1 mutants exhibit ectopic activation of sperm within the male reproductive tract. This ectopic activation leads to infertility by impeding sperm transfer. The SWM-1 protein is composed of a signal sequence and two trypsin inhibitor-like domains and likely functions as a secreted serine protease inhibitor that targets two distinct proteases. CONCLUSIONS: These findings support a model in which (1) proteolysis acts as an important in vivo trigger for sperm activation and (2) regulating the timing of proteolysis-triggered activation is crucial for male reproductive success. Furthermore, our data provide insight into how a common program of gamete differentiation can be modulated to allow males to participate in reproduction in the context of a male/hermaphrodite species where the capacity for hermaphrodite self-fertilization has rendered them nonessential for progeny production. 相似文献
12.
Tengowski MW Wassler MJ Shur BD Schatten G 《Molecular reproduction and development》2001,58(2):236-244
The process of sperm-oocyte recognition is a complex interaction between the plasma membrane of sperm and the extracellular matrix of the oocyte. The best studied mammalian system is the mouse, in which sperm plasma membrane receptors recognize specific oligosaccharides on the egg coat glycoprotein ZP3. A well-defined ZP3 receptor on mouse sperm is beta1,4-galactosyltransferase (GalT). In this study, we investigated the possibility that GalT is present on bull sperm, and that it may participate during bovine sperm-oocyte binding. Using Western immunoblotting, bull sperm were found to have a protein of molecular weight similar to mouse GalT at approximately 60 kDa. Immunogold low voltage scanning electron microscopy reveals that GalT epitopes are confined to the anterior cap of fresh or capacitated bull sperm. To investigate the function of bovine sperm GalT, fresh bull sperm were pretreated with either preimmune or anti-GalT antibody and added to in vitro-matured bovine oocytes. Sperm exposed to preimmune serum fertilized 82.7% (153 of 185) of the oocytes, whereas sperm exposed to anti-GalT antiserum fertilized only 42.3% (202 of 478) of the oocytes. We determined whether the inhibition of fertilization resulted from a direct inhibition of sperm-oocyte binding. The number of sperm bound to eggs was determined by low voltage scanning electron microscopy following pretreatment with preimmune or anti-GalT antibody. An average of 25.3+/-2.2 (mean +/- SEM) sperm bound per half-oocyte when treated with preimmune serum. In contrast, exposure of sperm to anti-GalT antiserum significantly lowered (P<0.001) the frequency of sperm binding to 9.9+/-0.8 bound per half-oocyte. These results show that GalT is present on the anterior cap of the bovine sperm head, where it participates in fertilization by facilitating sperm-oocyte binding. The function of GalT in both the murine and bovine systems suggests that it may serve as a generalized gamete receptor in mammals. 相似文献
13.
14.
The mau-8(qm57) mutation inhibits the function of GPB-2, a heterotrimeric G protein beta subunit, and profoundly affects behavior through the Galphaq/Galphao signaling network in C. elegans. mau-8 encodes a nematode Phosducin-like Protein (PhLP), and the qm57 mutation leads to the loss of a predicted phosphorylation site in the C-terminal domain of PhLP that binds the Gbetagamma surface implicated in membrane interactions. In developing embryos, MAU-8/PhLP localizes to the cortical region, concentrates at the centrosomes of mitotic cells and remains associated with the germline blastomere. In adult animals, MAU-8/PhLP is ubiquitously expressed in somatic tissues and germline cells. MAU-8/PhLP interacts with the PAR-5/14.3.3 protein and with the Gbeta subunit GPB-1. In mau-8 mutants, the disruption of MAU-8/PhLP stabilizes the association of GPB-1 with the microtubules of centrosomes. Our results indicate that MAU-8/PhLP modulates G protein signaling, stability and subcellular location to regulate various physiological functions, and they suggest that MAU-8 might not be limited to the Galphaq/Galphao network. 相似文献
15.
Harris JE Govindan JA Yamamoto I Schwartz J Kaverina I Greenstein D 《Developmental biology》2006,299(1):105-121
In most animals, female meiotic spindles assemble in the absence of centrosomes; instead, microtubule nucleation by chromatin, motor activity, and microtubule dynamics drive the self-organization of a bipolar meiotic spindle. Meiotic spindle assembly commences when microtubules gain access to chromatin after nuclear envelope breakdown (NEBD) during meiotic maturation. Although many studies have addressed the chromatin-based mechanism of female meiotic spindle assembly, it is less clear how signaling influences microtubule localization and dynamics prior to NEBD. Here we analyze microtubule behavior in Caenorhabditis elegans oocytes at early stages of the meiotic maturation process using confocal microscopy and live-cell imaging. In C. elegans, sperm trigger oocyte meiotic maturation and ovulation using the major sperm protein (MSP) as an extracellular signaling molecule. We show that MSP signaling reorganizes oocyte microtubules prior to NEBD and fertilization by affecting their localization and dynamics. We present evidence that MSP signaling reorganizes oocyte microtubules through a signaling network involving antagonistic G alpha(o/i) and G alpha(s) pathways and gap-junctional communication with somatic cells of the gonad. We propose that MSP-dependent microtubule reorganization promotes meiotic spindle assembly by facilitating the search and capture of microtubules by meiotic chromatin following NEBD. 相似文献
16.
Homologous chromosome pairing and synapsis are prerequisite for accurate chromosome segregation during meiosis. Here, we show that a family of four related C2H2 zinc-finger proteins plays a central role in these events in C. elegans. These proteins are encoded within a tandem gene cluster. In addition to the X-specific HIM-8 protein, three additional paralogs collectively mediate the behavior of the five autosomes. Each chromosome relies on a specific member of the family to pair and synapse with its homolog. These "ZIM" proteins concentrate at special regions called meiotic pairing centers on the corresponding chromosomes. These sites are dispersed along the nuclear envelope during early meiotic prophase, suggesting a role analogous to the telomere-mediated meiotic bouquet in other organisms. To gain insight into the evolution of these components, we characterized homologs in C. briggsae and C. remanei, which revealed changes in copy number of this gene family within the nematode lineage. 相似文献
17.
Kelleher JF Mandell MA Moulder G Hill KL L'Hernault SW Barstead R Titus MA 《Current biology : CB》2000,10(23):1489-1496
BACKGROUND: The asymmetric division of cells and unequal allocation of cell contents is essential for correct development. This process of active segregation is poorly understood but in many instances has been shown to depend on the cytoskeleton. Motor proteins moving along actin filaments and microtubules are logical candidates to provide the motive force for asymmetric sorting of cell contents. The role of myosins in such processes has been suggested, but few examples of their involvement are known. RESULTS: Analysis of a Caenorhabditis elegans class VI myosin deletion mutant reveals a role for this motor protein in the segregation of cell components during spermatogenesis. Mutant spermatocytes cannot efficiently deliver mitochondria and endoplasmic reticulum/Golgi-derived fibrous-body membranous organelle complexes to budding spermatids, and fail to remove actin filaments and microtubules from the spermatids. The segregation defects are not due to a global sorting failure as nuclear inheritance is unaffected. CONCLUSIONS: C. elegans myosin VI has an important role in the unequal partitioning of both organelles and cytoskeletal components, a novel role for this class of motor protein. 相似文献
18.
When sea urchin sperm is pretreated with sperm-binding protein prepared from the vitelline membrane of eggs of homologous species, it loses its fertilizing capacity entirely without losing its motility. It is not affected at all by sperm-binding protein from heterologous species. Neither agglutination nor acrosome reaction is evoked by the pretreatment. It is suggested that the sea urchin spermatozoon has on the apical part of its head a component which is complementary to the sperm-binding protein of the egg, and that the observed loss of the fertilizing capacity is caused by antedated interaction of this component with sperm-binding protein added before insemination. 相似文献
19.
Cytoplasmic intermediate filaments (cIFs) are thought to provide mechanical strength to vertebrate cells; however, their function in invertebrates has been largely unexplored. The Caenorhabditis elegans genome encodes multiple cIFs. The C. elegans ifb-1 locus encodes two cIF isoforms, IFB-1A and IFB-1B, that differ in their head domains. We show that both IFB-1 isoforms are expressed in epidermal cells, within which they are localized to muscle-epidermal attachment structures. Reduction in IFB-1A function by mutation or RNA interference (RNAi) causes epidermal fragility, abnormal epidermal morphogenesis, and muscle detachment, consistent with IFB-1A providing mechanical strength to epidermal attachment structures. Reduction in IFB-1B function causes morphogenetic defects and defective outgrowth of the excretory cell. Reduction in function of both IFB-1 isoforms results in embryonic arrest due to muscle detachment and failure in epidermal cell elongation at the 2-fold stage. Two other cIFs, IFA-2 and IFA-3, are expressed in epidermal cells. We show that loss of function in IFA-3 results in defects in morphogenesis indistinguishable from those of embryos lacking ifb-1. In contrast, IFA-2 is not required for embryonic morphogenesis. Our data indicate that IFB-1 and IFA-3 are likely the major cIF isoforms in embryonic epidermal attachment structures. 相似文献
20.
Singson A 《Developmental biology》2001,230(2):101-109
The nematode Caenorhabditis elegans is an attractive model system for the study of fertilization. C. elegans exists as a self-fertilizing hermaphrodite or as a male. This unusual situation provides an excellent opportunity to identify and maintain sterile mutants that affect sperm and no other cells. Analysis of these mutants can identify genes that encode proteins required for gamete recognition, adhesion, signaling, fusion, and/or activation at fertilization. These genes can also provide a starting point for the identification of additional molecules required for fertility. This review describes progress in the genetic and molecular dissection of fertilization in C. elegans and related studies on sperm competition. 相似文献