首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The inhibition of Fe(II)-bleomycin activation, by a large excess of DNA, is overcome by rat liver microsomes in the presence of NADPH. This release of inhibition, as indicated by increased yields of base propenal from DNA scission, is enhanced by menadione, is inhibited by superoxide dismutase, and is therefore dependent on superoxide anion. Microsomal activation of Fe(II)-bleomycin doubles the stoichiometry of base propenal yield compared to that obtained upon self-activation of the drug; 0.5 mol of base propenal is formed and 0.5 mol of NADPH is oxidized per mol of Fe(II)-bleomycin. In the presence of a large excess of DNA, Cu(II)-bleomycin is not reduced and Fe(III)-bleomycin is neither reduced nor activated by microsomes in cases where activation of Fe(II)-bleomycin is maximal. We suggest that in vivo, electron transport enzymes at or near the nucleus can stimulate the activation of Fe(II)-bleomycin under conditions where self-activation does not readily occur.  相似文献   

2.
Analysis of products formed during bleomycin-mediated DNA degradation   总被引:7,自引:0,他引:7  
By the use of DNA, copolymers of defined nucleotide composition, and a synthetic dodecanucleotide having putative bleomycin cleavage sites in proximity to the 5'- and 3'-termini, the products formed concomitant with DNA strand scission have been isolated and subjected to structural identification and quantitation via direct comparison with authentic synthetic samples. The products of DNA strand scission by Fe(II)-bleomycin include oligonucleotides having each of the four possible nucleoside 3'-(phosphoro-2'-O-glycolates) at their 3'-termini, as well as the four possible base propenals. At least for 3-(adenin-9'-yl)propenal and 3-(thymin-1'-yl)propenal, the products formed were exclusively of the trans configuration.  相似文献   

3.
Fe(III)-bleomycin associates strongly with rat liver nuclei and binds to nuclear DNA. Metal-free and Cu(II)-bleomycin, however, do not bind to nuclei. The treatment of nuclei with activated iron-bleomycin results in nucleic base and base propenal release from the DNA, and also gives membrane peroxidation. Isolation and quantitation of the base propenals and free bases released subsequent to activated bleomycin treatment reveal an alteration in the stoichiometry of these products compared to those released from purified DNA. With nuclei, significantly less propenal is formed, although the yield of free base is equivalent to that from purified DNA. The membrane peroxidation products from nuclei are the same as those obtained from microsomal membranes treated with activated bleomycin. Superoxide dismutase inhibits the membrane peroxidation but has no effect on the DNA breakage reactions. The results implicate a role for iron in mediating the in vivo action of bleomycin and also reveal a potentially toxic effect, membrane peroxidation, separate from DNA damage.  相似文献   

4.
The aerobic redox reaction of Fe(III)bleomycin (Blm) and ascorbate was examined in the absence of DNA and in the presence of 7.5 and 25 calf thymus DNA base pairs per-drug molecule, in order to investigate the effect of DNA binding on the properties of FeBlm activation and DNA strand cleavage. Under these successive conditions, the rate of initial reduction of Fe(III)Blm became progressively slower and biphasic. Using 7.5 base pairs per-molecule of FeBlm, 2-3 times as much drug reacted in the faster step as with the larger DNA to drug ratio. In each case, the more rapid process was identified with the reaction of high spin Fe(III)Blm-DNA. With the smaller ratio, dioxygen consumption, formation of HO(2)-Fe(III)Blm-DNA, and production of DNA strand breaks as measured by the formation of base propenal were largely rate limited by the initial reaction of ascorbate with Fe(III)Blm-DNA. After a burst of reaction with the larger ratio of base pairs to Fe(III)Blm, a small fraction of the total Fe(III)Blm, representing high spin Fe(III)Blm, entered a steady state as HO(2)-Fe(III)Blm-DNA. Thereafter, reaction of dioxygen and base propenal formation occurred slowly with similar first-order rate kinetics. In order to explain these results, it is hypothesized that the metal domain-linker of Fe(III)Blm adopts two conformations with respect to DNA. One, at specific binding sites, is relatively unreactive with ascorbate. The other, present at non-specific sites as HPO(4)-Fe(III)Blm, is readily reactive with ascorbate to generate HO(2)-Fe(III)Blm-DNA. At the larger base pair to drug ratio, movement of Fe(III)Blm between specific and non-specific sites to generate HO(2)-Fe(III)Blm is a necessary part of the mechanism of strand scission.  相似文献   

5.
Incubation of Fe(II) bleomycin and O2 with a number of 'A'-like DNA-RNA hybrid homopolymers at 4 atm O2 results in formation of base propenal and base in a ratio of approximately 1.0:1.0. This ratio differs dramatically from the corresponding ratio of approximately 10:1.0 observed when activated BLM degrades 'B'-like DNA homopolymers. Experiments were undertaken to determine if the shift to enhanced base production observed in the A-like hybrids is the result of C-1' chemistry in addition to the C-4' chemistry normally observed with B-like DNA under identical conditions. Increased accessibility of the 1'-hydrogen might be anticipated due to widening of the minor groove in the A-like conformers. Experiments using poly([1'-3H]dA) poly(rU) and poly([U-14C]dA) poly(rU) indicated that neither 3H2O nor deoxyribonolactone accompanied adenine release. In addition, studies using poly([4'-2H]dA) poly(rU) and poly([1'-2H]dA) poly(rU) unambiguously establish that the altered base to base propenal ratio is not the result of C-1' chemistry, but a direct consequence of C-4' chemistry.  相似文献   

6.
J C Wu  J Stubbe  J W Kozarich 《Biochemistry》1985,24(26):7569-7573
Incubation of poly(dA-[3'-3H]dU), poly(dA-[5'-3H]dU), or poly(dA-[5'-3H]dT) under a variety of conditions with activated bleomycin resulted in the production of free nucleic acid base, base propenal, and a small amount of 3H2O. Adjustment of the terminated reaction mixture to pH 10 and incubation at 95 degrees C resulted in a time-dependent increase in 3H2O to an amount equal to the amount of free base. If the terminated reaction mixture was incubated with NaBH4 prior to the heat and alkaline treatment, the release of 3H2O was significantly inhibited. These results are consistent with the generation by activated bleomycin of a 4'-ketone yielding free base, with the exchange of the 3'- and 5'-hydrogens by enolization and with the alkaline-induced strand scission occurring from this intermediate.  相似文献   

7.
Radiation in the form of high-energy electrons dose-dependently activates bleomycin-Fe3+ in oxygen-containing DNA solutions. This activation causes a DNA fragmentation and a release of oxidative degradation products from the DNA. During irradiation, bleomycin-chelated Fe3+ is reduced to Fe2+. The kinetics of DNA base propenal-formation (measured by reaction with thiobarbituric acid) and iron-reduction (measured by bathophenanthroline chelation) are similar, with a yield of 1 mol base propenal/6 mol Fe3+ reduced. The activation of bleomycin-Fe3+ by irradiation could be instrumental in the synergistic action of radiotherapy and bleomycin observed on simultaneous administration in vivo.  相似文献   

8.
Stoichiometry of DNA strand scission and aldehyde formation by bleomycin   总被引:2,自引:0,他引:2  
A colorimetric assay of DNA breakage by bleomycin has been standardized and indicates that strand scission is stoichiometric with the formation of a single equivalent of an aldehyde compound consisting of base plus deoxyribose carbons 1' to 3'. Both strand scission and aldehyde formation require the presence of O2. An alternate DNA lesion inflicted by bleomycin, alkali labilization, is O2-dependent, as is the accompanying release of free bases.  相似文献   

9.
Reaction of poly(dA-[2'S-3H]dU) with activated bleomycin yields [3H]uracil propenal that completely retains the tritium label. In contrast, we have previously shown that reaction of poly(dA-[2'R-3H]dU) with activated bleomycin affords unlabeled uracil propenal [Wu, J. C., Kozarich, J. W., & Stubbe, J. (1983) J. Biol. Chem. 258, 4694-4697]. We have also prepared both cis- and trans-thymine propenals by chemical synthesis and have observed that the trans isomer is the exclusive product of the bleomycin reaction. Moreover, the cis isomer was found to be stable to the conditions of bleomycin-induced DNA degradation. Taken together, these results establish that the formation of trans-uracil propenal occurs via an anti-elimination mechanism with the stereospecific abstraction of the 2'R proton. The question of phosphodiester bond cleavage during base propenal formation has also been addressed by the analysis of the fate of oxygen-18 in poly(dA-[3'-18O]dT) upon reaction with activated bleomycin. The 5'-monophosphate oligonucleotide ends produced from thymine propenal formation have been converted to inorganic phosphate by the action of alkaline phosphatase, and the phosphate has been analyzed for 18O content by 31P NMR spectroscopy. The oxygen-18 is retained in the inorganic phosphate, establishing that the formation of thymine propenal by activated bleomycin proceeds with C-O bond cleavage at the 3'-position.  相似文献   

10.
Mechanisms of DNA oxidation by copper complexes of 3-Clip-Phen and its conjugate with a distamycin analogue, in the presence of a reductant and air, were studied. Characterisation of the production of 5-methylenefuranone (5-MF) and furfural, associated with the release of nucleobases, indicated that these copper complexes oxidised the C1′ and C5′ positions of 2-deoxyribose, respectively, which are accessible from the DNA minor groove. Oxidation at C1′ was the major degradation route. Digestion of DNA oxidation products by P1 nuclease and bacterial alkaline phosphatase allowed characterisation of glycolic acid residues, indicating that these copper complexes also induced C4′ oxidation. However, this pathway was not associated with base propenal release. The ability of the copper complex of the 3-Clip-Phen conjugate with the distamycin analogue to produce sequence-selective DNA cleavage allowed confirmation of these mechanisms of DNA oxidation by PAGE. Comparison of DNA cleavage activity showed that conjugation of 3-Clip-Phen with a DNA minor groove binder, like the distamycin analogue, decreased both its ability to perform C1′ oxidation as well as the initial rate of the reaction, but this conjugate is still active after 5 h at 37°C, making it an efficient DNA cleaver.  相似文献   

11.
Plastaras JP  Dedon PC  Marnett LJ 《Biochemistry》2002,41(15):5033-5042
Malondialdehyde (MDA) and nucleobase propenals can transfer oxopropenyl groups to guanine residues of DNA to yield pyrimodopurinone (M(1)G) adducts. The DNA structural requirements for reaction with alpha,beta-unsaturated aldehydes were explored. We found that single-stranded DNA is more sensitive to oxopropenylation than double-stranded DNA, and supercoiled plasmid DNA is more sensitive than linearized plasmid DNA. Increasing ionic strength inhibits oxopropenylation, especially by adenine propenal. The intercalating agents ethidium bromide and 9-aminoacridine enhanced oxopropenylation by severalfold. In contrast, actinomycin D, which both intercalates and binds in the minor groove, inhibited oxopropenylation. The anthracycline drugs daunorubicin and doxorubicin enhanced oxopropenylation by MDA up to 3-fold and by adenine propenal up to 7-fold in a concentration-dependent manner. The minor groove binders netropsin and distamycin inhibited oxopropenylation, but methyl green, a major groove binder, had little effect. These data suggest that steric access to the target nucleophile located in the minor groove of DNA is critical for adduct formation by the endogenous mutagens MDA and base propenals.  相似文献   

12.
The antitumor antibiotic bleomycin degrades DNA in the presence of ferric ions and H2O2 or in the presence of ferric ions, oxygen, and ascorbic acid. When DNA degradation is measured as formation of base propenals by the thiobarbituric acid assay, it is not inhibited by superoxide dismutase and scavengers of the hydroxyl radical or by catalase (except that catalase inhibits in the bleomycin/ferric ion/H2O2 system by removing H2O2). Using the technique of gas chromatography/mass spectrometry with selected-ion monitoring, we show that DNA degradation is accompanied by formation of small amounts of modified DNA bases. The products formed are identical with those generated when hydroxyl radicals react with DNA bases. Base modification is significantly inhibited by catalase and partially inhibited by scavengers of the hydroxyl radical and by superoxide dismutase. We suggest that the bleomycin-oxo-iron ion complex that cleaves the DNA to form base propenals can decompose in a minor side reaction to generate hydroxyl radical, which accounts for the base modification in DNA. However, hydroxyl radical makes no detectable contribution to the base propenal formation.  相似文献   

13.
Copper(I)-bleomycin [Cu(I) X BLM] was characterized in detail by 13C and 1H NMR. Unequivocal chemical shift assignments for Cu(I) X BLM and Cu(I) X BLM X CO were made by two-dimensional 1H-13C correlated spectroscopy and by utilizing the observation that Cu(I) X BLM was in rapid equilibrium with Cu(I) and metal-free bleomycin, such that individual resonances in the spectra of BLM and Cu(I) X BLM could be correlated. The binding of Cu(I) by bleomycin involves the beta-aminoalaninamide and pyrimidinyl moieties, and possibly the imidazole, but not N alpha of beta-hydroxyhistidine. Although no DNA strand scission by Cu(II) X BLM could be demonstrated in the absence of dithiothreitol, in the presence of this reducing agent substantial degradation of [3H]DNA was observed, as was strand scission of cccDNA. DNA degradation by Cu(I) X BLM was shown not to depend on contaminating Fe(II) and not to result in the formation of thymine propenal; the probable reason(s) for the lack of observed DNA degradation in earlier studies employing Cu(II) X BLM and dithiothreitol was (were) also identified. DNA strand scission was also noted under anaerobic conditions when Cu(II) X BLM and iodosobenzene were employed. If it is assumed that the mechanism of DNA degradation in this case is the same as that under aerobic conditions (i.e., with Cu(I) X BLM + O2 in the presence of dithiothreitol), then Cu X BLM must be capable of functioning as a monooxygenase in its degradation of DNA.  相似文献   

14.
A series of metalloporphyrins linked through basic chains to certain DNA interactive groups has been synthesized. Several of these agents reproduce the characteristic properties of the antitumor glycopeptide bleomycin, including the oxygen-mediated scission of DNA in the presence of thiols, antibiobic activity under aerobic conditions, and activity against human and animal tumor models. Initial screening by scission of PM2-CCC-DNA identified six of the compounds, including those bearing acridine and acodazole intercalating groups, as the most active. The specificity of the oxygen-mediated scission of a 139 base pair HindIII/NciI restriction fragment of pBR322 by these six selected agents was then determined and compared with the action of pancreatic DNase by densitometric scans. All six of these compounds produce uniform base and sequence neutral cleavage of the restriction fragment at each base site. The six active compounds bear either of two types of intercalators, 6-chloro-2-methoxyacridine or acodazole, and with linkages to the ferric binding domain of -NH(CH2)2-, -NH(CH2)3-, -NH(CH2)4-, or -NH(CH2)3NH(CH2)3- and either porphyrin or deuteroporphyrin moieties. Comparison of the Kassoc values for binding to calf thymus DNA suggests that the enhanced binding observed with the linker -NH(CH2)3NH(CH2)3- contributes to the efficiency of sequence neutral DNA scission and may be a factor in the relative anticancer activities of these agents. The iron porphyrins give no evidence of the production of base propenals in DNA degradation, and the autoradiograms clearly indicate that a phosphate group is attached to the 5' end of the oligomer. The scission is partially suppressible by catalase and superoxide dismutase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
J C Wu  J W Kozarich  J Stubbe 《Biochemistry》1985,24(26):7562-7568
When poly(dA-[4'-3H]dU) was degraded by activated bleomycin under a variety of conditions, 50 +/- 10% of the deoxyuridine residues were converted to uracil and uracil propenal, paralleling observations made with DNA. By manipulation of the concentration of O2 in solution, the relative ratio of uracil propenal to uracil could be varied between 0.03 for anaerobic activation and 7.0 for activation at 3 atm of O2. Tritium selection effects on 4'-hydrogen abstraction were also measured under these conditions and found to range from 7.2 to 12.5. These results strongly suggest that the formation of both uracil and uracil propenal is the consequence of a rate-determining 4'-carbon-hydrogen bond cleavage and of an O2-dependent partitioning of the intermediate produced by this cleavage.  相似文献   

16.
Release of 5-methylene-2-furanone (5-MF), a characteristic marker of DNA deoxyribose oxidative damage at the C1' position, was observed in significant quantities from X-irradiated DNA. This observation, which held for DNA irradiated either in aqueous solution or as a film, requires postirradiation treatment at 90 degrees C in the presence of polyamines and divalent metal cations at biological pH. The 5-MF product was quantified by using reverse-phase HPLC. The radiation chemical yield of 5-MF comprised more than 30% of the yield of total unaltered base release. Polylysine, spermine and Be(II) showed the strongest catalytic effect on 5-MF release, while Zn(II), Cu(II), Ni(II), putrescine and Mg(II) were substantially less efficient. We have hypothesized that the 5-MF release from irradiated DNA occurs through catalytic decomposition of the 2'-deoxyribonolactone (dL) precursor through two consecutive beta- and delta-phosphate elimination reactions. A stepwise character of the process was indicated by the S-shaped time course of 5-MF accumulation. If dL proves to be the precursor to 5-MF formation, it would then follow that dL is a very important lesion generated in DNA by ionizing radiation.  相似文献   

17.
Chromium(V)-mediated oxidative damage of deoxy-ribonucleic acids was investigated at neutral pH in aqueous solution by utilizing bis(2-ethyl-2-hydroxy-butanato)oxochromate(V) (I) and bis(hydroxyethyl)-amino-tris(hydroxymethyl)methane)oxochromate(V) (II). Single-stranded and double-stranded (ds) calf thymus and human placenta DNA, as well as two oligomers, 5'-GATCTAGTAGGAGGACAAATAGTGTTTG-3' and 5'-GATCCAAGCAAACACTATTTGTCCTCCTACTA-3', were reacted with the chromium(V) complexes. Most products were separated and characterized by chroma-tographic and spectroscopic methods. Polyacrylamide gel electrophoresis experiments reveal more damage at G sites in comparison to other bases. Three primary oxidation products, 5-methylene-2-furanone (5-MF), furfural and 8-oxo-2'-deoxyguanosine, were characterized. A minor product, which appears to be thymine propenal, was also observed. The dsDNA produces more furfural than furanone. The formation of these two products resulted from hydrogen ion or hydride transfer from C1' and C5' positions of the ribose to the oxo-chromium(V) center. Since no enhancements of these products (except propenal) were observed in the presence of oxygen, mechanisms pertaining to the participation of activated oxygen species may be ruled out. The oxidation of the G base is most likely associated with an oxygen atom transfer from the oxo-metallates to the double bond between C8 and N7 of the purine ring. The formation of the propenal may be associated with an oxygen-activated species, since a marginal enhancement of this product was observed in the presence of oxygen. The formation of furfural in higher abundance over 5-MF for dsDNA was attributed to the ease of hydrogen ion (or hydride transfer) from the C5' compared to C1' position of the ribose within a Cr(V)-DNA intermediate in which the metal center is bound to the phosphate diester moiety.  相似文献   

18.
The Escherichia coli adenine glycosylase MutY is involved in the repair of 7,8-dihydro-8-oxo-2'-deoxyguanosine (OG):A and G:A mispairs in DNA. DNA strand cleavage via beta-elimination (beta-lyase) activity coupled with MutY's removal of misincorporated adenine bases was sought using both qualitative and quantitative methods. The qualitative assays demonstrate formation of a Schiff base intermediate which is characteristic of DNA glycosylases catalyzing a concomitant beta-lyase reaction. Borohydride reduction of the Schiff base results in the formation of a covalent DNA-MutY adduct which is easily detected in SDS-PAGE experiments. However, quantitative activity assays which monitor DNA strand scission accompanying base release suggest MutY behaves as a simple monofunctional glycosylase. Treatment with base effects DNA strand cleavage at apurinic/apyrimidinic (AP) sites arising via simple glycosylase activity. The amount of cleaved DNA in MutY reactions treated with base is much greater than that in non-base treated reactions, indicating that AP site generation by MutY is not associated with a concomitant beta-lyase step. As standards, identical assays were performed with a known monofunctional enzyme (uracil DNA glycosylase) and a known bifunctional glycosylase/lyase (FPG), the results of which were used in comparison with those of the MutY experiments. The apparent inconsistency between the data obtained for MutY by the qualitative and quantitative methods underscores the current debate surrounding the catalytic activity of this enzyme, and a detailed explanation of this controversy is proposed. The work presented here lays ground for the identification of specific active site residues responsible for the chemical mechanism of MutY enzyme catalysis.  相似文献   

19.
Inside cells chromium(VI) is activated to its ultimate carcinogenic form by reducing agents including glutathione (GSH) and ascorbate (AsA). The precise mechanism by which DNA damaging species are formed is unclear. In earlier in vitro work with isolated DNA we have shown that chromium(VI) in combination with GSH or AsA is able to induce similar numbers of single strand breaks and apurinic/apyrimidinic sites (AP-sites). Moreover, the formation of both lesions followed a similar temporal pattern. It is conceivable that the two forms of DNA damage arise from a common precursor lesion (e.g. hydrogen abstraction at C4' of the DNA sugar moiety) with a partitioning along two pathways, one yielding an AP-site, the other a single strand break (SSB) and a base propenal. The present study is intended to test this hypothesis by analysing whether oxidation products of deoxyribose can be formed in the presence of chromium(VI) and GSH or AsA. It was found that mixtures of chromium(VI) and GSH or AsA were able to oxidise 2-deoxyribose to yield malondialdehyde, which was detected by reaction with thiobarbituric acid. The characteristic pink chromogen, which forms upon reaction with thiobarbituric acid, was also observed with calf thymus DNA as the substrate. In both experimental systems the addition of catalase prevented the formation of deoxyribose breakdown products. Hydroxyl radicals did not seem to be important for the generation of DNA damage as the characteristic modified DNA bases could not be detected by using gas chromatography-mass spectrometry. These results lead us to conclude that the formation of SSB during the reductive conversion of chromium(VI) proceeds primarily via hydrogen abstraction from C4'. The observation that Fenton chemistry is not involved in these processes is intriguing and necessitates further research into the ways in which chromium can activate molecular oxygen to form DNA damaging species.  相似文献   

20.
The artificial restriction DNA cutter (ARCUT) method to cut double-stranded DNA at designated sites has been developed. The strategy at the base of this approach, which does not rely on restriction enzymes, is comprised of two stages: (i) two strands of pseudo-complementary peptide nucleic acid (pcPNA) anneal with DNA to form 'hot spots' for scission, and (ii) the Ce(IV)/EDTA complex acts as catalytic molecular scissors. The scission fragments, obtained by hydrolyzing target phosphodiester linkages, can be connected with foreign DNA using DNA ligase. The location of the scission site and the site-specificity are almost freely tunable, and there is no limitation to the size of DNA substrate. This protocol, which does not include the synthesis of pcPNA strands, takes approximately 10 d to complete. The synthesis and purification of the pcPNA, which are covered by a related protocol by the same authors, takes an additional 7 d, but pcPNA can also be ordered from custom synthesis companies if necessary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号