首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA 5-methylcytosine is a major factor in the silencing of mammalian genes; it is involved in gene expression, differentiation, embryogenesis and neoplastic transformation. A decrease in DNA 5-methylcytosine content is associated with activation of specific genes. There is much evidence indicating this to be an enzymic process, with replacement of 5-methylcytosine by cytosine. We demonstrate here enzymic release of 5-methylcytosines from DNA by a human 5-methylcytosine-DNA glycosylase activity, which affords a possible mechanism for such replacement. This activity generates promutagenic apyrimidinic sites, which can be related to the high frequency of mutations found at DNA 5-methylcytosine loci. The recovery of most released pyrimidines as thymines indicates subsequent deamination of free 5-methylcytosines by a 5-methylcytosine deaminase activity. This prevents possible recycling of 5-methylcytosine into replicative DNA synthesis via a possible 5-methyl-dCTP intermediate synthesized through the pyrimidine salvage pathway. Taken together, these findings indicate mechanisms for removal of 5-methylcytosines from DNA, hypermutability of DNA 5-methylcytosine sites, and exclusion of 5-methylcytosines from DNA during replication.  相似文献   

2.
Potentially mutagenic uracil-containing nucleotide intermediates are generated by deamination of dCTP, either spontaneously or enzymatically as the first step in the conversion of dCTP to dTTP. dUTPases convert dUTP to dUMP, thus avoiding the misincorporation of dUTP into DNA and creating the substrate for the next enzyme in the dTTP synthetic pathway, thymidylate synthase. Although dCTP deaminase and dUTPase activities are usually found in separate but homologous enzymes, the hyperthermophile Methanococcus jannaschii has an enzyme, DCD-DUT, that harbors both dCTP deaminase and dUTP pyrophosphatase activities. DCD-DUT has highest activity on dCTP, followed by dUTP, and dTTP inhibits both the deaminase and pyrophosphatase activities. To help clarify structure-function relationships for DCD-DUT, we have determined the crystal structure of the wild-type DCD-DUT protein in its apo form to 1.42A and structures of DCD-DUT in complex with dCTP and dUTP to resolutions of 1.77A and 2.10A, respectively. To gain insights into substrate interactions, we complemented analyses of the experimentally defined weak density for nucleotides with automated docking experiments using dCTP, dUTP, and dTTP. DCD-DUT is a hexamer, unlike the homologous dUTPases, and its subunits contain several insertions and substitutions different from the dUTPase beta barrel core that likely contribute to dCTP specificity and deamination. These first structures of a dCTP deaminase reveal a probable role for an unstructured C-terminal region different from that of the dUTPases and possible mechanisms for both bifunctional enzyme activity and feedback inhibition by dTTP.  相似文献   

3.
ATP:AMP phosphotransferase from baker''s yeast. Purification and properties   总被引:2,自引:0,他引:2  
Synchronous cells of the green alga, Scenedesmus obliquus, cultured in a 14-h/10-h light/dark regime, contain a peak of ribonucleoside-diphosphate reductase activity and maximum deoxyribonucleoside 5'-triphosphate concentrations at the 12th hour of the cell cycle, coinciding with DNA synthesis and preceding the formation of eight daughter cells. The intracellular dTTP pool reaches 4.5 pmol and the other pools 2-3 pmol/10(6) cells. Algal reductase activity is sensitive to cycloheximide, but not to lincomycin. These correlations demonstrate the functioning of the NDP leads to dNDP leads to dNTP pathway of DNA precursor biosynthesis in plant cells. In the presence of 20 micrograms 5-fluorodeoxyuridine/ml, an inhibitor of thymidylate synthesis, the dTTP pool is rapidly depleted and DNA synthesis ceases. 5-Fluorouracil and methotrexate produce similar effects. At the same time the ribonucleotide reductase activity and also the dATP pool are greatly increased, especially when fluorodeoxyuridine treatment is combined with continued illumination of the algae. In contrast, arabinosylcytosine, an inhibitor of DNA replication, has no effect on ribonucleotide reduction. The control of de novo enzyme synthesis in the eucaryotic algae therefore appears to depend on the presence of dTTP (or a related nucleotide), but not directly coupled to DNA synthesis. This interdependence resembles the situation observed in HeLa cells, while it may differ in detail from control mechanisms of ribonucleotide reductase studied in bacteria.  相似文献   

4.
The trimeric dCTP deaminase produces dUTP that is hydrolysed to dUMP by the structurally closely related dUTPase. This pathway provides 70-80% of the total dUMP as a precursor for dTTP. Accordingly, dCTP deaminase is regulated by dTTP, which increases the substrate concentration for half-maximal activity and the cooperativity of dCTP saturation. Likewise, increasing concentrations of dCTP increase the cooperativity of dTTP inhibition. Previous structural studies showed that the complexes of inactive mutant protein, E138A, with dUTP or dCTP bound, and wild-type enzyme with dUTP bound were all highly similar and characterized by having an ordered C-terminal. When comparing with a new structure in which dTTP is bound to the active site of E138A, the region between Val120 and His125 was found to be in a new conformation. This and the previous conformation were mutually exclusive within the trimer. Also, the dCTP complex of the inactive H121A was found to have residues 120-125 in this new conformation, indicating that it renders the enzyme inactive. The C-terminal fold was found to be disordered for both new complexes. We suggest that the cooperative kinetics are imposed by a dTTP-dependent lag of product formation observed in presteady-state kinetics. This lag may be derived from a slow equilibration between an inactive and an active conformation of dCTP deaminase represented by the dTTP complex and the dUTP/dCTP complex, respectively. The dCTP deaminase then resembles a simple concerted system subjected to effector binding, but without the use of an allosteric site.  相似文献   

5.
Several laboratories have reported that exposure of cells to UV radiation results in a significant imbalance in deoxynucleoside triphosphate pool concentrations. In our CHO-K1 cells, a rapid drop in dCTP is accompanied by a rapid increase in dTTP. Examination of enzyme activities associated with synthesis/degradation of these molecules suggests that UV transiently enhances a putative dCTPase, dCMP deaminase and CdR kinase activities. This results in accumulation of excess dUMP which is probably converted to dTMP, then to dTTP. The absence of dCMP deaminase in V79 cells prohibits this rapid response in those cells. Moreover, significantly different dCMP deaminase activities were observed in CHO-K1 cells obtained from other laboratories, suggesting they, too, may respond differently to irradiation.  相似文献   

6.
In non-proliferating cells mitochondrial (mt) thymidine kinase (TK2) salvages thymidine derived from the extracellular milieu for the synthesis of mt dTTP. TK2 is a synthetic enzyme in a network of cytosolic and mt proteins with either synthetic or catabolic functions regulating the dTTP pool. In proliferating cultured cells the canonical cytosolic ribonucleotide reductase (R1-R2) is the prominent synthetic enzyme that by de novo synthesis provides most of dTTP for mt DNA replication. In non-proliferating cells p53R2 substitutes for R2. Catabolic enzymes safeguard the size of the dTTP pool: thymidine phosphorylase by degradation of thymidine and deoxyribonucleotidases by degradation of dTMP. Genetic deficiencies in three of the participants in the network, TK2, p53R2, or thymidine phosphorylase, result in severe mt DNA pathologies. Here we demonstrate the interdependence of the different enzymes of the network. We quantify changes in the size and turnover of the dTTP pool after inhibition of TK2 by RNA interference, of p53R2 with hydroxyurea, and of thymidine phosphorylase with 5-bromouracil. In proliferating cells the de novo pathway dominates, supporting large cytosolic and mt dTTP pools, whereas TK2 is dispensable, even in cells lacking the cytosolic thymidine kinase. In non-proliferating cells the small dTTP pools depend on the activities of both R1-p53R2 and TK2. The activity of TK2 is curbed by thymidine phosphorylase, which degrades thymidine in the cytoplasm, thus limiting the availability of thymidine for phosphorylation by TK2 in mitochondria. The dTTP pool shows an exquisite sensitivity to variations of thymidine concentrations at the nanomolar level.  相似文献   

7.
An exonuclease has been partially purified from XP-12-infected Xanthomonas oryzae which is not found in uninfected X. oryzae. Although both the phage-induced exonuclease and the major host exonucleolytic DNase released 5'-mononucleotides, these enzymes differed in their chromatographic behavior, pH optimum, salt inhibition, and heat sensitivity. These two exonucleases preferred different substrates. Nicked native DNA was the best substrate for the phage-induced enzyme, whereas denatured DNA was the best substrate for the host enzyme. Also, the host enzyme had a significant preference for denatured or nicked, normal cytosine-containing DNA (e.g., X. oryzae or T7 DNA) over similarly denatured or nicked 5-methylcytosine-rich DNA (namely, XP-12DNA), whereas the phage-induced enzyme hydrolyzed both types of DNA equally well.  相似文献   

8.
In Escherichia coli and Salmonella typhimurium about 80% of the dUMP used for dTMP synthesis is derived from deamination of dCTP. The dCTP deaminase produces dUTP that subsequently is hydrolyzed by dUTPase to dUMP and diphosphate. The dCTP deaminase is regulated by dTTP that inhibits the enzyme by binding to the active site and induces an inactive conformation of the trimeric enzyme. We have analyzed the role of residues previously suggested to play a role in catalysis. The mutant enzymes R115Q, S111C, S111T and E138D were all purified and analyzed for activity. Only S111T and E138D displayed detectable activity with a 30- and 140-fold reduction in kcat, respectively. Furthermore, S111T and E138D both showed altered dTTP inhibition compared to wild-type enzyme. S111T was almost insensitive to the presence of dTTP. With the E138D enzyme the dTTP dependent increase in cooperativity of dCTP saturation was absent, although the dTTP inhibition itself was still cooperative. Modeling of the active site of the S111T enzyme indicated that this enzyme is restricted in forming the inactive dTTP binding conformer due to steric hindrance by the additional methyl group in threonine. The crystal structure of E138D in complex with dUTP showed a hydrogen bonding network in the active site similar to wild-type enzyme. However, changes in the hydrogen bond lengths between the carboxylate and a catalytic water molecule as well as a slightly different orientation of the pyrimidine ring of the bound nucleotide may provide an explanation for the reduced activity.  相似文献   

9.
The thy- mutator phenotype of Chinese hamster ovary cells is distinguished by increased intracellular levels of dCTP, auxotrophy for thymidine, and elevated spontaneous mutational rates. To determine the biochemical lesion responsible for this complex phenotype, enzymes responsible for the synthesis of dCTP and dTTP were investigated. Levels of ribonucleotide reductase and dCMP deaminase were identical in mutant and wild type strains. In contrast, CTP synthetase activity in extracts from thy- strains was consistently altered in that 50% of enzyme activity was resistant to feedback inhibition by CTP. Additionally, thy- strains obtained by DNA transfection also had CTP-resistant CTP synthetase. Thy+ revertants lost the resistant enzyme, and total activity was reduced. CTP-resistant CTP synthetase was regained in thy- mutants reselected from thy+ revertants, but in these strains all activity was resistant. These experiments demonstrate that the thy- mutator phenotype is a consequence of a mutation of CTP synthetase and suggest that one pathway of reversion to the wild type state is by loss or inactivation of the mutant allele rendering the revertants hemizygous for the gene.  相似文献   

10.
The chlorovirus PBCV-1, like many large double-stranded DNA-containing viruses, contains several genes that encode putative proteins involved in nucleotide biosynthesis. This report describes the characterization of the PBCV-1 dCMP deaminase, which produces dUMP, a key intermediate in the synthesis of dTTP. As predicted, the recombinant protein has dCMP deaminase activity that is activated by dCTP and inhibited by dTTP. Unexpectedly, however, the viral enzyme also has dCTP deaminase activity, producing dUTP. Typically, these two reactions are catalyzed by proteins in separate enzyme classes; to our knowledge, this is the first example of a protein having both deaminase activities. Kinetic experiments established that (i) the PBCV-1 enzyme has a higher affinity for dCTP than for dCMP, (ii) dCTP serves as a positive heterotropic effector for the dCMP deaminase activity and a positive homotropic effector for the dCTP deaminase activity, and (iii) the enzymatic efficiency of the dCMP deaminase activity is about four times higher than that of the dCTP deaminase activity. Inhibitor studies suggest that the same active site is involved in both dCMP and dCTP deaminations. The discovery that the PBCV-1 dCMP deaminase has two activities, together with a previous report that the virus also encodes a functional dUTP triphosphatase (Y. Zhang, H. Moriyama, K. Homma, and J. L. Van Etten, J. Virol. 79:9945-9953, 2005), means that PBCV-1 is the first virus to encode enzymes involved in all three known pathways to form dUMP.  相似文献   

11.
12.
13.
14.
Xanthomonas phage XP-12 contains 5-methylcytosine completely replacing cytosine. This substitution confers several unusual properties upon XP-12 DNA. The buoyant density of XP-12 DNA in CsCl gradients is 1.710 g/cm-3, 0.16 g/cm-3 lower than that expected for a normal DNA with the same percentage of adenine plus thymine. The melting temperature for XP-12 DNA in 0.012 M Na+ is the highest reported for any naturally occurring DNA, 83.2 degrees C, 6.1 degrees C higher than that of normal DNAs with the same percentage of adenine plus thymine. Unlike the minor amounts of 5-methylcytosine found in most plant and animal DNAs, the 5-methylcytosine residues of XP-12 derive their methyl group from the 3-carbon of serine instead of from the thiomethyl carbon of methionine. .  相似文献   

15.
Increased entry of deoxy[3H]cytidine begins at about 12h after addition of phytohaemagglutinin to peripheral pig lymphocyte cultures, and is accompanied by a parallel stimulation of deoxycytidine kinase up to the beginning of DNA synthesis at 24h. The increased deoxycytidine uptake is characterized by an increase in Vmax. without alteration of the apparent Km (0.7 +/- 0.11 muM). Although the entries of both nucleosides are promoted at the same time, the stimulation of deoxycytidine uptake is less than that of thymidine, and the two nucleosides are transported by separate systems. In addition to deoxycytidien kinase, the synthesis of deoxycytidylate deaminase and thymidylate synthetase are stimulated after addition of phytohaemagglutinin, but to a lesser extent than that of thymidine kinase. The importance of the latter enzyme in forming dTMP, and of thymidylate kinase in providing dTTP, is discussed.  相似文献   

16.
A mutant V79 hamster fibroblast cell line lacking the enzyme dCMP deaminase was used to study the regulation of deoxynucleoside triphosphate pools by substrate cycles between pyrimidine deoxyribosides and their 5'-phosphates. Such cycles were suggested earlier to set the rates of cellular import and export of deoxyribosides, thereby influencing pool sizes (V. Bianchi, E. Pontis, and P. Reichard, Proc. Natl. Acad. Sci. USA 83:986-990, 1986). While normal V79 cells derived more than 80% of their dTTP from CDP reduction via deamination of dCMP, the mutant cells had to rely completely on UDP reduction for de novo synthesis of dTTP, which became limiting for DNA synthesis. Because of the allosteric properties of ribonucleotide reductase, CDP reduction was not diminished, leading to a large expansion of the dCTP pool. The increase of this pool was kept in check by a shift in the balance of the deoxycytidine/dCMP cycle towards the deoxynucleoside, leading to massive excretion of deoxycytidine. In contrast, the balance of the deoxyuridine/dUMP cycle was shifted towards the nucleotide, facilitating import of extracellular deoxynucleosides.  相似文献   

17.
The thymidine nucleotide sources present during herpes simplex virus type 2 (HSV-2) infection were examined. It was concluded that the source of dTTP in HSV-2-infected cells is not only derived from the ribonucleotide reductase-catalyzed de novo pathway, but also from host DNA. When the de novo pathway was inhibited by the addition of hydroxyurea, an inhibitor of ribonucleotide reductase, the dTTP levels were maintained by a compensatory increase in dTTP derived from host DNA. The utilization of host DNA-derived dTTP for viral DNA synthesis was demonstrated. In spite of an increased contribution of dTTP from host DNA in the presence of hydroxyurea, the level of utilization of host DNA-derived dTTP appeared to remain constant. More than one dTTP pool in virus-infected cells is implicated.  相似文献   

18.
19.
Mutants of Escherichia coli that are severely defective in the enzyme dUTPase (dut) accumulate short (4 to 5 S) Okazaki fragments following brief pulses with [3H]thymidine. The transient appearance of DNA fragments in these mutants is plausibly explained by the misincorporation of uracil in DNA as a result of an increase in available dUTP, followed by its rapid excision and repair. The evidence in support of this interpretation is the following: (1) accumulation of short DNA fragments can be partially suppressed by a mutation in dCTP deaminase, presumably by decreasing the intracellular level of dUTP relative to dTTP; (2) accumulation of the short DNA fragments can be almost completely suppressed by a mutation in uracil N-glycosidase, probably by preventing the introduction of nicks at the sites of uracil incorporation; (3) introduction of DNA polymerase I or DNA ligase mutations into dUTPase-defective strains results in the persistence of the 4 to 5 S fragments and rapid cessation of DNA synthesis. Uracil N-glycosidase, DNA polymerase I and DNA ligase must therefore be involved in the excision repair of uracil-containing DNA.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号