首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The H+-PPase and the H+-ATPase of the vacuolar membrane were separated during purification of tonoplast proteins of Kalanchoë daigremontiana Hamet et Perrier de la Bǎthie. Three membrane protein fractions prepared contained firstly, the H+-PPase protein without any subunits of the H+-ATPase, secondly, the H+-PPase protein with only minute traces of the intramembraneous 16 kDa c-subunit of the H+-ATPase, and thirdly, the H+-ATPase subunits without H+-PPase peptides as verified by SDS-PAGE. These three preparations were reconstituted into soybean (Glycine max L.)-phospholipid vesicles, and compared with proteoliposomes obtained by reconstitution of total solubilized tonoplast proteins as well as with native tonoplast vesicles. Analysis of freeze-fracture replicas prepared from these five different types of vesicles showed that there are two populations of intramembraneous particles, one with a diameter of 6.7-7.2 nm corresponding to the H+-PPase, and one with an average diameter of 9.1 nm belonging to the H+-ATPase. Thus, freeze-fracture electron microscopy allows one to visualize H+-PPase particles in addition to H+-ATPase particles in the tonoplast of Kalanchoë daigremontiana.  相似文献   

2.
The vacuolar pH and the trans-tonoplast ΔpH modifications induced by the activity of the two proton pumps H+-ATPase and H+-PPase and by the proton exchanges catalyzed by the Na+/H+ and Ca2+/H+ antiports at the tonoplast of isolated intact vacuoles prepared from Catharanthus roseus cells enriched in inorganic phosphate (Y Mathieu et al 1988 Plant Physiol [in press]) were measured using the 31P NMR technique. The H+-ATPase induced an intravacuolar acidification as large as 0.8 pH unit, building a trans-tonoplast ΔpH up to 2.2 pH units. The hydrolysis of the phosphorylated substrate and the vacuolar acidification were monitored simultaneously to estimate kinetically the apparent stoichiometry between the vectorial proton pumping and the hydrolytic activity of the H+-ATPase. A ratio of H+ translocated/ATP hydrolyzed of 1.97 ± 0.06 (mean ± standard error) was calculated. Pyrophosphate-treated vacuoles were also acidified to a significant extent. The H+-PPase at 2 millimolar PPi displayed hydrolytic and vectorial activities comparable to those of the H+-ATPase, building a steady state ΔpH of 2.1 pH units. Vacuoles incubated in the presence of 10 millimolar Na+ were alkalinized by 0.4 to 0.8 pH unit. It has been shown by using 23Na NMR that sodium uptake was coupled to the H+ efflux and occurred against rather large concentration gradients. For the first time, the activity of the Ca2+/H+ antiport has been measured on isolated intact vacuoles. Ca2+ uptake was strongly inhibited by NH4Cl or gramicidin. Vacuoles incubated with 1 millimolar Ca2+ were alkalinized by about 0.6 pH unit and this H+ efflux was associated to a Ca2+ uptake as demonstrated by measuring the external Ca2+ concentration with a calcium specific electrode. Steady state accumulation ratios of Ca2+ as high as 100 were reached for steady state external concentrations about 200 micromolar. The rate of Ca2+ uptake appeared markedly amplified in intact vacuoles when compared to tonoplast vesicles but the antiport displayed a much lower affinity for calcium. The different behavior of intact vacuoles compared to vesicles appears mainly to be due to differences in the surface to volume ratio and in the rates of dissipation of the pH gradient. Despite its low affinity, the Ca2+/H+ antiport has a high potential capacity to regulate cytoplasmic concentration of calcium.  相似文献   

3.
Duan XG  Yang AF  Gao F  Zhang SL  Zhang JR 《Protoplasma》2007,232(1-2):87-95
Summary. The vacuolar H+-translocating inorganic pyrophosphatase (H+-PPase) uses pyrophosphate as substrate to generate the proton electrochemical gradient across the vacuolar membrane to acidify vacuoles in plant cells. The heterologous expression of H+-PPase genes (TsVP from Thellungiella halophila and AVP1 from Arabidopsis thaliana) improved the salt tolerance of tobacco plants. Under salt stress, the transgenic seedlings showed much better growth and greater fresh weight than wild-type plants, and their protoplasts had a normal appearance and greater vigor. The cytoplasmic and vacuolar pH in transgenic and wild-type cells were measured with a pH-sensitive fluorescence indicator. The results showed that heterologous expression of H+-PPase produced an enhanced proton electrochemical gradient across the vacuolar membrane, which accelerated the sequestration of sodium ions into the vacuole. More Na+ accumulated in the vacuoles of transgenic cells under salt (NaCl) stress, revealed by staining with the fluorescent indicator Sodium Green. It was concluded that the tonoplast-resident H+-PPase plays important roles in the maintenance of the proton gradient across the vacuolar membrane and the compartmentation of Na+ within vacuoles, and heterologous expression of this protein enhanced the electrochemical gradient across the vacuolar membrane, thereby improving the salt tolerance of tobacco cells. Correspondence: J.-R. Zhang, School of Life Science, Shandong University, 27 Shanda South Road, Jinan, People’s Republic of China 250100.  相似文献   

4.
5.
Plant vacuoles were isolated from cotyledons of germinatingAcacia mangium seeds, which had been treated with or withoutcolchicine, to measure vacuolar membrane pyrophosphate (PPi)- andATP-dependent H+ transport activities, and enzymaticactivities of H+-pyrophosphatase(H+-PPase) and H+-ATPase. Innon-colchicine-treated seeds, activities of the two enzymes increasedrapidly after seed germination to almost a maximal level on the seventhday. A linear function relationship exists in magnitude between PPi- orATP-dependent H+transport activity and its correspondingenzymatic activity. The former regression equation is: PPi-dependentH+ transport activity(%A.min–1.g–1) =–0.039 + H+-PPase activity(units.mg–1) × 1.574, the latter is:ATP-dependent H+ transport activity(%A.min–1.g–1) =–0.003 + H+-ATPase activity(units.mg–1) × 0.549. In colchicine-treatedseeds, activities of the two enzymes increased very slowly during 8 daysof germination and the relationship to their respectiveH+ transport activities was not in agreement with theabove-mentioned regression equations. PPi- and ATP-dependentH+ transport activities were lower than thecorresponding values calculated from H+-PPase activityand H+-ATPase activity according to the two regressionequations, respectively. However, when sucrose, indole butyric acid(IBA), or 6-benzyladenine (6-BA) were applied exogenously to the seedsfollowing colchicine treatment for 3 days, activities ofH+-PPase, H+-ATPase, PPi- andATP-dependent H+ transport in the 6-day-old seedlingsall increased. By statistical analysis, it was concluded that colchicineinhibits cotyledon vacuolar membrane H+-PPase,H+-ATPase activities, PPi- and ATP-dependentH+ transport activities during seed germination andearly seedling growth of Acacia mangium. The inhibitory effectsof colchicine could be overcome by IBA, 6-BA and sucrose to varyingdegrees.  相似文献   

6.
以不同发育时期灵武长枣(Ziziphus jujuba cv.Lingwuchangzao)的果实为材料,通过测定与分析果肉组织中细胞质膜、液泡膜H+-ATPase和H+-PPase活性、果实糖分含量变化,研究了灵武长枣果实质膜、液泡膜H+-ATPase和H+-PPase活性与糖积累特性的关系。结果表明:(1)果实第二次快速生长期之前主要积累葡萄糖和果糖,之后果实迅速积累蔗糖,葡萄糖和果糖含量则逐渐下降,成熟期果实主要积累蔗糖。(2)在果实发育的缓慢生长期S1,质膜H+-ATPase活性最低;第一次快速生长期,质膜H+-ATPase活性最高;缓慢生长期S2,其活性降低;第二次快速生长期,质膜H+-ATPase活性升至次高;完熟期,质膜H+-ATPase活性下降幅度较大。(3)在果实发育过程中,液泡膜H+-ATPase和H+-PPase活性的变化趋势相似。缓慢生长期S1,液泡膜H+-ATPase和H+-PPase活性较低;从缓慢生长期S1至第一次快速生长期缓慢下降至最低;从第一次快速生长期开始,液泡膜H+-ATPase和H+-PPase活性呈现为逐渐增高的变化趋势;除第二次快速生长期以外,液泡膜H+-PPase活性始终高于H+-ATPase。由此推测,质膜H+-ATPase和液泡膜H+-ATPase、H+-PPase对灵武长枣果实糖分的跨膜次级转运起到重要的调控作用。  相似文献   

7.
《FEBS letters》1986,196(2):337-340
The behaviour of the membrane-bound proton-translocating pyrophosphatase (H+-PPase) in Rhodospirillum rubrum chromatophores upon application of an electrochemical potential is studied. The rate constants are shown to be affected in an asymmetric fashion. The forward rate constant (PPi synthesis) is shown to be at least 45-times larger during illumination than when there is no proton-motive force. The hydrolysis rate is increased maximally 8-times when the potential is dissipated. The effect of the electrical field gradient is thus mainly to increase the forward rate of the reaction. The H+-PPase also seems to be a functionally simpler enzyme than the H+-ATPase, lacking the hydrolysis activation step during energization found in the latter.  相似文献   

8.
Adenosine-triphosphatase activity on the plasmalemma and tonoplast of isolated mesophyll protoplasts, isolated vacuoles and tonoplast-derived microsomes of the Crassulacean-acid-metabolism plant Kalanchoe daigremontiana Hamet et Perr., was localized by a cytochemical procedure using lead citrate. Enzyme activity was detected on the cytoplasmic surfaces of the plasmalemma and tonoplast. The identity of the enzymes was confirmed by various treatments differentiating the enzymes by their sensitivity to inhibitors of plasmalemma and tonoplast H+-ATPase. Isolated vacuoles and microsomes prepared from isolated vacuoles clearly exhibited single-sided deposition on membrane surfaces.Abbveviations CAM Crassulacean acid metabolism - H+-ATPase proton-translocating ATPase  相似文献   

9.
Protein storage vacuoles were examined for the induction of H+-pyrophosphatase (H+-PPase), H+-ATPase, and a membrane integral protein of 23 kD after seed germination. Membranes of protein storage vacuoles were prepared from dry seeds and etiolated cotyledons of pumpkin (Cucurbita sp.). Membrane vesicles from etiolated cotyledons had ATP- and pyrophosphate-dependent H+-transport activities. H+-ATPase activity was sensitive to nitrate and bafilomycin, and H+-PPase activity was stimulated by potassium ion and inhibited by dicyclohexylcarbodiimide. The activities of both enzymes increased after seed germination. On immunoblot analysis, the 73-kD polypeptide of H+-PPase and the two major subunits, 68 and 57 kD, of vacuolar H+-ATPase were detected in the vacuolar membranes of cotyledons, and the levels of the subunits of enzymes increased parallel to those of enzyme activities. Small amounts of the subunits of the enzymes were detected in dry cotyledons. Immunocytochemical analysis of the cotyledonous cells with anti-H+-PPase showed the close association of H+-PPase to the membranes of protein storage vacuoles. In endosperms of castor bean (Ricinus communis), both enzymes and their subunits increased after germination. Furthermore, the vacuolar membranes from etiolated cotyledons of pumpkin had a polypeptide that cross-reacted with antibody against a 23-kD membrane protein of radish vacuole, VM23, but the membranes of dry cotyledons did not. The results from this study suggest that H+-ATPase, H+-PPase, and VM23 are expressed and accumulated in the membranes of protein storage vacuoles after seed germination. Overall, the findings indicate that the membranes of protein storage vacuoles are transformed into those of central vacuoles during the growth of seedlings.  相似文献   

10.
Following assimilation of 14CO2 by leaves of Stachys sieboldii, 14C-stachyose is translocated into the tubers. Stachyose is accumulated and stored in the vacuoles of the pith parenchyma. Protoplasts and vacuoles were isolated and the uptake of sugars was examined. Uptake of sucrose and sucrosyl oligosaccharides of the raffinose family by protoplasts was very low compared to glucose. Transport parameters for glucose indicated a carrier mediated transport in the lower concentration range which was superimposed by diffusion at higher concentrations (> 10 mM). The very low sugar uptake by protoplasts and the sparse enzyme activities of stachyose synthase in the storage parenchyma as well as acid invertase and α-galactosidase in the cell walls indicated symplastic unloading of stachyose in the tubers. Experiments on 14C-stachyose uptake by isolated vacuoles confirmed previous observations by Keller (1992). Isolated vacuoles exhibited ATP and PP hydrolysis and were capable of generating a proton gradient across the tonoplast by a V-type H+-ATPase and H+-PPase. This was demonstrated by fluorescence quenching of quinacrine. Fluorescence could be restored by the addition of gramicidin and partly recovered by the addition of stachyose; mannitol, sorbitol and glucose had no effect. Fluorescence recovery depended on the concentration of stachyose and revealed saturation kinetics (Km = 28 mM). Comparable results have been obtained with tonoplast vesicles by Greutert and Keller (1993). Experimental data presented here provide circumstantial evidence for symplastic unloading of stachyose in the tubers of Stachys sieboldii and demonstrate that the stachyose concentration in the cytoplasm of storage parenchyma cells is kept low by active stachyose transport into the vacuoles. The results suggest a stachyose/H+-antiport system.  相似文献   

11.
The effects of NaCl-adaptation and NaCl-stress on in vivo H+ extrusion and microsomal vanadate- and bafilomycin-sensitive ATPase and PPase activities were studied in tomato cell suspensions. Acidification of the external medium by 50 mM NaCl-adapted and non-adapted (control) tomato cells was similar. Extracellular acidification by both types of cells during the first hour of incubation with 2 μM fusicoccin (FC) in the presence of 100 mM NaCl was lightly increased while in the presence of 100 mM KCl it was increased by 3 (control)- and 6.5 (adapted)-fold. Extracellular alkalinization after 2 h of cell incubation in 100 mM NaCl indicated the possibility that a Na+/H+ exchange activity could be operating in both types of cells. Moreover, acidification induced by adding 100 mM NaCl + FC to non-adapted cells was relatively less affected by vanadate than that induced by 5 mM KCl + FC, which suggested that salt stress could induce some component other than H+ extrusion by H+-ATPase. In addition, no differences were observed in microsomal vanadate-sensitive ATPase activity among control, NaCl-adapted and NaCl-stressed cells, while K+-stimulated H+-PPase and bafilomycin-sensitive H+-ATPase activities were higher in microsomes from NaCl-adapted than in those from control cells. Likewise, the stimulation of in vivo H+ extrusion in NaCl adapted cells under NaCl or KCl stress in the presence of FC occurred with an inhibition of H+-PPase and bafilomycin-sensitive H+-ATPase activities and without changes in the vanadate-sensitive H+-ATPase activity. These results suggest that the stimulation of tonoplast proton pumps in NaCl-adapted cells, without changes in plasmalemma H+-ATPase, could serve to energize Na+ efflux across the plasmalemma and Na+ fluxes into vacuoles catalyzed by the Na+/H+ antiports. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
The effects of indole-3-acetic acid (IAA), abscisic acid (ABA), gibberellic acid (GA3) and kinetin on the hydrolytic activity of proton pumps (adenosine triphosphatase, H+-ATPase, pyrophosphatase, H+-PPase) of tonoplasts isolated from stored red beet (Beta vulgaris L. cv. Bordo) roots were studied. Results suggest that the phytohormones can regulate the hydrolytic activities of H+-ATPase and H+-PPase of the vacuolar membrane. Each of the proton pumps of the tonoplast has its own regulators in spite of similar localization and functions. IAA and kinetin seem to be regulators of the hydrolytic activity for H+-PPase whereas for H+-ATPase it may be GA3. Stimulation of enzyme activity by all hormones occurred at concentrations of 10–6 to 10–7 M.Abbreviations IAA indole-3-acetic acid - ABA abscisic acid - GA3 gibberellic acid - H+-ATPase adenosine triphosphatase - H+-PPase pyrophosphatase - ATP adenosine triphosphate - Tris Tris (hydroxymethyl)-aminomethane - MES (2[N-Morpholino]) ethane sulfonic acid - EDTA ethylene diamine tetraacetic acid - Pi inorganic phosphate  相似文献   

13.
The effects of osmotic stress on H+-ATPase and H+-PPase activities and the levels of covalently conjugated polyamines (CC-PAs) and noncovalently conjugated polyamines (NCC-PAs) were investigated using tonoplast vesicles isolated from the roots of wheat (Triticum aestivum L.) seedlings differing in drought-tolerance. The results showed that after polyethylene glycol (PEG) 6,000 (–0.55MPa) treatment for 7 days, seedling leaf relative water content (LRWC), relative dry weight increase rate (RDWIR) and root H+-ATPase and H+-PPase activities from the drought-sensitive cultivar Yangmai No. 9 decreased more markedly than those from the drought-tolerant cultivar Yumai No. 18. At the same time, the increase of the NCC-spermidine (NCC-Spd) and CC-putrescine (CC-Put) levels in root tonoplast vesicles from Yumai No. 18 was more obvious than that from Yangmai No. 9. Exogenous Spd treatment alleviated osmotic stress injury to Yangmai No. 9 seedlings, coupled with marked increases of tonoplast NCC-Spd levels and H+-ATPase and H+-PPase activities. Treatments with methylglyoxyl bis (guanyl hydrazone) (MGBG), an inhibitor of S-adenosylmethionine decarboxylase (SAMDC), and phenanthrolin, an inhibitor of transglutaminase (TGase), significantly inhibited the osmotically induced increases of NCC-Spd and CC-Put levels, respectively, in root tonoplast vesicles from Yumai No. 18 seedlings. Both MGBG and phenanthrolin treatments markedly promoted osmotically induced decreases of tonoplast H+-ATPase and H+-PPase activities and osmotic stress tolerance of seedlings of this cultivar. These results suggest that the NCC-Spd and CC-Put present in tonoplast vesicles isolated from wheat seedling roots might enhance the adaptation of seedlings to osmotic stress via maintenance of tonoplast H+-ATPase and H+-PPase activities.  相似文献   

14.
The vacuolar membrane of plant cells is characterized by two proton pumps: the vacuolar H+-ATPase (V-ATPase; EC 3.6.1.3) and the vacuolar H+-PPase (V-PPase; EC 3.6.1.1). Recently, Du Pont and Morrissey reported that Ca2+ stimulates hydrolytic activity of purified V-ATPase (Arch. Biochim. Biophys., 1992. 294: 341–346). Since this effect may be due to degradation during purification further investigation of Ca2+ regulation of native V-ATPase was done. However, native tonoplast membranes contain a Ca2+/H+ antiport activity, which interferes with effects of calcium ions on proton transport activity of vacuolar ATPase. Therefore, the effects of anti-calmodulin drugs (W-7, W-5, calmidazolium), and calcium channel antagonists (Verapamil, Diltiazem) on proton transport activities of the vacuolar-type H+-ATPase and H+-PPase in tonoplast enriched membrane vesicle preparations from roots of Zea mays L. were studied. The concentrations for half maximal inhibition of vacuolar H+-ATPase (H+-PPase) were: 71 (191) μM W-7, 470 (> 800) μM W-5, 26 (24) μM calmidazolium (= compound R 24571). 398 (700) μM Verapamil, and 500 (1 330) μM Diltiazem. Estimation of Hill coefficients (nH) for the inhibition by Verapamil showed a further difference between the two vacuolar proton pumps (H+-ATPase, nH= 2.02; H+-PPase, nn= 0.96). The data indicate that the vacuolar H+-ATPase itself is affected by these chemicals. It is suggested that some biological activities of W-7, W-5, Verapamil, and Diltiazem are due to their effects on proton translocation by the vacuolar-type H+-ATPase.  相似文献   

15.
Pea root elongation was strongly inhibited in the presence of a low concentration of Al (5 μM). In Al-treated root, the epidermis was markedly injured and characterized by an irregular layer of cells of the root surface. Approximately 30% of total absorbed Al accumulated in the root tip and Al therein was found to cause the inhibition of whole root elongation. Increasing concentrations of Ca2+ effectively ameliorated the inhibition of root elongation by Al and 1 mM of CaCl2 completely repressed the inhibition of root elongation by 50 μM Al. The ameliorating effect of Ca2+ was due to the reduction of Al uptake. H+-ATPase and H+-PPase activity as well as ATP and PPidependent H+ transport activity of vacuolar membrane vesicles prepared from barley roots increased to a similar extent by the treatment with 50 μM AlCl3. The rate of increase of the amount of H+-ATPase and H+-PPase was proportional to that of protein content measured by immunoblot analysis with antibodies against the catalytic subunit of the vacuolar H+-ATPase and H+-PPase of mung bean. The increase of both activities was discussed in relation to the physiological tolerance mechanism of barley root against Al stress.  相似文献   

16.
Zhang Y  Wang L  Liu Y  Zhang Q  Wei Q  Zhang W 《Planta》2006,224(3):545-555
Nitric oxide (NO), an endogenous signaling molecule in animals and plants, mediates responses to abiotic and biotic stresses. Our previous work demonstrated that 100 μM sodium nitroprusside (SNP, an NO donor) treatment of maize seedlings increased K+ accumulation in roots, leaves and sheathes, while decreasing Na+ accumulation (Zhang et al. in J Plant Physiol Mol Biol 30:455–459, 2004b). Here we investigate how NO regulates Na+, K+ ion homeostasis in maize. Pre-treatment with 100 μM SNP for 2 days improved later growth of maize plants under 100 mM NaCl stress, as indicated by increased dry matter accumulation, increased chlorophyll content, and decreased membrane leakage from leaf cells. An NO scavenger, methylene blue (MB-1), blocked the effect of SNP. These results indicated that SNP-derived NO enhanced maize tolerance to salt stress. Further analysis showed that NaCl induced a transient increase in the NO level in maize leaves. Both NO and NaCl treatment stimulated vacuolar H+-ATPase and H+-PPase activities, resulting in increased H+-translocation and Na+/H+ exchange. NaCl-induced H+-ATPase and H+-PPase activities were diminished by MB-1. 1-Butanol, an inhibitor of phosphatidic acid (PA) production by phospholipase D (PLD), reduced NaCl- and NO-induced H+-ATPase activation. In contrast, applied PA stimulated H+-ATPase activity. These results suggest that NO acts as a signal molecule in the NaCl response by increasing the activities of vacuolar H+-ATPase and H+-PPase, which provide the driving force for Na+/H+ exchange. PLD and PA play an important role in this process.  相似文献   

17.
H+-translocating pyrophosphatase (H+-PPase, EC 3.6.1.1) plays an important role in acidifying vacuoles by transporting protons across membranes at the expense of pyrophosphate (PPi) hydrolysis. Vigna radiata H+-PPase (VrH+-PPase) contains 16 transmembrane helices (TMs). The hydrophobicity of TM3 is relatively lower than that of most other TMs, and the amino acids in this TM are highly conserved in plants. Furthermore, TM5 and -6, which are the core TMs involving in H+-PPase functions, are near TM3. It is thus proposed that TM3 is associated with H+-PPase activity. To address this possibility, site-directed mutagenesis was applied in this investigation to determine the role of TM3 in VrH+-PPase. Upon alanine/serine substitution, T138 and S142, whose side chains face toward the center TMs, were found to be involved in efficient proton transport. G149/S153 and G160/A164 pairs at the crucial termini of the two GxxxG-like motifs are indispensable in maintaining enzymatic activities and conformational stability. Moreover, stability in the vicinity surrounding G149 is pivotal for efficient expression. S153, M161 and A164 are critical for the K+-mediated stimulation of H+-PPase. Taken together, our results demonstrate that TM3 plays essential roles in PPi hydrolysis, proton transport, expression, and K+ stimulation of H+-PPase.  相似文献   

18.
Inorganic phosphate (Pi) uptake across the vacuolar membrane of intact vacuoles isolated from Catharanthus roseus suspension-cultured cells was measured. Under low Pi status, Pi uptake into the vacuole was strongly activated compared to high Pi status. Since Pi uptake across the vacuolar membrane is correlated with H+ pumping, we examined the dependency of H+ pumping on plant Pi status. Both H+ pumping and the activities of the vacuolar H+-pumps, the V-type H+-ATPase and the H+-PPase were enhanced under low Pi status. Despite this increase in H+ pumping, Western blot analysis showed no distinct increase in the amount of proton pump proteins. Possible mechanisms for the activation of Pi uptake into the vacuole under low Pi status are discussed. Miwa Ohnishi and Tetsuro Mimura contributed equally to this work.  相似文献   

19.
It has been previously shown that the transgenic overexpression of the plant root vacuolar proton pumps H+-ATPase (V-ATPase) and H+-PPase (V-PPase) confer tolerance to drought. Since plant-root endophytic bacteria can also promote drought tolerance, we hypothesize that such promotion can be associated to the enhancement of the host vacuolar proton pumps expression and activity. To test this hypothesis, we selected two endophytic bacteria endowed with an array of in vitro plant growth promoting traits. Their genome sequences confirmed the presence of traits previously shown to confer drought resistance to plants, such as the synthesis of nitric oxide and of organic volatile organic compounds. We used the two strains on pepper (Capsicuum annuum L.) because of its high sensitivity to drought. Under drought conditions, both strains stimulated a larger root system and enhanced the leaves' photosynthetic activity. By testing the expression and activity of the vacuolar proton pumps, H+-ATPase (V-ATPase) and H+-PPase (V-PPase), we found that bacterial colonization enhanced V-PPase only. We conclude that the enhanced expression and activity of V-PPase can be favoured by the colonization of drought-tolerance-inducing bacterial endophytes.  相似文献   

20.
A H+-translocating inorganic pyrophosphatase (H+-PPase) was associated with low density membranes enriched in tonoplast vesicles of oat roots. The H+-PPase catalyzed the electrogenic transport of H+ into the vesicles, generating a pH gradient, inside acid (quinacrine fluorescence quenching), and a membrane potential, inside positive (Oxonol V fluorescence quenching). Transport activity was dependent on cations with a selectivity sequence of Rb+ = K+ > Cs+; but it was inhibited by Na+ or Li+. Maximum rates of transport required at least 20 millimolar K+ and the Km for this ion was 4 millimolar. Fluoride inhibited both ΔpH formation and K+-dependent PPase activity with an I50 of 1 to 2 millimolar. Inhibitors of the anion-sensitive, tonoplast-type H+-ATPase (e.g. a disulfonic stilbene or NO3) had no effect on the PPase activity. Vanadate and azide were also ineffective. H+-pumping PPase was inhibited by 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole and N-ethylmaleimide, but its sensitivity to N,N′-dicyclohexylcarbodiimide was variable. The sensitivity to ions and inhibitors suggests that the tonoplast H+-PPase and the H+-ATPase are distinct activities and this was confirmed when they were physically separated after Triton X-100 solubilization and Sepharose CL-6B chromatography. H+ pumping activity was strongly affected by Mg2+ and pyrophosphate (PPi) concentrations. At 5 millimolar Mg2+, H+ pumping showed a KmaPP for PPi of 15 micromolar. The rate of H+ pumping at 60 micromolar PPi was often equivalent to that at 1.5 millimolar ATP. The results suggest PPi hydrolysis could provide another source of a proton motive force used for solute transport and other energy-requiring processes across the tonoplast and other membranes with H+-PPase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号