首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Translation initiation is poised between global regulation of cell growth and specific regulation of cell division. The mRNA cap-binding protein (eIF4E) is a critical integrator of cell growth and division because it is rate-limiting for translation initiation and is also rate-limiting for G(1) progression. Translation initiation factor eIF4E is also oncogenic and a candidate target of c-myc. Recently, an activated inhibitory 4E-binding protein (4EBP) that blocks eIF4E was used to study its regulation of Drosophila growth. We adopted this approach in mammalian cells after identifying an autosensing mechanism that protects against increased levels of 4EBP1. Increased 4EBP1 induced a quantitative increase in the inactivated phosphorylated form of 4EBP1 in vitro and in vivo. To overcome this protective mechanism, we introduced alanine substitutions at four phosphorylation/inactivation sites in 4EBP1 to constitutively activate a 4EBP mu to block eIF4E. Overexpression of activated 4EBP mu inhibited cell proliferation and completely blocked transformation by both eIF4E and c-myc, although it did not block all tested oncogenes. Surprisingly, expression of the activated 4EBP mu increased cell size and protein content. Activated 4EBP mu blocked both cell proliferation and c-myc transformation by inhibiting G(1) progression and increasing apoptosis, without decreasing protein synthesis. Our results identify mammalian eIF4E as rate-limiting for cell cycle progression before it regulates cell growth. It further identifies G(1) control by translation initiation factors as an essential genetic target of c-myc that is necessary for its ability to transform cells.  相似文献   

2.
乳腺癌耐药蛋白(breast cancer resistance protein,BCRP)是ATP结合盒转运蛋白超家族成员之一,其通过主动外排化疗药物如米托蒽醌、托泊替康和甲氨蝶呤,进而介导肿瘤化疗耐受. 最近有研究发现,在野生型p53(wild type p53, wt-p53)低表达的乳腺癌细胞系MCF-7中,外源性wt-p53通过抑制核转录因子-κB (nuclear factor-κB, NF-κB)的活性进而抑制BCRP的表达,但其详细的分子机制有待进一步阐明. 本研究选用p53缺失的骨肉瘤细胞系Saos-2,通过瞬时转染技术发现,wt-p53可以激活BCRP的表达,而突变型p53的激活作用消失;报告基因试验显示,wt-p53可以上调BCRP启动子活性;通过生物信息学软件MatInspector对BCRP启动子区进行预测,未发现p53结合元件;同时,通过转染IκB抑制Saos-2细胞中NF-κB的活性后发现,Saos-2细胞中NF-κB活性越低,p53对BCRP启动子的激活作用越弱甚至完全消失. 上述结果提示,p53对Saos-2细胞中BCRP的激活作用是NF-κB依赖性的.  相似文献   

3.
p53负调控前列腺癌细胞中PC-1基因的表达   总被引:1,自引:0,他引:1  
在前列腺癌进展中发生的PC-1基因表达失调和p53基因突变,提示这两个事件之间可能存在的联系.用依托泊苷处理前列腺癌LNCaP细胞后,PC-1蛋白的表达受抑制;瞬时转染分析表明野生型p53负调控PC-1启动子的转录活性;缺失突变分析将PC-1基因启动子上受p53负调控的区域定位在翻译起始位点上游757 bp~323 bp之间.缺失PC-1启动子上的雄激素受体反应元件并没有消除p53对其转录活性的抑制作用;无论p53是否存在,组蛋白去乙酰化酶抑制剂TSA处理LNCaP细胞后可以导致PC-1启动子转录活性升高.因此,p53和去乙酰化酶可以独立抑制PC-1启动子活性.这些研究结果表明,野生型p53负调控PC-1基因启动子的转录活性,而前列腺癌进展过程中p53突变可能和PC-1基因的表达失调有关.  相似文献   

4.
The mRNA cap-binding protein (eukaryotic initiation factor 4E [eIF4E]) binds the m7 GpppN cap on mRNA, thereby initiating translation. eIF4E is essential and rate limiting for protein synthesis. Overexpression of eIF4E transforms cells, and mutations in eIF4E arrest cells in G, in cdc33 mutants. In this work, we identified the promoter region of the gene encoding eIF4E, because we previously identified eIF4E as a potential myc-regulated gene. In support of our previous data, a minimal, functional, 403-nucleotide promoter region of eIF4E was found to contain CACGTG E box repeats, and this core eIF4E promoter was myc responsive in cotransfections with c-myc. A direct role for myc in activating the eIF4E promoter was demonstrated by cotransfections with two dominant negative mutants of c-myc (MycdeltaTAD and MycdeltaBR) which equally suppressed promoter function. Furthermore, electrophoretic mobility shift assays demonstrated quantitative binding to the E box motifs that correlated with myc levels in the electrophoretic mobility shift assay extracts; supershift assays demonstrated max and USF binding to the same motif. cis mutations in the core or flank of the eIF4E E box simultaneously altered myc-max and USF binding and inactivated the promoter. Indeed, mutations of this E box inactivated the promoter in all cells tested, suggesting it is essential for expression of eIF4E. Furthermore, the GGCCACGTG(A/T)C(C/G) sequence is shared with other in vivo targets for c-myc, but unlike other targets, it is located in the immediate promoter region. Its critical function in the eIF4E promoter coupled with the known functional significance of eIF4E in growth regulation makes it a particularly interesting target for c-myc regulation.  相似文献   

5.
Down-regulation of hMSH3 is associated with elevated microsatellite alterations at selected tetranucleotide repeats and low levels of microsatellite instability in colorectal cancer (CRC). However, the mechanism that down-regulates hMSH3 in CRC is not known. In this study, a significant association between over-expression of glucose transporter 1, a marker for hypoxia, and down-regulation of hMSH3 in CRC tissues was observed. Therefore, we examined the effect of hypoxia on the expression of hMSH3 in human cell lines. When cells with wild type p53 (wt-p53) were exposed to hypoxia, rapid down-regulation of both hMSH2 and hMSH3 occurred. In contrast, when null or mutated p53 (null/mut-p53) cells were exposed to hypoxia, only hMSH3 was down-regulated, and at slower rate than wt-p53 cells. Using a reporter assay, we found that disruption of the two putative hypoxia response elements (HREs) located within the promoter region of the hMSH3 abrogated the suppressive effect of hypoxia on reporter activity regardless of p53 status. In an EMSA, two different forms of HIF-1α complexes that specifically bind to these HREs were detected. A larger complex containing HIF-1α predominantly bound to the HREs in hypoxic null/mut-p53 cells whereas a smaller complex predominated in wt-p53 cells. Finally, HIF-1α knockdown by siRNA significantly inhibited down-regulation of hMSH3 by hypoxia in both wt-p53 and mut-p53 cells. Taken together, our results suggest that the binding of HIF-1α complexes to HRE sites is necessary for down-regulation of hMSH3 in both wt-p53 and mut-p53 cells.  相似文献   

6.
Gastric cancer is the third leading cause of cancer‐related deaths worldwide, and patients with lymph node, peritoneal and distant metastasis have a poor prognosis. Overexpression of Astrocyte‐elevated gene‐1 (AEG‐1) has been reported to be correlated with the progression and metastasis of gastric cancer. However, its mechanisms are quite unclear. In this study, we found that elevated expression of AEG‐1 was correlated with metastasis in human gastric cancer tissues. Moreover, gain‐ or loss‐of‐function of AEG‐1, respectively, promoted or suppressed epithelial–mesenchymal transition (EMT), migration and invasion of gastric cancer cells. AEG‐1 positively regulated eIF4E, MMP‐9 and Twist expression. Manipulating eIF4E expression by transfection of overexpression constructs or siRNAs partially eliminated AEG‐1‐regulated EMT, cell migration and invasion. In addition, overexpression or knockdown of eIF4E promoted or suppressed EMT, cell migration and invasion in parallel with upregulation of MMP‐9 and Twist expression, while manipulating eIF4E expression partially abrogated AEG‐1‐induced MMP‐9 and Twist. Finally, silencing of AEG‐1 expression not only inhibited tumour growth in parallel with downregulation of eIF4E, MMP‐9 and Twist expression in a xenograft nude mouse model, but also suppressed lymph node and peritoneal metastasis of gastric cancer in an orthotopic nude mouse model. These findings suggest that AEG‐1 promotes gastric cancer metastasis through upregulation of eIF4E‐mediated MMP‐9 and Twist, which provides new diagnostic markers and therapeutic targets for cancer metastasis.  相似文献   

7.
8.
Recent studies have shown that during apoptosis protein synthesis is inhibited and that this is in part due to the proteolytic cleavage of eukaryotic initiation factor 4G (eIF4G). Initiation of translation can occur either by a cap-dependent mechanism or by internal ribosome entry. The latter mechanism is dependent on a complex structural element located in the 5' untranslated region of the mRNA which is termed an internal ribosome entry segment (IRES). In general, IRES-mediated translation does not require eIF4E or full-length eIF4G. In order to investigate whether cap-dependent and cap-independent translation are reduced during apoptosis, we examined the expression of c-Myc during this process, since we have shown previously that the 5' untranslated region of the c-myc proto-oncogene contains an IRES. c-Myc expression was determined in HeLa cells during apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand. We have demonstrated that the c-Myc protein is still expressed when more than 90% of the cells are apoptotic. The presence of the protein in apoptotic cells does not result from either an increase in protein stability or an increase in expression of c-myc mRNA. Furthermore, we show that during apoptosis initiation of c-myc translation occurs by internal ribosome entry. We have investigated the signaling pathways that are involved in this response, and cotransfection with plasmids which harbor either wild-type or constitutively active MKK6, a specific immediate upstream activator of p38 mitogen-activated protein kinase (MAPK), increases IRES-mediated translation. In addition, the c-myc IRES is inhibited by SB203580, a specific inhibitor of p38 MAPK. Our data, therefore, strongly suggest that the initiation of translation via the c-myc IRES during apoptosis is mediated by the p38 MAPK pathway.  相似文献   

9.
Abstract In multiple human cancers, the function of the eukaryotic translation initiation factor 4E (eIF4E) is elevated and directly related to disease progression. Overexpression or hyperactivation of eIF4E in experimental models can drive cellular transformation and malignant progression. Elevated eIF4E function triggers enhanced assembly of the eIF4F translation initiation complex and thereby drives cap-dependent translation. Though all capped mRNAs require eIF4F for translation, a pool of mRNAs are exceptionally dependent on elevated eIF4F activity for translation and are thereby selectively and disproportionately affected by altered eIF4F activity. These mRNAs encode proteins that play significant roles in all aspects of malignancy including angiogenesis factors (VEGF, FGF-2), onco-proteins (c-myc, cyclin D1, ODC), pro-survival proteins (survivin, BCL-2) and proteins involved in tumor invasion and metastasis (MMP-9, heparanase). Recent advances in targeting the eIF4F complex have highlighted the role for this complex in tumor cell survival and angiogenesis and have illuminated the enhanced susceptibility of the tumor cells to inhibition of the eIF4F complex. These studies have demonstrated the attractiveness and plausibility of targeting eIF4E and the eIF4F translation initiation complex for cancer therapy and have prompted the advance of the first eIF4E-specific therapy to the clinic.  相似文献   

10.
Accumulating evidence has shown that microRNAs are involved in multiple processes in gastric cancer (GC) development and progression. Aberrant expression of miR-497 has been frequently reported in cancer studies; however, the role and mechanism of its function in GC remains unknown. Here, we reported that miR-497 was frequently downregulated in GC tissues and associated with aggressive clinicopathological features of GC patients. Further in vitro observations showed that the enforced expression of miR-497 inhibited cell proliferation by blocking the G1/S transition and decreased the invasion of GC cells, implying that miR-497 functions as a tumor suppressor in the progression of GC. In vivo study indicated that restoration of miR-497 inhibited tumor growth and metastasis. Luciferase assays revealed that miR-497 inhibited eIF4E expression by targeting the binding sites in the 3′-untranslated region of eIF4E mRNA. qRT-PCR and Western blot assays verified that miR-497 reduced eIF4E expression at both the mRNA and protein levels. A reverse correlation between miR-497 and eIF4E expression was noted in GC tissues. Taken together, our results identify a crucial tumor suppressive role of miR-497 in the progression of GC and suggest that miR-497 might be an anticancer therapeutic target for GC patients.  相似文献   

11.
The initiation factor eukaryotic translation initiation factor 4E (eIF4E) plays a critical role in initiating translation of mRNAs, including those encoding oncogenic proteins. Therefore, eIF4E is considered a survival protein involved in cell cycle progression, cell transformation, and apoptotic resistance. Phosphorylation of eIF4E (usually at Ser209) increases its binding affinity for the cap of mRNA and may also favor its entry into initiation complexes. Mammalian target of rapamycin (mTOR) inhibitors suppress cap-dependent translation through inhibition of the phosphorylation of eIF4E-binding protein 1. Paradoxically, we have shown that inhibition of mTOR signaling increases eIF4E phosphorylation in human cancer cells. In this study, we focused on revealing the mechanism by which mTOR inhibition increases eIF4E phosphorylation. Silencing of either mTOR or raptor could mimic mTOR inhibitors' effects to increase eIF4E phosphorylation. Moreover, knockdown of mTOR, but not rictor or p70S6K, abrogated rapamycin's ability to increase eIF4E phosphorylation. These results indicate that mTOR inhibitor-induced eIF4E phosphorylation is secondary to mTOR/raptor inhibition and independent of p70S6K. Importantly, mTOR inhibitors lost their ability to increase eIF4E phosphorylation only in cells where both Mnk1 and Mnk2 were knocked out, indicating that mTOR inhibitors increase eIF4E phosphorylation through a Mnk-dependent mechanism. Given that mTOR inhibitors failed to increase Mnk and eIF4E phosphorylation in phosphatidylinositol 3-kinase (PI3K)-deficient cells, we conclude that mTOR inhibition increases eIF4E phosphorylation through a PI3K-dependent and Mnk-mediated mechanism. In addition, we also suggest an effective therapeutic strategy for enhancing mTOR-targeted cancer therapy by cotargeting mTOR signaling and Mnk/eIF4E phosphorylation.  相似文献   

12.
13.
14.
c-myc oncogene is implicated in tumorigenesis of many cancers, including breast cancer. Although c-myc is a well-known estrogen-induced gene, its promoter has no estrogen-response element, and the underlying mechanism by which estrogen induces its expression remains obscure. Recent genome-wide studies by us and others suggested that distant elements may mediate estrogen induction of gene expression. In this study, we investigated the molecular mechanism by which estrogen induces c-myc expression with a focus on these distal elements. Estrogen rapidly induced c-myc expression in estrogen receptor (ER)-positive breast cancer cells. Although estrogen had little effect on c-myc proximal promoter activity, it did stimulate the activity of a luciferase reporter containing a distal 67-kb enhancer. Estrogen induction of this luciferase reporter was dependent upon both a half-estrogen response element and an activator protein 1 (AP-1) site within this enhancer, which are conserved across 11 different mammalian species. Small interfering RNA experiments and chromatin immunoprecipitation assays demonstrated the necessity of ER and AP-1 cross talk for estrogen to induce c-myc expression. TAM67, the AP-1 dominant negative, partially inhibited estrogen induction of c-myc expression and suppressed estrogen-induced cell cycle progression. Together, these results demonstrate a novel pathway of estrogen regulation of gene expression by cooperation between ER and AP-1 at the distal enhancer element and that AP-1 is involved in estrogen induction of the c-myc oncogene. These results solve the long-standing question in the field of endocrinology of how estrogen induces c-myc expression.  相似文献   

15.
16.
The mechanism by which the ubiquitously expressed Src family kinases regulate mitogenesis is not well understood. Here we report that cytoplasmic tyrosine kinase c-Abl is an important effector of c-Src for PDGF- and serum-induced DNA synthesis. Inactivation of cytoplasmic c-Abl by the kinase-inactive Abl-PP-K(-) (AblP242E/P249E/K290M) or by microinjection of Abl neutralizing antibodies inhibited mitogenesis. The kinase-inactive SrcK295M induced a G(1) block that was overcome by the constitutively active Abl-PP (AblP242E/P249E). Conversely, the inhibitory effect of Abl-PP-K(-) was not compensated by Src. c-Src-induced c-Abl activation involves phosphorylation of Y245 and Y412, two residues required for c-Abl mitogenic function. Finally, we found that p53 inactivation and c-myc expression, two cell cycle events regulated by Src during mitogenesis, also implied c-Abl: c-Abl function was dispensable in cells deficient in active p53 and inhibition of c-Abl reduced mitogen-induced c-myc expression. These data identify a novel function of cytoplasmic c-Abl in the signalling pathways regulating growth factor-induced c-myc expression and we propose the existence of a tyrosine kinase signalling cascade (PDGFR/c-Src/c-Abl) important for mitogenesis.  相似文献   

17.
视黄酸对胃癌细胞周期的调控   总被引:1,自引:0,他引:1  
视黄酸(RA)能够抑制许多类型癌细胞生长、诱导细胞凋亡和调节细胞周期。本文研究了全反式视黄酸(ATRA)对人胃癌细胞的作用机理。结果表明,ATRA通过诱导细胞滞留在G_0/G_1期而显著抑制胃癌细胞生长,但ATRA不能诱导胃癌细胞凋亡;ATRA调控细胞周期与c-myc、磷酸化Rb水平的下调和p21~(WAF1/CIP1)、p53水平的上调有关,而cyclinD_1和CDK_4水平没有明显变化。在RA抗性细胞中,ATRA不能调节这些基因表达。结果证实,ATRA对胃癌细胞生长抑制与其诱导细胞滞留在G_0/G_1期有关,而与细胞凋亡的诱导无关,许多重要的、与周期相关的分子,包括cmyc、p21~(WAF1/CIP1、p53和Rb等参与细胞周期的调控。  相似文献   

18.
19.
视黄酸对胃癌细胞周期的调控   总被引:3,自引:0,他引:3  
Retinoic acid can induce growth inhibition and apoptosis, and regulate cell cycle in many types of cancer cell lines. In this study, we investigated the role of all-trans retinoic acid (ATRA) and its mechanism of action in human gastric cancer cell lines. Our results demonstrated that ATRA effectively inhibited growth in three of four gastric cancer cell lines by induction of G0/G1 arrest, and did not induce apoptosis in four gastric cancer cell lines. In RA-sensitive cell lines, ATRA-induced G0/G1 arrest is associated with down regulaton of c-myc and hyperphosphorylated Rb expression, and up regulation of p21WAF1/CIP1 and p53 expression. There were no significant changes in cyclin D1 or CDK4 expression induced by ATRA. Futhermore, expression of these genes were not regulated by ATRA in ATRA-resistant gastric cancer cell line. These results indicate that growth inhibition, rather than apoptosis, is correlated with G0/G1 arrest of these cell lines, more important molecules related cell cycle, including c-myc, p21WAF1/CIP1, p53 and Rb, are involveed in regulation of cell cycle in gastric cancer cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号