首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In order to determine the role of divalent cations in the reaction mechanism of the H+,K+-ATPase, we have substituted calcium for magnesium, which is required by the H+,K+-ATPase for phosphorylation from ATP and from PO4. Calcium was chosen over other divalent cations assayed (barium and manganese) because in the absence of magnesium, calcium activated ATP hydrolysis, generated sufficiently high levels of phosphoenzyme (573 +/- 51 pmol.mg-1) from [gamma-32P]ATP to study dephosphorylation, and inhibited K+-stimulated ATP hydrolysis. The Ca2+-ATPase activity of the H+,K+-ATPase was 40% of the basal Mg2+-ATPase activity. However, the Ca2+,K+-ATPase activity (minus the Ca2+ basal activity) was only 0.7% of the Mg2+,K+-ATPase, indicating that calcium could partially substitute for Mg2+ in activating ATP hydrolysis but not in K+ stimulation of ATP hydrolysis. Approximately 0.1 mM calcium inhibited 50% of the Mg2+-ATPase or Mg2+,K+-ATPase activities. Inhibition of Mg2+,K+-ATPase activity was not competitive with respect to K+. Inhibition by calcium of Mg2+,K+ activity p-nitrophenyl phosphatase activity was competitive with respect to Mg2+ with an apparent Ki of 0.27 mM. Proton transport measured by acridine orange uptake was not detected in the presence of Ca2+ and K+. In the presence of Mg2+ and K+, Ca2+ inhibited proton transport with an apparent affinity similar to the inhibition of the Mg2+, K+-ATPase activity. The site of calcium inhibition was on the exterior of the vesicle. These results suggest that calcium activates basal turnover and inhibits K+ stimulation of the H+,K+-ATPase by binding at a cytosolic divalent cation site. The pseudo-first order rate constant for phosphoenzyme formation from 5 microM [gamma-32P]ATP was at least 22 times slower in the presence of calcium (0.015 s-1) than magnesium (greater than 0.310 s-1). The Ca.EP (phosphoenzyme formed in the presence of Ca2+) formed dephosphorylated four to five times more slowly that the Mg.EP (phosphoenzyme formed in the presence of Mg2+) in the presence of 8 mm trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid (CDTA) or 250 microM ATP. Approximately 10% of the Ca.EP formed was sensitive to a 100 mM KCl chase compared with greater than 85% of the Mg.EP. By comparing the transient kinetics of the phosphoenzyme formed in the presence of magnesium (Mg.EP) and calcium (Ca.EP), we found two actions of divalent cations on dephosphorylation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
We have previously demonstrated that Na+,K(+)-ATPase can be phosphorylated by 100 microM ATP and 5 mM Mg2+ and in the absence of Na+, provided that 40% dimethylsulfoxide (Me2SO) is present. Phosphorylation was stimulated by K+ up to a steady-state level of about 50% of Etot (Barrabin et al. (1990) Biochim. Biophys. Acta 1023, 266-273). Here we describe the time-course of phosphointermediate (EP) formation and of dephosphorylation of EP at concentrations of Mg2+ from 0.1 to 5000 microM and of K+ from 0.01 to 100 mM. The results were simulated by a simplified version of the commonly accepted Albers-Post model, i.e. a 3-step reaction scheme with a phosphorylation, a dephosphorylation and an isomerization/deocclusion step. Furthermore it was necessary to include an a priori, Mg(2+)- and K(+)-independent, equilibration between two enzyme forms, only one of which (constituting 14% of Etot) reacted directly with ATP. The role of Mg(2+) was two-fold: At low Mg2+, phosphorylation was stimulated by Mg2+ due to formation of the substrate MgATP, whereas at higher concentrations it acted as an inhibitor at all three steps. The affinity for the inhibitory Mg(2+)-binding was increased several-fold, relative to that in aqueous media, by dimethylsulfoxide. K+ stimulated dephosphorylation at all Mg(2+)-concentrations, but at high, inhibitory [Mg2+], K+ also stimulated the phosphorylation reaction, increasing both the rate coefficient and the steady-state level of EP. Generally, the presence of Me2SO seems to inhibit the dephosphorylation step, the isomerization/deocclusion step, and to a lesser extent (if at all) the phosphorylation reaction, and we discuss whether this reflects that Me2SO stabilizes occluded conformations of the enzyme even in the absence of monovalent cations. The results confirm and elucidate the stimulating effect of K+ on EP formation from ATP in the absence of Na+, but they leave open the question of the molecular mechanism by which Me2SO, inhibitory Mg2+ and stimulating K+ interact with the Na+,K(+)-ATPase.  相似文献   

3.
The amount of Ca2+ bound to the Ca2+,Mg2+-dependent ATPase of deoxycholic acid-treated sarcoplasmic reticulum was measured during ATP hydrolysis by the double-membrane filtration method [Yamaguchi, M. & Tonomura, Y. (1979), J. Biochem. 86, 509--523]. The maximal amount of phosphorylated intermediate (EP) was adopted as the amount of active site of the ATPase. In the absence of ATP, 2 mol of Ca2+ bound cooperatively to 1 mol of active site with high affinity and were removed rapidly by addition of EGTA. AMPPNP did not affect the Ca2+ binding to the ATPase in the presence of MgCl2. Under the conditions where most EP and ADP sensitive at steady state (58 microM Ca2+, 50 microM EGTA, and 20 mM MgCl2 at pH 7.0 and 0 degrees C), bound Ca2+ increased by 0.6--0.7 mol per mol active site upon addition of ATP. The time course of decrease in the amount of bound 45Ca2+ on addition of unlabeled Ca2+ + EGTA was biphasic, and 70% of bound 45Ca2+ was slowly displaced with a rate constant similar to that of EP decomposition. Similar results were obtained for the enzyme treated with N-ethylmaleimide, which inhibits the step of conversion of ADP-sensitive EP to the ADP-insensitive one. Under the conditions where most EP was ADP insensitive at steady state (58 microM Ca2+, 30 microM EGTA, and 20 mM MgCl2 at pH 8.8 and 0 degrees C), the amount of bound Ca2+ increased slightly, then decreased slowly by 1 mol per mol of EP formed after addition of ATP. Under the conditions where about a half of EP was ADP sensitive (58 microM Ca2+, 25 microM EGTA, and 1 mM MgCl2 at pH 8.8 and 0 degrees C), the amount of bound Ca2+ did not change upon addition of ATP. These findings suggest that the Ca2+ bound to the enzyme becomes unremovable by EGTA upon formation of ADP-sensitive EP and is released upon its conversion to ADP-insensitive EP.  相似文献   

4.
The steady-state level of phosphorylated intermediate (EP) of (Mg2+ + Ca2+)-ATPase is influenced by magnesium and calcium concentration in the Ca2+-transporting system of sarcoplasmic reticulum vesicles. At micromolar [Ca2+], the level of EP is increased by Mg2+, depending on its concentration. The effect of Mg2+ is less pronounced at lower Ca2+ concentration. At low [Mg2+], the EP formation increases at millimolar concentrations of Ca2+, suggesting, in accordance with earlier results, that the substrate may also be CaATP instead of MgATP. LaCl3 (1 mM) enhanced the EP formation at low Mg2+ concentration. Surprisingly, 10 microM LaCl3 caused a marked decrease in EP formation at high [Mg2+] and had little or no effect on the level of EP at low Mg2+ concentration. The inducing effect of 1 mM LaCl3 on the EP formation at low [Mg2+] and the inhibitory effect of 10 microM LaCl3 at high Mg2+ concentration draw attention to the involvement of divalent cation-binding sites with different affinity in phosphorylation and to the particular role of Mg2+ in the EP formation and EP decomposition.  相似文献   

5.
In order to characterize low affinity ATP-binding sites of renal (Na+,K+) ATPase and sarcoplasmic reticulum (Ca2+)ATPase, the effects of ATP on the splitting of the K+-sensitive phosphoenzymes were compared. ATP inactivated the dephosphorylation in the case of (Na+,K+)ATPase at relatively high concentrations, while activating it in the case of (Ca2+)ATPase. When various nucleotides were tested in place of ATP, inactivators of (Na+,K+)ATPase were found to be activators in (Ca2+)ATPase, with a few exceptions. In the absence of Mg2+, the half-maximum concentration of ATP for the inhibition or for the activation was about 0.35 mM or 0.25 mM, respectively. These values are comparable to the previously reported Km or the dissociation constant of the low affinity ATP site estimated from the steady-state kinetics of the stimulation of ATP hydrolysis or from binding measurements. By increasing the concentration of Mg2+, but not Na+, the effect of ATP on the phosphoenzyme of (Na+,K+)ATPase was reduced. On the other hand, Mg2+ did not modify the effect of ATP on the phosphoenzyme of (Ca2+)ATPase. During (Na+,K+)ATPase turnover, the low affinity ATP site appeared to be exposed in the phosphorylated form of the enzyme, but the magnesium-complexed ATP interacted poorly with the reactive K+-sensitive phosphoenzyme, which has a tightly bound magnesium, probably because of interaction between the divalent cations. In the presence of physiological levels of Mg2+ and K+, ATP appeared to bind to the (Na+,K+)ATPase only after the dephosphorylation, while it binds to the (Ca2+)-ATPase before the dephosphorylation to activate the turnover.  相似文献   

6.
The plasma membrane of Saccharomyces cerevisiae has a Mg2+-dependent ATPase which is distinct from the mitochondrial Mg2+-ATPase and at the pH optimum of 5.5 has a Km for ATP of 1.7 mM and a Vmax of 0.42 mumol of ATP hydrolyzed/mg/min. At least three protein components of the crude membrane (Mr = 210,000, 160,000 and 115,000) are labeled with [gamma"32P]ATP at pH 5.5. These phosphoproteins form rapidly in the presence of Mg2+, rapidly turn over the bound phosphate when unlabeled ATP is added, and dephosphorylate after incubation in the presence of hydroxylamine. Vanadate, an inhibitor of the Mg2+-ATPase activity, blocks the phosphorylation of the 210,000- and 115,000-dalton proteins. At pH 7.0, only the 210,000- and 160,000-dalton proteins are phosphorylated. While these three phosphorylated intermediates have not been unambiguously identified as components of the Mg2+-ATPase, the finding of such phosphorylated components in association with that activity implies that this enzyme differs in mechanism from the mitochondrial proton pump and that it is similar in mechanism to the metal ion pumps ((Na+-K+)-ATPase and Ca2+-ATPase) of the mammalian plasma membrane.  相似文献   

7.
Media prepared with CDTA and low concentrations of Ca2+, as judged by the lack of Na+-dependent phosphorylation and ATPase activity of (Na+ +K+)-ATPase preparations are free of contaminant Mg2+. In these media, the Ca2+-ATPase from human red cell membranes is phosphorylated by ATP, and a low Ca2+-ATPase activity is present. In the absence of Mg2+ the rate of phosphorylation in the presence of 1 microM Ca2+ is very low but it approaches the rate measured in Mg2+-containing media if the concentration of Ca2+ is increased to 5 mM. The KCa for phosphorylation is 2 microM in the presence and 60 microM in the absence of Mg2+. Results are consistent with the idea that for catalysis of phosphorylation the Ca2+-ATPase needs Ca2+ at the transport site and Mg2+ at an activating site and that Ca2+ replaces Mg2+ at this site. Under conditions in which it increases the rate of phosphorylation, Ca2+ is without effect on the Ca2+-ATPase activity in the absence of Mg2+ suggesting that to stimulate ATP hydrolysis Mg2+ accelerates a reaction other than phosphorylation. Activation of the E1P----E2P reaction by Mg2+ is prevented by Ca2+ after but not before the synthesis of E1P from E1 and ATP, suggesting that Mg2+ stabilizes E1 in a state from which Mg2+ cannot be removed by Ca2+ and that Ca2+ stabilizes E1P in a state insensitive to Mg2+. The response of the Ca2+-ATPase activity to Mg2+ concentration is biphasic, activation with a KMg = 88 microM is followed by inhibition with a Ki = 9.2 mM. Ca2+ at concentration up to 1 mM acts as a dead-end inhibitor of the activation by Mg2+, and Mg2+ at concentrations up to 0.5 mM acts as a dead-end inhibitor of the effects of Ca2+ at the transport site of the Ca2+-ATPase.  相似文献   

8.
To determine the biochemical events of Na+ transport, we studied the interactions of Na+, Tris+, and K+ with the phosphorylated intermediates of Na,K-ATPase from ox brain. The enzyme was phosphorylated by incubation at 0 degrees C with 1 mM Mg2+, 25 microM [32P]ATP, and 20-600 mM Na+ with or without Tris+, and the dephosphorylation kinetics of [32P]EP were studied after addition of (1) 1 mM ATP, (2) 2.5 mM ADP, (3) 1 mM ATP plus 20 mM K+, and (4) 2.5 mM ADP plus Na+ up to 600 mM. In dephosphorylation types 2-4, the curves were bi- or multiphasic. "ADP-sensitive EP" and "K+-sensitive EP" were determined by extrapolation of the slow phase of the curves to the ordinate and their sum was always larger than Etotal. These results required a minimal model consisting of three consecutive EP pools, A, B, and C, where A was ADP sensitive and both B and C were K+ sensitive. At high [Na+], B was converted rapidly to A (type 4 experiment). The seven rate coefficients were dependent on [Na+], [Tris+], and [K+], and to explain this we developed a comprehensive model for cation interaction with EP. The model has the following features: A, B, and C are equilibrium mixtures of EP forms; EP in A has two to three Na ions bound at high-affinity (internal) sites, pool B has three, and pool C has two to three low-affinity (external) sites. The putative high-affinity outside Na+ site may be on E2P in pool C. The A leads to B conversion is blocked by K+ (and Tris+). We conclude that pool A can be an intermediate only in the Na-ATPase reaction and not in the normal operation of the Na,K pump.  相似文献   

9.
Reaction of the purified Ca2+-ATPase of sarcoplasmic reticulum at 0 degrees C at low [gamma-32P]ATP (0.1 to 0.67 microM) and enzyme (0.025 to 0.24 microM) concentration in the presence of 0.11 to 30 mM Ca2+ without added Mg2+ has resulted in the formation of phosphorylated intermediate (EP:maximal level of EP = 0.45 mol/mol of enzyme) at a very slow rate. Under these conditions, the reaction steps in which EP decomposition takes place are completely prevented. This has permitted us to study the EP formation reaction and its reversal specifically, with a considerably improved time resolution. An apparent rate constant of EP formation (Vf) increases in parallel with the concentration of Ca . ATP, but not with those of Mg . ATP, or of protonated or fully ionized free ATP. This suggests that Ca . ATP is the substrate under these conditions. If Co2+ or Mn2+ are in excess over the other ions during the reaction, Vf varies in parallel with [Co . ATP] or [Mn . ATP]. Thus, it appears that either Ca2+, Co2+, or Mn2+ can be complexed with ATP to form the effective substrate. An apparent rate constant of the back reaction of EP initiated by addition of ADP to EP (Vr) increases in proportion to [ADP] or [H . ADP], but is inhibited by increasing concentrations of the ADP complex with Ca2+ or Mg2+, indicating that free ADP or protonated ADP, or both, are actual substrates for the back reaction of EP. These results suggest a new type of site to which the metal moiety of metal . ATP complex remains bound after the release of ADP from the enzyme. An acid-stable phosphorylated intermediate (EP) produced in the presence of high Ca2+ concentrations (e.g. 0.11 mM) without added Mg2+ does not decompose spontaneously, and the major portion (approximately 90%) of this EP (EPD+) reacts with ADP to form ATP (ADP-sensitive). Upon chelating Ca2+ with ethylene glycol bis(beta-amino-ethyl ether)N,N,N',N'-tetraacetic acid (EGTA), EPD+ is converted to another form of EP (EPD-), which is unreactive with ADP (or ADP-insensitive). Addition of Mg2+, after initiation of the reaction leading to EPD- by EGTA, results in rapid production of Pi from a portion of EPD- with KMg approximately equal to 3.3 x 10(3) M-1. The fraction of EPD- that is Mg2+-sensitive (EPD-,M+) increases with reaction time at a much slower rate than the Mg2+-insensitive portion of EPD- (EPD-,M-). These results suggest that the enzyme reaction involves the sequential formation of at least three forms of acid-stable EP, viz. in the order of formation, EPD+, EPD-,M-, and EPD-,M+. The equilibrium between EPD+ and EPD-,M- is shifted by higher [K+] and [Ca2+] towards EPD+.  相似文献   

10.
Since Na+,K+-ATPase (EC 3.6.1.3) of pig kidney modified with a fluorescent sulfhydryl reagent, N-[p-(2-benzimidazolyl) phenyl]maleimide, at Cys-964 of the alpha-chain showed ATP-dependent, reversible, and dynamic fluorescence changes (Nagai, M., Taniguchi, K., Kangawa, K., Matsuo, S., Nakamura, S., and Iida, S. (1986) J. Biol. Chem. 261, 13197-13202), we studied the conformational change during Na+,K+-ATPase reaction using the modified enzyme. The addition of K+ to the enzyme increased the fluorescence intensity to 2% in the presence of 160 mM Na+ and 3 mM Mg2+ (K0.5 = 16.4 mM). Addition of low concentrations of ATP immediately increased the intensity to 3.2% (K0.5 less than 0.1 microM) to accumulate fully K+-bound enzyme in the presence of 43 mM K+ with Na+ and Mg2+, but further addition of higher concentrations of ATP diminished the increase (K0.5 = 120 microM). After exhaustion of ATP, the fluorescence intensity decreased to -0.4% (K0.5 = 0.3 microM) and -2% (K0.5 = 20 microM), respectively, in the presence of low and high concentrations of ADP produced from ATP. High concentrations of ATP accelerated Na+,K+-ATPase activity with a simultaneous increase in the amount of ADP-sensitive phosphoenzyme irrespective of the modification. Adenylyl imidodiphosphate and ADP accelerated Na+,K+-ATPase activity in the presence of 2.7 microM ATP by decreasing the extent of the fluorescence without affecting the amount of phosphoenzyme, irrespective of the modification. These data suggest that Na+,K+-ATPase activity was accelerated due to the acceleration of the breakdown of K+-bound enzyme by high concentrations of ATP and ATP analogues.  相似文献   

11.
Purified Na+, K(+)-ATPase was phosphorylated by [gamma-32P]ATP in a medium containing dimethylsulfoxide and 5 mM Mg2+ in the absence of Na+ and K+. Addition of K+ increased the phosphorylation levels from 0.4 nmol phosphoenzyme/mg of protein in the absence of K+ to 1.0 nmol phosphoenzyme/mg of protein in the presence of 0.5 mM K+. Higher velocities of enzyme phosphorylation were observed in the presence of 0.5 mM K+. Increasing K+ concentrations up to 100 mM lead to a progressive decrease in the phosphoenzyme (EP) levels. Control experiments, that were performed to determine the contribution to EP formation from the Pi inevitably present in the assays, showed that this contribution was of minor importance except at high (20-100 mM) KCl concentrations. The pattern of EP formation and its KCl dependence is thus characteristic for the phosphorylation of the enzyme by ATP. In the absence of Na+ and with 0.5 mM K+, optimal levels (1.0 nmol EP/mg of protein) were observed at 20-40% dimethylsulfoxide and pH 6.0 to 7.5. Addition of Na+ up to 5 mM has no effect on the phosphoenzyme level under these conditions. At 100 mM Na+ or higher the full capacity of enzyme phosphorylation (2.2 nmol EP/mg of protein) was reached. Phosphoenzyme formed from ATP in the absence of Na+ is an acylphosphate-type compound as shown by its hydroxylamine sensitivity. The phosphate radioactivity was incorporated into the alpha-subunit of the Na+, K(+)-ATPase as demonstrated by acid polyacrylamide gel electrophoresis followed by autoradiography.  相似文献   

12.
(1) The kinetics of the phosphorylated enzymic intermediates of (Na+ + K+)-ATPase from ox brain, which are formed by incubation of the enzyme with 25 microM AT32P, 150 mM Na+ and 1 mM Mg2+, have been studied in dephosphorylation experiments at 1 degree C. The dephosphorylation of the 32P-labelled enzyme was initiated by addition of either 1 mM unlabelled ATP, 2.5 mM ADP or 1 mM unlabelled ATP + ADP in concentrations from 25 to 1000 microM. (2) In the absence of ADP the dephosphorylation curve was linear in a semilogarithmic plot almost from t = 0, whereas by addition of ADP a biphasic behaviour was obtained. The slope of the slow phase of dephosphorylation was virtually independent of the ADP concentration. (3) The results were analysed by the mathematical equation corresponding to the simplest possible model for the interconversion and breakdown of the phosphointermediates: (formula: see text) where alpha, beta, H and G are functions of all the rate constants and H and G furthermore are functions of the initial values for [E1P] and [E2P]. (4) The analysis confirmed the model and enabled the determination of all the rate constants. (5) k-1 was found to be equal to k'-1 + k"-1 . [ADP] indicating an ADP-independent 'spontaneous' dephosphorylation of E1P. The rate constant for this process was close to that for dephosphorylation of E2P, i.e., k'-1 congruent to k3. Also the value of k"-1 was determined. (6) k3 was found to be at least 10 . k-2. The implication of this for the role of the E1P to E2P transition in the Na+ + K+)-stimulated ATP hydrolysis will be discussed in detail in the following paper (Plesner, I.W., Plesner, L., N?rby, J.G. and Klodos, I. (1981) Biochim. Biophys. Acta 643, 483--494). (7) A refinement of the model, accounting for the effect of Na+ on the steady-state ratio between [E1P] and [E2P] is proposed: (formula: see text). At [Na+] = 150 mM as used here, E1P(Na) and E'1P are assumed to be in rapid equilibrium. (8) Comparison of our results with those of others underlines the general validity of the conclusions of the present paper.  相似文献   

13.
H I Stefanova  J M East  M G Gore  A G Lee 《Biochemistry》1992,31(26):6023-6031
The (Ca(2+)-Mg2+)-ATPase of sarcoplasmic reticulum was labeled with 4-(bromomethyl)-6,7-dimethoxycoumarin. It was shown that a single cysteine residue (Cys-344) was labeled on the ATPase, with a 25% reduction in steady-state ATPase activity and no reduction in the steady-state rate of hydrolysis of p-nitrophenyl phosphate. The fluorescence intensity of the labeled ATPase was sensitive to pH, consistent with an effect of protonation of a residue of pK 6.8. Fluorescence changes were observed on binding Mg2+, consistent with binding to a single site of Kd 4 mM. Comparable changes in fluorescence intensity were observed on binding ADP in the presence of Ca2+. Binding of AMP-PCP produced larger fluorescence changes, comparable to those observed on phosphorylation with ATP or acetyl phosphate. Phosphorylation with P(i) also resulted in fluorescence changes; the effect of pH on the fluorescence changes was greater than that on the level of phosphorylation measured directly using [32P]P(i). It is suggested that different conformational states of the phosphorylated ATPase are obtained at steady state in the presence of Ca2+ and ATP and at equilibrium in the presence of P(i) and absence of Ca2+.  相似文献   

14.
The Kd for ouabain-sensitive K+ or Rb+ binding to Na+,K(+)-ATPase was determined by the centrifugation method with radioactive K+ and Rb+ in the presence of various combinations of Na+, ATP, adenylylimidodiphosphate (AMPPNP), adenylyl-(beta,gamma-methylene)diphosphonate (AMPPCP), Pi, and Mg2+. From the results of the K+ binding experiments, Kd for Na+ was estimated by using an equation describing the competitive inhibition between the K+ and Na+ binding. 1) The Kd for K+ binding was 1.9 microM when no ligand was present. Addition of 2 mM Mg2+ increased the Kd to 15-17 microM. In the presence of 2 mM Mg2+, addition of 3 mM AMPPCP with or without 3 mM Na+ increased the Kd to 1,000 or 26 microM, respectively. These Kds correspond to those for K+ of Na.E1.AMPPCPMg or E1.AMPPCPMg, respectively. 2) Addition of 4 mM ATP with or without 3 mM Na+ decreased the Kd from 15-17 microM to 5 or 0.8 microM, respectively. Because the phosphorylated intermediate was observed but ATPase activity was scarcely observed in the K+ binding medium containing 3 mM ATP and 2 mM Mg2+ in the absence of Na+ as well as in the presence of Na+ at 0 degrees C, it is suggested that K+ binds to E2-P.Mg under these ligand conditions. 3) The Kd for Na+ of the enzyme in the presence of 3 mM AMPPCP or 4 mM ATP with Mg2+ was estimated to be 80 or 570 microM, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
During ATP hydrolysis the K+-translocating Kdp-ATPase from Escherichia coli forms a phosphorylated intermediate as part of the catalytic cycle. The influence of effectors (K+, Na+, Mg2+, ATP, ADP) and inhibitors (vanadate, N-ethylmaleimide, bafilomycin A1) on the phosphointermediate level and on the ATPase activity was analyzed in purified wild-type enzyme (apparent Km = 10 microM) and a KdpA mutant ATPase exhibiting a lower affinity for K+ (Km = 6 mM). Based on these data we propose a minimum reaction scheme consisting of (i) a Mg2+-dependent protein kinase, (ii) a Mg2+-dependent and K+-stimulated phosphoprotein phosphatase, and (iii) a K+-independent basal phosphoprotein phosphatase. The findings of a K+-uncoupled basal activity, inhibition by high K+ concentrations, lower ATP saturation values for the phosphorylation than for the overall ATPase reaction, and presumed reversibility of the phosphoprotein formation by excess ADP indicated similarities in fundamental principles of the reaction cycle between the Kdp-ATPase and eukaryotic E1E2-ATPases. The phosphoprotein was tentatively characterized as an acylphosphate on the basis of its alkali-lability and its sensitivity to hydroxylamine. The KdpB polypeptide was identified as the phosphorylated subunit after electrophoretic separation at pH 2.4, 4 degrees C of cytoplasmic membranes or of purified ATPase labeled with [gamma-32P]ATP.  相似文献   

16.
Abe K  Kaya S  Imagawa T  Taniguchi K 《Biochemistry》2002,41(7):2438-2445
The maximum amount of acid-stable phosphoenzyme (E32P)/mol of alpha chain of pig gastric H/K-ATPase from [gamma-32P]ATP (K(1/2) = 0.5 microM) was found to be approximately 0.5, which was half of that formed from 32P(i) (K(1/2) = 0.22 mM). The maximum 32P binding for the enzyme during turnover in the presence of [gamma-32P]ATP or [alpha-32P]ATP was due to 0.5 mol of E32P + 0.5 mol of an acid-labile enzyme-bound [gamma-32P]ATP (EATP) or 0.5 mol of an acid-labile enzyme-bound [alpha-32P]ATP, respectively. The K(1/2) for EATP formation in both cases was 0.12 approximately 0.14 mM. The turnover number of the enzyme (i.e., the H+-ATPase activity/(EP + EATP)) was very close to the apparent rate constants for EP breakdown and P(i) liberation, both of which decreased with increasing concentrations of ATP. The ratio of the amount of P(i) liberated to that of EP that disappeared increased from 1 to approximately 2 with increasing concentrations of ATP (i.e., equal amounts of EP and EATP exist, both of which release phosphate in the presence of high concentrations of ATP). This represents the first direct evidence, for the case of a P-type ATPase, in which 2 mol of P(i) liberation occurs simultaneously from 1 mol of EP for half of the enzyme molecules and 1 mol of EATP for the other half during ATP hydrolysis. Each catalytic alpha chain is involved in cross-talk, thus maintaining half-site phosphorylation and half-site ATP binding which are induced by high- and low-affinity ATP binding, respectively, in the presence of Mg2+.  相似文献   

17.
The hydrolysis of ATP catalyzed by purified (Na,K)-ATPase from pig kidney was more sensitive to Mg2+ inhibition when measured in the presence of saturating Na+ and K+ concentrations [(Na,K)-ATPase] than in the presence of Na+ alone, either at saturating [(Na,Na)-ATPase] or limiting [(Na,0)-ATPase] Na+ concentrations. This was observed at two extreme concentrations of ATP (3 mM where the low-affinity site is involved and 3 microM where only the catalytic site is relevant), although Mg2+ inhibition was higher at low ATP concentration. In the case of (Na,Na)-ATPase activity, inhibition was barely observed even at 10 mM free Mg2+ when ATP was 3 mM. When (Na,K)-ATPase activity was measured at different fixed K+ concentrations the apparent Ki for Mg2+ inhibition was lower at higher monovalent cation concentration. When K+ was replaced by its congeners (Rb+, NH+4, Li+), Mg2+ inhibition was more pronounced in those cases in which the dephosphorylating cation forms a tighter enzyme-cation complex after dephosphorylation. This effect was independent of the ATP concentration, although inhibition was more marked at lower ATP for all the dephosphorylating cations. The K0.5 for ATP activation at its low-affinity site, when measured in the presence of different dephosphorylating cations, increased following the sequence Rb+ greater than K+ greater than NH+4 greater than Li+ greater than none. The K0.5 values were lower with 0.05 mM than with 10 mM free Mg2+ but the order was not modified. The trypsin inactivation pattern of (Na,K)-ATPase indicated that Mg2+ kept the enzyme in an E1 state. Addition of K+ changed the inactivation into that observed with the E2 enzyme form. On the other hand, K+ kept the enzyme in an E2 state and addition of Mg2+ changed it to an E1 form. The K0.5 for KCl-induced E1-to-E2 transformation (observed by trypsin inactivation profile) in the presence of 3 mM MgCl2 was about 0.9 mM. These results concur with two mechanisms for free Mg2+ inhibition of (Na,K)-ATPase: "product" and dead-end. The first would result from Mg2+ interaction with the enzyme in the E2(K) occluded state whereas the second would be brought about by a Mg2+-enzyme complex with the enzyme in an E1 state.  相似文献   

18.
Sarcoplasmic reticulum (SR) membranes from rabbit skeletal muscle were solubilized with a high concentration of dodecyl octaethyleneglycol monoether (C12E8) and the kinetic properties of the Ca2+,Mg2+-dependent ATPase [EC 3.6.1.3] were studied. The following results were obtained: 1. SR ATPase solubilized in C12E8 retains high ability to form phosphoenzyme ([EP] = 4--5 mol/10(6) g protein) for at least two days in the presence of 5 mM Ca2+, 0.5 M KCl, and 20% glycerol at pH 7.55. 2. The ATPase activity was dependent on both Mg2+ and Ca2+. However, the rate of E32P decay after the addition of unlabeled ATP was independent of Mg2+. 3. Most of the EP formed in the absence of Mg2+ was capable of reacting with ADP to form ATP in the backward reaction. However, in the presence of 5 mM Mg2+, the amount of ATP formed was markedly reduced without loss of the reactivity of the EP with ADP. 4. The removal of C12E8 from the ATPase by the use of Bio-Beads resulted in the full restoration of the Mg2+ dependency of the EP decomposition. 5. These results strongly suggest that in the case of SR solubilized with a high concentration of C12E8 the decomposition of phosphoenzyme is Mg2+ independent and ATP is mainly hydrolyzed through Mg2+-dependent decomposition of an enzyme-ATP complex, which is in equilibrium with phosphoenzyme and ADP.  相似文献   

19.
LaATP is shown to be an effective inhibitor of the calcium ATPase of sarcoplasmic reticulum because the binding of LaATP to cE.Ca2 results in the formation of lanthanum phosphoenzyme, which decays slowly. Steady-state activity of the calcium ATPase in leaky sarcoplasmic reticulum vesicles is inhibited 50% by 0.16 microM LaCl3 (15 nM free La3+, 21 nM LaATP) in the presence of 25 microM Ca2+ and 49 microM MgATP (5 mM MgSO4, 100 mM KCl, 40 mM 4-morpholinepropanesulfonic acid, pH 7.0, 25 degrees C). However, 50% inhibition of the uptake of 45Ca and phosphorylation by [gamma-32P]ATP in a single turnover experiment requires 100 microM LaCl3 (28 microM free La3+) in the presence of 25 microM Ca2+; this inhibition is reversed by calcium but inhibition of steady-state turnover is not. Therefore, binding of La3+ to the cytoplasmic calcium transport site is not responsible for the inhibition of steady-state ATPase activity. The addition of 6.7 microM LaCl3 (1.1 microM free La3+) has no effect on the rate of dephosphorylation of phosphoenzyme formed from MgATP and enzyme in leaky vesicles, while 6.7 mM CaCl2 slows the rate of phosphoenzyme hydrolysis as expected; 6.7 microM LaCl3 and 6.7 mM CaCl2 cause 95 and 98% inhibition of steady-state ATPase activity, respectively. This shows that inhibition of ATPase activity in the steady state is not caused by binding of La3+ to the intravesicular calcium transport site of the phosphoenzyme. Inhibition of ATPase activity by 2 microM LaCl3 (0.16 microM free La3+, 0.31 microM LaATP) requires greater than 5 s, which corresponds to approximately 50 turnovers, to reach a steady-state level of greater than or equal to 80% inhibition. Inhibition by La3+ is fully reversed by the addition of 0.55 mM CaCl2 and 0.50 mM EGTA; this reactivation is slow with t1/2 approximately 9 s. Two forms of phosphoenzyme are present in reactions that are partially inhibited by La3+: phosphoenzyme with Mg2+ at the catalytic site and phosphoenzyme with La3+ at the catalytic site, which undergo hydrolysis with observed rate constants of greater than 4 and 0.05 s-1, respectively. We conclude, therefore, that La3+ inhibits steady-state ATPase activity under these conditions by replacing Mg2+ as the catalytic ion for phosphoryl transfer. The slow development of inhibition corresponds to the accumulation of lanthanum phosphoenzyme. Initially, most of the enzyme catalyzes MgATP hydrolysis, but the fraction of enzyme with La3+ bound to the catalytic site gradually increases because lanthanum phosphoenzyme undergoes hydrolysis much more slowly than does magnesium phosphoenzyme.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
A M Hanel  W P Jencks 《Biochemistry》1990,29(21):5210-5220
The calcium-transport ATPase (CaATPase) of rabbit sarcoplasmic reticulum preincubated with 0.02 mM Ca2+ (cE.Ca2) is phosphorylated upon the addition of 0.25 mM LaCl3 and 0.3 mM [gamma-32P]ATP with an observed rate constant of 6.5 s-1 (40 mM MOPS, pH 7.0, 100 mM KCl, 25 degrees C). La.ATP binds to cE.Ca2 with a rate constant of 5 X 10(6) M-1 s-1, while ATP, Ca2+, and La3+ dissociate from cE.Ca2.La.ATP at less than or equal to 1 s-1. The reaction of ADP with phosphoenzyme (EP) formed from La.ATP is biphasic. An initial rapid loss of EP is followed by a slower first-order disappearance, which proceeds to an equilibrium mixture of EP.ADP and nonphosphorylated enzyme with bound ATP. The fraction of EP that reacts in the burst (alpha) and the first-order rate constant for the slow phase (kb) increase proportionally with increasing concentrations of ADP to give maximum values of 0.34 and 65 s-1, respectively, at saturating ADP (KADPS = 0.22 mM). The burst represents rapid phosphoryl transfer and demonstrates that ATP synthesis and hydrolysis on the enzyme are fast. The phosphorylation of cE.Ca2 by La.ATP at 6.5 s-1 and the kinetics for the reaction of EP with ADP are consistent with a rate-limiting conformational change in both directions. The conformational change converts cE.Ca2.La.ATP to the form of the enzyme that is activated for phosphoryl transfer, aE.Ca2.La.ATP, at 6.5 s-1; this is much slower than the analogous conformational change at 220 s-1 with Mg2+ as the catalytic ion [Petithory & Jencks (1986) Biochemistry 25, 4493]. The rate constant for the conversion of aE.Ca2.La.ATP to cE.Ca2.La.ATP is 170 s-1. ATP does not dissociate measurably from aE.Ca2.La.ATP. Labeled EP formed from cE.Ca2 and La.ATP with leaky vesicles undergoes hydrolysis at 0.06 s-1. It is concluded that the reaction mechanism of the CaATPase is remarkably similar with Mg.ATP and La.ATP; however, the strong binding of La.ATP slows both the conformational change that is rate limiting for EP formation and the dissociation of La.ATP. An interaction between La3+ at the catalytic site and the calcium transport sites decreases the rate of calcium dissociation by greater than 60-fold. When cE-Ca2 is mixed with 0.3 mM ATP and 1.0 mM Cacl2, the phosphoenzyme is formed with an observed rate constant of 3 s-1. The phosphoenzyme formed from Ca.ATP reacts with 2.0 mM ADP and labeled ATP with a rate constant of 30 s-1; there may be a small burst (alpha less than or equal to 0.05).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号