首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mutation analysis of the Fanconi anemia gene FACC.   总被引:7,自引:2,他引:7       下载免费PDF全文
Fanconi anemia (FA) is a genetically heterogeneous autosomal recessive disorder characterized by a unique hypersensitivity of cells to DNA cross-linking agents; a gene for complementation group C (FACC) has recently been cloned. We have amplified FACC exons with their flanking intron sequences from genomic DNA from 174 racially and ethnically diverse families in the International Fanconi Anemia Registry and have screened for mutations by using SSCP analysis. We identified eight different variants in 32 families; three were detected in exon 1, one in exon 4, one in intron 4, two in exon 6, and one in exon 14. Two of the eight variants, in seven families, did not segregate with the disease allele in multiplex families, suggesting that these variants represented benign polymorphisms. Disease-associated mutations in FACC were detected in a total of 25 (14.4%) of 174 families screened. The most frequent mutations were IVS4 + 4 A-->T (intron 4; 12 families) and 322delG (exon 1; 9 families). Other, less common mutations include Q13X in exon 1, R185X and D195V in exon 6, and L554P in exon 14. The polymorphisms were S26F in exon 1 and G139E in exon 4. All patients in our study with 322delG, Q13X, R185X, and D195V are of northern or eastern European or southern Italian ancestry, and 18 of 19 have a mild form of the disease, while the 2 patients with L554P, both from the same family, have a severe phenotype. All 19 patients with IVS4 + 4 A-->T have Jewish ancestry and have a severe phenotype.  相似文献   

2.
As a first step to the cloning of the Fanconi anemia (FA) gene, we have attempted to correct the sensitivity of FA cells to DNA crosslinking agents by the introduction of wild-type DNA. The protocol involved the introduction of both genomic and pRSVneo DNA, selection for G418-resistant colonies and the subsequent selection of mitomycin C-resistant cells from the latter. Preliminary experiments indicated that untransformed FA cells were not suitable recipients for the introduction of foreign DNA, so all experiments were performed with an SV40-transformed FA cell line. Approximately 40,000 G418-resistant colonies were obtained in 5 separate experiments at an overall frequency of about 5 X 10(-4). These were then selected in mitomycin C and 15 colonies were recovered. Colonies were obtained with wild-type DNA (both human and rodent) and with FA DNA at about the same frequency of 2 X 10(-7). Colonies were isolated and shown to have a stable, partial (from 25 to 90% of wild-type) resistance to mitomycin C. One colony was also shown to be partially resistant to two other DNA crosslinking agents, diepoxybutane and nitrogen mustard. This clone also had an intermediate level of spontaneous and MMC-induced chromosome aberrations. pRSVneo, but not rodent, DNA could be demonstrated in the high molecular weight fraction of several colonies. Thus, it is likely that these colonies represent partial revertants rather than transfectants. These mitomycin C-resistant FA cells should be useful for the biochemical analysis of the FA mutation.  相似文献   

3.
Fanconi anemia is a chromosomal breakage disorder with eight complementation groups (A-H), and three genes (FANCA, FANCC, and FANCG) have been identified. Initial investigations of the interaction between FANCA and FANCC, principally by co-immunoprecipitation, have proved controversial. We used the yeast two-hybrid assay to test for interactions of the FANCA, FANCC, and FANCG proteins. No activation of the reporter gene was observed in yeast co-expressing FANCA and FANCC as hybrid proteins, suggesting that FANCA does not directly interact with FANCC. However, a high level of activation was found when FANCA was co-expressed with FANCG, indicating strong, direct interaction between these proteins. Both FANCA and FANCG show weak but consistent interaction with themselves, suggesting that their function may involve dimerisation. The site of interaction of FANCG with FANCA was investigated by analysis of 12 mutant fragments of FANCG. Although both N- and C-terminal fragments did interact, binding to FANCA was drastically reduced, suggesting that more than one region of the FANCG protein is required for proper interaction with FANCA.  相似文献   

4.
5.
A Bayesian solution for making inferences about segregation parameters with no information about the ascertainment is presented. Inferences about the segregation probability and the probability of being sporadic are made through the posterior marginal distribution of these parameters after integrating out the ascertainment probability, the nuisance parameter. The method was tested with real and simulated data and performed well. Original Fanconi anemia data, for which no information about the ascertainment was available, were then analyzed, with results that confirmed a monogenic autosomal recessive mode of inheritance.  相似文献   

6.
The effectiveness of retrovirus or lentivirus transduction of embryonic stem (ES) cells is often limited because transgene expression is silenced or variegated. We wondered if other steps of transduction, in addition to gene expression, were restricted in ES cells. We quantitatively compared (1) the amount of virus binding, (2) the number of integrated transgenes, and (3) the resulting level of gene expression. We found that three- to fourfold fewer retroviruses and lentiviruses bound to R1 mES cells than to NIH 3T3 cells, suggesting that both types of viruses bind less efficiently to mES cells. Retroviruses and lentiviruses differed in the efficiency with which they completed post-binding steps of transduction. In R1 mES cells, we detected 3-fold fewer integrated retrovirus transgenes and 11-fold lower expression levels than in NIH 3T3 cells, which suggests that the primary limitation to retrovirus transduction may be low levels of transgene expression. In contrast, we detected 10-fold fewer integrated lentivirus transgenes and 8-fold lower expression levels in R1 mES cells than in NIH 3T3 cells, which suggests that lentivirus transduction may be limited by inefficient intracellular post-binding steps of transduction. The implications of our findings for developing improved viral vectors for transducing mES cells are discussed.  相似文献   

7.
Introduction: Patients with Fanconi anemia (Fanc) are at risk of developing leukemia. Mutations of the group A gene (FancA) are most common. A multitude of polymorphisms and mutations within the 43 exons of the gene are described. To examine the role of heterozygosity as a risk factor for malignancies, a partially automatized screening method to identify aberrations was needed. We report on our experience with DHPLC (WAVE (Transgenomic)). Methods: PCR amplification of all 43 exons from one individual was performed on one microtiter plate on a gradient thermocycler. DHPLC analysis conditions were established via melting curves, prediction software, and test runs with aberrant samples. PCR products were analyzed twice: native, and after adding a WT-PCR product. Retention patterns were compared with previously identified polymorphic PCR products or mutants. Results and discussion: We have defined the mutation screening conditions for all 43 exons of FancA using DHPLC. So far, 40 different sequence variations have been detected in more than 100 individuals. The native analysis identifies heterozygous individuals, and the second run detects homozygous aberrations. Retention patterns are specific for the underlying sequence aberration, thus reducing sequencing demand and costs. DHPLC is a valuable tool for reproducible recognition of known sequence aberrations and screening for unknown mutations in the highly polymorphic FancA gene.  相似文献   

8.
Improved retroviral vectors for gene transfer and expression   总被引:320,自引:0,他引:320  
A D Miller  G J Rosman 《BioTechniques》1989,7(9):980-2, 984-6, 989-90
We describe a set of murine retrovirus-based vectors that include unique cloning sites for insertion of cDNAs such that the cDNA can be driven by either the retroviral long terminal repeat, the immediate early promoter of human cytomegalovirus, or the simian virus 40 early promoter. The vectors carry the neomycin phosphotransferase gene expressed from an alternate promoter as a selectable marker. These vectors have been constructed to prevent viral protein synthesis from the remaining viral sequences, to yield high-titer virus stocks after introduction into retrovirus packaging cells, and to eliminate homologous overlap with viral DNAs present in retrovirus packaging cells in order to prevent helper virus production. Methods for generating high-titer virus are described.  相似文献   

9.
Fanconi anemia (FA) is a recessive cancer prone syndrome featuring bone marrow failure and hypersensitivity to DNA crosslinks. Nine FA genes have been isolated so far. The biochemical function(s) of the FA proteins remain(s) poorly determined. However, a large consensus exists on the evidence that, to cope with DNA cross-links, a cell needs a functional FA pathway. In this review, we resume current understanding of how the FA pathway works in response to DNA damage and how it is integrated in a complex network of proteins involved in the maintenance of the genetic stability.  相似文献   

10.
The rat interleukin-5 (IL-5) gene was isolated from a genomic lambda phage library and a fragment containing all four exons was inserted into the retroviral vector pXT1, resulting in pXTRIL5. Upon retroviral gene transfer into two IL-5-dependent mouse cell lines, B13 and T88M, autonomously growing cells were established and B-cell growth factor activity was detected in the supernatants of the infected cells. "cDNA" versions of the rat IL-5 gene were rescued by the polymerase chain reaction (PCR) with primers specific for the flanking regions of the cloning site in pXT1. Restriction or DNA sequence analysis of five different clones revealed precise splicing in two cases, while three of the clones had retained the first intron. In addition, in two of these about 400 bp of rat IL-5 5' flanking regions were deleted. The sequence comparison of rat, mouse, and human IL-5 genes revealed a high degree of conservation (e.g., mouse and rat were 92% homologous at the amino acid level). The combination of retroviral gene transfer and PCR may offer an alternative, efficient method for the cloning of cDNAs.  相似文献   

11.
O W McBride  R S Athwal 《In vitro》1976,12(11):777-786
A general method is presented for stable transfer of genetic information to eukaryotic cells, utilizing metaphase chromosomes as the vehicle. Recent progress, current problems and large areas of uncertainty in this field are reviewed; particular consideration is given to frequency of transfer, size of the transgenome, evidence of cotransfer of linked genes and serial chromosome transfer. A reasonable model for chromosome transfer is considered with respect to the available information, and various descrepancies are noted. The utility of this method for fine structural mapping, cloning small regions of the eukaryotic genome and other potential applications are discussed.  相似文献   

12.
Fanconi anemia (FA) is an autosomal recessive disorder characterized by bone marrow failure, cancer susceptibility, and a variety of developmental defects. The disease is clinically heterogeneous; eight different complementation groups (FA A–H) and, thus, genetic loci have been discovered. Two genes, FAA and FAC, have been cloned. Disease-associated mutations have been detected and rapid mutation screening makes possible the assignment of patients without resorting to time-consuming cell fusion and complementation analysis. Amplification of specific cDNAs from RNA followed by direct or indirect sequence analysis is a standard method for mutation detection. During the course of such examinations of the FAC gene, we have noted that frequently only one of the expressed alleles is successfully amplified. This can lead to false assignment of patients to a complementation group. As we report here, such cases can be rapidly clarified by retroviral gene transfer and complementation analysis. Received: 30 July 1997 / Accepted: 13 October 1997  相似文献   

13.
Fanconi anemia is a cancer-prone disease characterized by progressive loss of blood cells, skeletal defects and stunted growth. Studies of a nuclease acting on double-stranded DNA have revealed an enzyme alteration in cells derived from Fanconi patients. A particulate fraction isolated from cultured human lymphoblasts and fibroblasts was solubilized with detergent and subjected to isoelectric focusing. Nuclease activity observed in four normal cell lines bands in a pH gradient with a pI of 6.3. Four cell lines belonging to complementation group A exhibit an increase in the pI of that nuclease to 6.8. These observations provide a new diagnostic for this disorder. Analysis of this enzyme in tetraploid cultures derived from fusion of normal and Fanconi cells suggest that the normal phenotype is dominant. That observation supports the hypothesis that the Fanconi A gene is required for modification of the nuclease pI. Definition of the molecular basis of this enzyme alteration should provide insight into the primary genetic lesion in this disorder.  相似文献   

14.
Positional cloning of a novel Fanconi anemia gene, FANCD2   总被引:31,自引:0,他引:31  
Fanconi anemia (FA) is a genetic disease with birth defects, bone marrow failure, and cancer susceptibility. To date, genes for five of the seven known complementation groups have been cloned. Complementation group D is heterogeneous, consisting of two distinct genes, FANCD1 and FANCD2. Here we report the positional cloning of FANCD2. The gene consists of 44 exons, encodes a novel 1451 amino acid nuclear protein, and has two protein isoforms. Similar to other FA proteins, the FANCD2 protein has no known functional domains, but unlike other known FA genes, FANCD2 is highly conserved in A. thaliana, C. elegans, and Drosophila. Retroviral transduction of the cloned FANCD2 cDNA into FA-D2 cells resulted in functional complementation of MMC sensitivity.  相似文献   

15.
16.
Garner E  Smogorzewska A 《FEBS letters》2011,585(18):2853-2860
The Fanconi anemia (FA) pathway maintains genome stability through co-ordination of DNA repair of interstrand crosslinks (ICLs). Disruption of the FA pathway yields hypersensitivity to interstrand crosslinking agents, bone marrow failure and cancer predisposition. Early steps in DNA damage dependent activation of the pathway are governed by monoubiquitylation of FANCD2 and FANCI by the intrinsic FA E3 ubiquitin ligase, FANCL. Downstream FA pathway components and associated factors such as FAN1 and SLX4 exhibit ubiquitin-binding motifs that are important for their DNA repair function, underscoring the importance of ubiquitylation in FA pathway mediated repair. Importantly, ubiquitylation provides the foundations for cross-talk between repair pathways, which in concert with the FA pathway, resolve interstrand crosslink damage and maintain genomic stability.  相似文献   

17.
Fanconi anemia and DNA replication repair   总被引:3,自引:0,他引:3  
Patel KJ  Joenje H 《DNA Repair》2007,6(7):885-890
There has been a recent profusion of reviews on Fanconi anemia (FA), which will give readers a comprehensive outline of the field R.D. Kennedy, A.D. D'Andrea, The Fanconi anemia/BRCA pathway: new faces in the crowd, Genes Dev. 19 (2005) 2925-2940; L.J. Niedernhofer, A.S. Lalai, J.H. Hoeijmakers, Fanconi anemia (cross)linked to DNA repair, Cell 123 (2005) 1191-1198; H. Joenje, K.J. Patel, The emerging genetic and molecular basis of Fanconi anaemia, Nat. Rev. Genet. 2 (2001) 446-457. Here, we will focus on key areas that place the FA proteins in the context of DNA repair during replication. In addition, where possible we will put forward propositions that in our opinion need addressing, and where possible provide models that can be tested.  相似文献   

18.
Cells from Fanconi anemia (FA) patients have defective DNA repair and are hypersensitive to DNA crosslinking agents such as mitomycin C (MMC). We examined the possibility that topoisomerase I is involved in the DNA crosslink repair system and is deficient in FA group A cells. FA cells and control cells were exposed to MMC with or without camptothecin (CPT), a topoisomerase I inhibitor. The cells did not show any increased sensitivity to killing by MMC with CPT, suggesting that the topoisomerase I is not involved in MMC-damaged DNA repair. However, FA cells showed increased sensitivity to CPT in comparison to control cells, raising the possibility of altered topoisomerase I in FA cells. Therefore, a mutation analysis was performed on topoisomerase I cDNA from FA cells by using chemical cleavage mismatch scanning and nucleotide sequencing. No mutation was detected from GM1309, a group A FA cell line. A base transition (C to T) at position 241, causing an amino acid change (His to Tyr), was found in GM2061, a FA cell line of unknown complementation group. However, allele-specific oligonucleotide hybridization analysis showed that this is a gene polymorphism. We conclude that FA cells have normal gene structure for topoisomerase I.  相似文献   

19.
20.
Fanconi anemia (FA) is a complex disease involving nine identified and two unidentified loci that define a network essential for maintaining genomic stability. To test the hypothesis that the FA network is conserved in vertebrate genomes, we cloned and sequenced zebrafish (Danio rerio) cDNAs and/or genomic BAC clones orthologous to all nine cloned FA genes (FANCA, FANCB, FANCC, FANCD1, FANCD2, FANCE, FANCF, FANCG, and FANCL), and identified orthologs in the genome database for the pufferfish Tetraodon nigroviridis. Genomic organization of exons and introns was nearly identical between zebrafish and human for all genes examined. Hydrophobicity plots revealed conservation of FA protein structure. Evolutionarily conserved regions identified functionally important domains, since many amino acid residues mutated in human disease alleles or shown to be critical in targeted mutagenesis studies are identical in zebrafish and human. Comparative genomic analysis demonstrated conserved syntenies for all FA genes. We conclude that the FA gene network has remained intact since the last common ancestor of zebrafish and human lineages. The application of powerful genetic, cellular, and embryological methodologies make zebrafish a useful model for discovering FA gene functions, identifying new genes in the network, and identifying therapeutic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号