首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A series of C3 cyclic side-chain analogues of classical cannabinoids were synthesized to probe the ligand binding pocket of the CB1 and CB2 receptors. The analogues were evaluated for CB1 and CB2 receptor binding affinities relative to delta(8)-THC. The C3 side-chain geometries of the analogues were studied using high field NMR spectroscopy and quantum mechanical calculations. The results of these studies provide insights into the geometry of the ligand binding pocket of the CB1 and CB2 receptors.  相似文献   

2.
Several chiral, analogues of the endogenous cannabinoid receptor ligand, arachidonylethanolamide (anandamide), methylated at the 2,1' and 2' positions using asymmetric synthesis were evaluated in order to study (a) stereoselectivity of binding to CB1 and CB2 cannabinoid receptors; and (b) metabolic stability with regard to anandamide amidase. Enantiomerically pure 2-methyl arachidonic acids were synthesized through diastereoselective methylation of the respective chiral 2-oxazolidinone enolate derivatives and CB1 and CB2 receptor affinities of the resulting chiral anandamides were evaluated using a standard receptor binding assay. Introduction of a single 2-methyl group increased affinity for CB1, led to limited enantioselectivity and only modestly improved metabolic stability. However, a high degree of enantio- and diastereoselectivity was observed for the 2,1'-dimethyl analogues. (R)-N-(1-methyl-2-hydroxyethyl)-2-(R)-methyl-arachidonamide (4) exhibited the highest CB1 receptor affinity in this series with a K(i) of 7.42 nM, an at least 10-fold improvement on anandamide (K(i)=78.2 nM). The introduction of two methyl groups at the 2-position of anandamide led to no change in affinity for CB1 but somewhat enhanced metabolic stability. Conversely, chiral headgroup methylation in the 2-gem-dimethyl series led to chiral analogues possessing a wide range of CB1 affinities. Of these the (S)-2,2,2'-trimethyl analogue (12) had the highest affinity for CB1 almost equal to that of anandamide. In agreement with our previous anandamide structure-activity relationship work, the analogues in this study showed high selectivity for the CB1 receptor over CB2. The results are evaluated in terms of stereochemical factors affecting the ligand's affinity for CB1 using receptor-essential volume mapping as an aid. Based on the results, a partial CB1 receptor site model is proposed, that bears two hydrophobic pockets capable of accommodating 1'- and 2-methyl groups  相似文献   

3.
A series of novel phenyl substituted side-chain analogues of classical cannabinoids were synthesized and their CB1 and CB2 binding affinities were evaluated relative to Delta(8)-THC and compound 2. CB1 and CB2 binding assays indicate that the dimethyl and ketone analogues (3) and (6) display selectivity for the CB2 receptor in comparison to delta(8)-THC and compound 2. This study provides newer insights into the geometrical and functional group requirements of the ligand binding pockets of the CB1 and the CB2 receptors.  相似文献   

4.
Two series of 1-alkyl-2-aryl-4-(1-naphthoyl)pyrroles were synthesized and their affinities for the cannabinoid CB(1) and CB(2) receptors were determined. In the 2-phenyl series (5) the N-alkyl group was varied from n-propyl to n-heptyl. A second series of 23 1-pentyl-2-aryl-4-(1-naphthoyl)-pyrroles (6) was also prepared. Several compounds in both series have CB(1) receptor affinities in the 6-30nM range. The high affinities of these pyrrole derivatives relative to JWH-030 (1, R=C(5)H(11)) support the hypothesis that these pyrroles interact with the CB(1) receptor primarily by aromatic stacking.  相似文献   

5.
Cannabinoid CB1 receptors have been the focus of extensive studies since the first clinical results of rimonabant (SR141716) for the treatment of obesity and related metabolic disorders were reported in 2001. To further evaluate the properties of CB receptors, we have designed a new series of tetrazole-biarylpyrazoles. The various analogues were efficiently prepared and bio-assayed for binding to cannabinoid CB1 receptor. Six of the new compounds which displayed high in vitro CB1 binding affinities were assayed for binding to CB2 receptor. Noticeably, cyclopentyl-tetrazole (9a) demonstrated good binding affinity and selectivity for CB1 receptor (IC(50)=11.6nM and CB2/CB1=366).  相似文献   

6.
The hypothesis of these studies is that ligand efficacy at the neuronal CB1 receptor is dependent on the ratio of ligand affinities for the active and inactive states of the receptor. Agonist efficacy was determined in rat cerebellar membranes using agonist-induced guanosine 5'-O-(3-[35S]thiotriphosphate) binding; efficacy was variable among the CB1 agonists examined. Ligand affinities for the active and inactive state of the CB1 receptor were determined by competition with [3H]CP55940 and [3H]SR141716A in the presence of 5'-guanylylimidodiphosphate, respectively. All of the agonists investigated had a higher affinity for the active state than the inactive state. The fraction of CB1 receptors in the active state at a maximally effective concentration was calculated for each agonist and was found to correlate significantly with agonist efficacy. These studies demonstrate that the CB1 receptor of the cerebellum can assume an active conformation in the absence of agonist and that the variability in efficacy among CB1 receptor agonists can be explained by the relative affinities of these ligands for the CB1 receptor in the active and inactive states.  相似文献   

7.
The cannabinoid-1 receptor (CB1R) inverse agonist SR141716A has proven useful for study of the endocannabinoid system, including development of divalent CB1R ligands possessing a second functional motif attached via a linker unit. These have predominantly employed the C3 position of the central pyrazole ring for linker attachment. Despite this precedent, a novel series of C3-linked CB1R-D2R divalent ligands exhibited extremely high affinity at the D2R, but only poor affinity for the CB1R. A systematic linker attachment point survey of the SR141716A pharmacophore was therefore undertaken, establishing the C5 position as the optimal site for linker conjugation. This linker attachment survey enabled the identification of a novel divalent ligand as a lead compound to inform ongoing development of high-affinity CB1R molecular probes.  相似文献   

8.
The synthesis and pharmacology of 15 1-deoxy-delta8-THC analogues, several of which have high affinity for the CB2 receptor, are described. The deoxy cannabinoids include 1-deoxy-11-hydroxy-delta8-THC (5), 1-deoxy-delta8-THC (6), 1-deoxy-3-butyl-delta8-THC (7), 1-deoxy-3-hexyl-delta8-THC (8) and a series of 3-(1',1'-dimethylalkyl)-1-deoxy-delta8-THC analogues (2, n = 0-4, 6, 7, where n = the number of carbon atoms in the side chain-2). Three derivatives (17-19) of deoxynabilone (16) were also prepared. The affinities of each compound for the CB1 and CB2 receptors were determined employing previously described procedures. Five of the 3-(1',1'-dimethylalkyl)-1-deoxy-delta8-THC analogues (2, n = 1-5) have high affinity (Ki = < 20 nM) for the CB2 receptor. Four of them (2, n = 1-4) also have little affinity for the CB1 receptor (Ki = > 295 nM). 3-(1',1'-Dimethylbutyl)-1-deoxy-delta8-THC (2, n = 2) has very high affinity for the CB2 receptor (Ki = 3.4 +/- 1.0 nM) and little affinity for the CB1 receptor (Ki = 677 +/- 132 nM).  相似文献   

9.
The C-1'-dithiolane Delta(8)-tetrahydrocannabinol (Delta(8)-THC) amphiphilic analogue (-)-2-(6a,7,10,10a-tetrahydro-6,6,9-trimethylhydroxy-6H-dibenzo[b,d]pyranyl)-2-hexyl-1,3-dithiolane (AMG3) is considered as one of the most potent synthetic analgesic cannabinoid (CB) ligands. Its structure is characterized by rigid tricyclic and flexible alkyl chain segments. Its conformational properties have not been fully explored. Structure-activity relationship (SAR) studies on classical CBs showed that the alkyl side chain is the most critical structural part for the receptor activation. However, reported low energy conformers of classical CB analogues vary mainly in the conformation of their alkyl side chain segment. Therefore, comparative molecular dynamics (MD) simulations of low energy conformers of AMG3 were performed in order to investigate its structural and dynamical properties in two different systems. System-I includes ligand and amphoteric solvent DMSO, simulating the biological environment and system-II includes ligand at active site of the homology models of CB1 and CB2 receptors in the solvent. The trajectory analysis results are compared for the systems I and II. In system-I, the dihedral angle defined between aromatic ring and dithiolane ring of AMG3 shows more resistance to be transformed into another torsional angle and the dihedral angle adjacent to dithiolane ring belonging in the alkyl chain has flexibility to adopt gauche+/- and trans dihedral angles. The rest of the dihedral angles within the alkyl chain are all trans. These results point out that wrapped conformations are dynamically less favored in solution than linear conformations. Two possible plane angles defined between the rigid and flexible segments are found to be the most favored and adopting values of approximately 90 degrees and approximately 140 degrees. In system-II, these values are approximately 90 degrees and approximately 120 degrees. Conformers of AMG3 at the CB1 receptor favor to establish a cis conformation defined between aromatic and dithiolane ring and a trans conformation in the CB2 receptor. These different orientations of ligand inside the binding pocket of CB1 and CB2 receptors may explain its different binding affinity in the two receptors. The results of this study can be applied to other synthetic classical CB ligands to produce low energy conformations and can be of general use for the molecules possessing flexible alkyl chain(s). In addition, this study can be useful when restraint of the alkyl chain is sought for optimizing drug design.  相似文献   

10.
Nebane NM  Kellie B  Song ZH 《FEBS letters》2006,580(22):5392-5398
Charge-neutralizing mutation D6.30N of the human cannabinoid receptor subtype 1 (CB1) and cannabinoid receptor subtype 2 (CB2) cannabinoid receptors was made to test two hypotheses: (1) D6.30 may be crucial for the functions of CB1 and CB2 receptors. (2) D6.30 may participate in an ionic lock with R3.50 that keeps the receptors in an inactive conformation. Specific ligand binding and ligand-induced inhibition of forskolin-stimulated cAMP accumulation were observed with human embryonic kidney epithelial cell line (HEK293) cells expressing wild-type CB1 and CB2, as well as CB1D6.30N and CB2D6.30N mutant receptors. There was however a decrease in maximum response of the mutant receptors compared to their wild-type counterparts, suggesting that D6.30 is essential for full activation of both CB1 and CB2 receptors. Both CB1D6.30N and CB2D6.30N demonstrated a level of constitutive activity no greater than that of their wild-type counterparts, indicating that either D6.30 does not participate in a salt bridge with R3.50, or the salt bridge is not critical for keeping cannabinoid receptors in the inactive conformation.  相似文献   

11.
Cannabinoid type-1 (CB(1)) receptor ligands, derived from the 1,5-diarylpyrazole core template of rimonabant (Acomplia), have been the focus of several studies aimed at examining structure-activity relationships (SARs). The purpose of this study was to design and synthesize a set of compounds based on the 1,5-diarylpyrazole template while focusing on the potential for discovery of CB(1) receptor radioligands that might be used as probes with in vivo molecular imaging. Each synthesized ligand was evaluated for potency as an antagonist at CB(1) and cannabinoid type-2 (CB(2)) receptors in vitro using a GTPgamma(35)S-binding assay. clog P values were calculated with Pallas 3.0. The antagonist binding affinities (K(B)) at CB(1) receptors ranged from 11 to >16,000 nM, CB(1) versus CB(2) selectivities from 0.6 to 773, and clog Ps from 3.61 to 6.25. An interesting new ligand, namely N-(piperidin-1-yl)-1-(2-bromophenyl)-5-(4-methoxyphenyl)-4-methyl-1H-pyrazole-3-carboxamide (9j), emerged from the synthesized set with appealing properties (K(B)=11 nM; CB(1) selectivity>773; clog P=5.85), for labeling with carbon-11 and development as a radioligand for imaging brain CB(1) receptors in vivo with positron emission tomography (PET).  相似文献   

12.
Numerous research groups have been engaged in searching for novel CB1 receptor antagonists, since SR141716A (rimonabant), a CB1 receptor antagonist, proved to be efficacious in human for the treatment of obesity. In the present study, a series of 1,2,4-triazole-containing diarylpyrazolyl carboxamides based on the 1,5-diarylpyrazole template of rimonabant, was synthesized and tested for CB1 receptor binding affinity. The structure–activity relationship studies demonstrated that incorporation of 1,2,4-triazole ring onto the pyrazole scaffold via a methylene linker led to a significant improvement for CB1 receptor binding affinity. Importantly, these analogues also exhibited excellent selectivity for CB1 receptor over CB2 receptor.  相似文献   

13.
Alpha-methylated analogues of the endogenous cannabinoid, 2-arachidonoyl glycerol (2-AG), were synthesized aiming to the improved enzymatic stability of 2-AG. In addition, the CB1 activity properties of fluoro derivatives of 2-AG were studied. The CB1 receptor activity was determined by the [35S]GTPgammaS binding assay, and the enzymatic stability of alpha-methylated analogues was determined in rat cerebellar membranes. The results indicate that even if the alpha-methylated 2-AG derivatives are slightly weaker CB1 receptor agonists than 2-AG, they are clearly more stable than 2-AG. In addition, the results showed that the replacement of the hydroxyl group(s) of 2-AG by fluorine does not improve the CB1 activity of 2-AG.  相似文献   

14.
Cannabinoids receptors, cellular elements of the endocannabinoid system, have been the focus of extensive studies because of their potential functional role in several important physiological and pathological processes. To further evaluate the properties of CB receptors, especially CB(1) and CB(2) subtypes, we have designed, using SR141716A as a benchmark, a new series of rigid 1-aryl-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxamides. Compounds 1 were synthesized from substituted 1-aryl-1,4-dihydroindeno[1,2-c]pyrazole-3-carboxylic acids and requisite amines. The various analogues were assayed for binding both to the brain and peripheral cannabinoid receptors (CB(1) and CB(2)). Seven of the new compounds displayed very high in vitro CB(2) binding affinities, especially 1a, 1b, 1c, 1e, 1g, 1h and 1j which showed K(i) values of 0.34, 0.225, 0.27, 0.23, 0.385, 0.037 and 0.9 nM, respectively. Compounds 1a, 1b, 1c and 1h showed the highest selectivity for CB(2) receptor with K(i)(CB(1)) to K(i)(CB(2)) ratios of 6029, 5635, 5814 and 9810, respectively. Noticeably, 1h exhibited the highest affinity and selectivity for CB(2) receptors.  相似文献   

15.
A series of N-benzyl-7-azaindolequinuclidinone (7-AIQD) analogs have been synthesized and evaluated for affinity toward CB1 and CB2 cannabinoid receptors and identified as a novel class of cannabinoid receptor ligands. Structure–activity relationship (SAR) studies indicate that 7-AIQD analogs are dual CB1/CB2 receptor ligands exhibiting high potency with somewhat greater selectivity towards CB2 receptors compared to the previously reported indolequinuclidinone (IQD) analogs. Initial binding assays showed that 7-AIQD analogs 8b, 8d, 8f, 8g and 9b (1 μM) produced more that 50% displacement of the CB1/CB2 non-selective agonist CP-55,940 (0.1 nM). Furthermore, Ki values determined from full competition binding curves showed that analogs 8a, 8b and 8g exhibit high affinity (110, 115 and 23.7 nM, respectively) and moderate selectivity (26.3, 6.1 and 9.2-fold, respectively) for CB2 relative to CB1 receptors. Functional studies examining modulation of G-protein activity demonstrated that 8a acts as a neutral antagonist at CB1 and CB2 receptors, while 8b exhibits inverse agonist activity at these receptors. Analogs 8f and 8g exhibit different intrinsic activities, depending on the receptor examined. Molecular docking and binding free energy calculations for the most active compounds (8a, 8b, 8f, and 8g) were performed to better understand the CB2 receptor-selective mechanism at the atomic level. Compound 8g exhibited the highest predicted binding affinity at both CB1 and CB2 receptors, and all four compounds were shown to have higher predicted binding affinities with the CB2 receptor compared to their corresponding binding affinities with the CB1 receptor. Further structural optimization of 7-AIQD analogs may lead to the identification of potential clinical agents.  相似文献   

16.
Ajulemic acid, a side-chain analog of Δ8-THC-11-oic acid, was designed as a potent therapeutic agent free of the psychotropic adverse effects typical of most cannabinoids. Subsequent studies of ajulemic acid have yielded widely divergent findings on the occurrence of these adverse effects. To help resolve these discrepancies, we have prepared highly purified ajulemic acid using a different synthetic method than previously reported in the literature and compared its cannabinoid receptor binding constants with those obtained using several other preparations from different sources. Whereas CB2 binding did not vary greatly among all of the samples, the CB1 binding showed a wide range of affinities. The highly purified product (JBT-101) reported here had the weakest affinity for CB1 while the original preparation (HU-239) showed the strongest affinity for CB1. The CB1/CB2 ratio of affinities was 12.3 for JBT-101 whereas that for HU-239 was 0.19, a 65-fold difference. Functional responses such as catalepsy and hypothermia using JBT-101 versus HU-239 displayed reduced CB1 activity in keeping with the receptor binding data. Thus, earlier conclusions on the limited therapeutic index for ajulemic acid need to be reconsidered in the light of the data now obtained using JBT-101.  相似文献   

17.
In an effort to improve indole-based CB(2) cannabinoid receptor ligands and also to develop SAR for both the CB(1) and CB(2) receptors, 47 indole derivatives were prepared and their CB(1) and CB(2) receptor affinities were determined. The indole derivatives include 1-propyl- and 1-pentyl-3-(1-naphthoyl)indoles both with and without a 2-methyl substituent. Naphthoyl substituents include 4- and 7-alkyl groups as well as 2-, 4-, 6-, 7-methoxy and 4-ethoxy groups. The effects of these substituents on receptor affinities are discussed and structure-activity relationships are presented. In the course of this work three new highly selective CB(2) receptor agonists were identified, 1-propyl-3-(4-methyl-1-naphthoylindole (JWH-120), 1-propyl-2-methyl-3-(6-methoxy-1-naphthoylindole (JWH-151), and 1-pentyl-3-(2-methoxy-1-naphthoylindole (JWH-267). GTPgammaS assays indicated that JWH-151 is a full agonist at CB(2), while JWH-120 and JWH-267 are partial agonists. Molecular modeling and receptor docking studies were carried out on a set of 3-(4-propyl-1-naphthoyl)indoles, a set of 3-(6-methoxy-1-naphthoyl)indoles and the pair of N-pentyl-3-(2-methoxy-1-naphthoyl)indoles. Docking studies indicated that the CB(1) receptor affinities of these compounds were consistent with their aromatic stacking interactions in the aromatic microdomain of the CB(1) receptor.  相似文献   

18.
From the polar organic extract of the Indonesian sponge Dasychalina sp. we have isolated haplosamate A (1), a unique C(28) sterol containing a sulfate group at C-3 and a methyl phosphate at C-15, along with its new desulfo analogue 2, whose structure has been secured by detailed NMR investigation. Compounds 1 and 2, as well as their semi-synthetic analogues 3-5, have been evaluated for interaction with CB(1) and CB(2) receptors through a binding test. Desulfohaplosamate (2) showed a selective affinity for CB(2) receptors in the low μM range, while a semi-synthetic derivative with cleaved ring B showed a complete loss of affinity for both receptors, highlighting the importance of an intact steroid nucleus. To our knowledge, haplosamate derivatives represent the first CB receptor ligands belonging to the class of steroids.  相似文献   

19.
3-Azidophenyl- and 3-isothiocyanatophenyl-and 2-(5'-azidopentyl)- and 2-(5'-isothiocyanatopentyl)pyrazoles were synthesized to determine whether these compounds could behave as covalently binding ligands for the CB1 cannabinoid receptor in rat brain membranes. Heterologous displacement of [3H]CP55940 indicated that the apparent affinity of these compounds for the CB1 receptor was similar to that of the parent compound, SR141716A, with the exception of the 3-isothiocyanato derivatives, which showed a 10-fold loss of affinity. The 3-azidophenyl and 3-isothiocyanatophenyl compounds behaved as antagonists against the cannabinoid agonist desacetyllevonantradol in activation of G proteins [guanosine 5'-O-(y-[35S]thio)triphosphate ([35S]GTPgammaS) binding] and regulation of adenylyl cyclase. The 2-(5'-azidopentyl)- and 2-(5'-isothiocyanatopentyl)pyrazoles were poor antagonists for [35S]GTPgammaS binding, and both compounds failed to antagonize the cannabinoid regulation of adenylyl cyclase. After incubation with the isothiocyanato analogues or UV irradiation of the azido analogues, the 3-substituted aryl pyrazoles formed covalent bonds with the CB1 receptor as evidenced by the loss of specific binding of [3H]CP55940. In the case of the isothiocyanato analogues, the log concentration-response curve for cannabinoid-stimulated [35S]GTPgammaS binding was shifted to the right, indicating that loss of receptors compromised signal transduction capability. These irreversibly binding antagonists might be useful tools for the investigation of tolerance and receptor down-regulation in both in vitro and in vivo studies.  相似文献   

20.
Shim JY  Welsh WJ  Howlett AC 《Biopolymers》2003,71(2):169-189
Association of cannabimimetic compounds such as cannabinoids, aminoalkylindoles (AAIs), and arachidonylethanolamide (anandamide) with the brain cannabinoid (CB(1)) receptor activates G-proteins and relays signals to regulate neuronal functions. A CB(1) receptor homology model was constructed using the published x-ray crystal structure of bovine rhodopsin (Palczewski et al., Science, 2000, Vol. 289, pp. 739-745) in the conformation most likely to represent the "high-affinity" state for agonist binding to G-protein coupled receptors (GPCRs). A molecular docking approach that combined Monte Carlo and molecular dynamics simulations was used to identify the putative binding conformations of nonclassical cannabinoid agonists, including AC-bicyclic CP47497 and CP55940, and ACD-tricyclic CP55244. Placement of these ligands was based upon the assumption of a critical hydrogen bond between the A-ring OH and the side chain N of Lys192 in transmembrane helix 3. We evaluated two alternative binding conformations, C3-in and C3-out, denoting the directionality of the ligand C3 side chain within the receptor with respect to the inside or the outside of the cell. Assuming both the C3-in or C3-out conformation, the calculated ligand-receptor binding energy (DeltaE(bind)) was correlated with the experimentally observed binding affinity (K(i)) for a series of nonclassical cannabinoid agonists. The C3-in conformation was marginally better than the alternative C3-out conformation in predicting the rank order of the tested nonclassical cannabinoid analogs. Adopting the C3-in conformation due to the greater number of receptor interactions with known pharmacophoric elements of the ligand, key residues were identified comprising the presumed hydrophobic pocket that interacts with the C3 side chain of cannabinoid agonists. Key hydrogen bonds would form between both K3.28(192) and E(258) and the A-ring OH, and between Q(261) and the C-ring C-12 hydroxypropyl. In summary, the present study represents one of the first attempts to construct a homology model of the CB(1) cannabinoid receptor based upon the published bovine rhodopsin x-ray crystal structure and to elucidate the putative ligand binding site for nonclassical cannabinoid agonists. We postulated sites of the CB(1) receptor critical for the ligand interaction, including the hydrophobic pocket interacting with the key pharmacophoric moiety, the C3 side chain. More work is needed to delineate between two alternative (and possibly other) binding conformations of the nonclassical cannabinoid ligands within the CB(1) receptor. The present study provides a consistent framework for further investigation of the CB(1) receptor-ligand interaction and for the study of CB(1) receptor activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号