首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Flavone, dextrose and long swim stress exhibited antinociception. Degree of antinociception was greater with long swim stress as compared to flavone or dextrose. Combination of these treatments resulted in potentiation of antinociception. Naloxone (opioid antagonist; 5 mg/kg i.p.) antagonised flavone or long stress induced antinociception showing opioid medicated mechanism, however, failed to reverse the potentiated antinociceptive component recorded in long stressed animals which received flavone and dextrose. Antinociceptive activity of flavone, dextrose and long swim stress which was documented by acetic acid assay has been confirmed in the present study. Role for opioid system in this action has been demonstrated. Therefore, formalin test can also be considered as an useful assay procedure for testing flavonoids. However, like acetic acid assay this assay procedure also has the limitation that it is unable to detect minor changes in the degree of antinociception produced by physiological interventions such as long swim and dextrose.  相似文献   

2.
Opioid type of analgesics open ATP sensitive potassium channel at the cellular level to produce antinociceptive response. These channels have also been shown to modulate insulin secretion by the pancreas. 7-hydroxy flavone, an antinociceptive agent shown to act through opioid pathways was investigated for its effect on glycaemic state and associated algesic state. The involvement of ATP sensitive potassium channel in the action was examined by using glybenclamide. The result reveal that 7-HF per se did not elicit any significant change in the glycaemic state simultaneously eliciting antinociceptive response as tested by acetic acid induced abdominal constriction assay procedure. Glibenclamide treatment attenuated the antinociceptive effect of 7-HF and while maintained its hypoglycaemic response. The present finding suggest that 7-HF induces antinociception like morphine, utilise ATP sensitive potassium channel at the cellular level and do not suggest a cause-effect relationship between the changes in the glycaemic and algesic state. Possibly, insulin which is controlled by ATP sensitive potassium channel at the cellular level might also modulate antinociception exhibiting a cause-effect relationship between them.  相似文献   

3.
This aim of this study was to determine whether RBC insulin receptor assay represents a clinically useful way of assessing insulin sensitivity in obese children. Steady state plasma glucose (SSPG) was established by a constant infusion of glucose (6 mg/kg/min), insulin (0.8 mU/kg/min) and somatostatin (125 micrograms/m2/h), following the loading dose of somatostatin (125 micrograms/m2). Insulin binding to RBCs was measured by a modified method of Gambhir and was compared with SSPG. Of 21 children with various relative body weight, 8 hyperinsulinemic obese children had a decreased insulin binding to RBCs due to decreased receptor concentrations. The insulin binding was inversely correlated with the fasting serum insulin level and with the insulin area under the O-GTT insulin response curve. In 11 children with various relative body weight, a highly significant inverse relationship was found between SSPG and insulin binding. SSPG was also correlated with the fasting serum insulin level. It was concluded that RBC insulin receptor may quantitatively reflect insulin resistance in obese children, and may be a useful tool for clinical evaluation of tissue insulin sensitivity in children.  相似文献   

4.
A novel oral form of salmon calcitonin (sCT) was recently demonstrated to improve both fasting and postprandial glycemic control and induce weight loss in diet-induced obese and insulin-resistant rats. To further explore the glucoregulatory efficacy of oral sCT, irrespective of obesity and metabolic dysfunction, the present study investigated the effect of chronic oral sCT treatment on fasting and postprandial glycemic control in male lean healthy rats. 20 male rats were divided equally into a control group receiving oral vehicle or an oral sCT (2?mg/kg) group. All rats were treated twice daily for 5 weeks. Body weight and food intake were monitored during the study period and fasting blood glucose, plasma insulin and insulin sensitivity were determined and an oral glucose tolerance test (OGTT) performed at study end. Compared with the vehicle group, rats receiving oral sCT had improved fasting glucose homeostasis and insulin resistance, as measured by homeostatic model assessment of insulin resistance index (HOMA-IR), with no change in body weight or fasting plasma insulin. In addition, the rats receiving oral sCT had markedly reduced glycemia and insulinemia during OGTT. This is the first report showing that chronic oral sCT treatment exerts a glucoregulatory action in lean healthy rats, irrespective of influencing body weight. Importantly, oral sCT seems to exert a dual treatment effect by improving fasting and postprandial glycemic control and insulin sensitivity. This and previous studies suggest oral sCT is a promising agent for the treatment of obesity-related insulin resistance and type 2 diabetes.  相似文献   

5.
We tested the hypothesis that caffeine ingestion results in an exaggerated response in blood glucose and (or) insulin during an oral glucose tolerance test (OGTT). Young, fit adult males (n = 18) underwent 2 OGTT. The subjects ingested caffeine (5 mg/kg) or placebo (double blind) and 1 h later ingested 75 g of dextrose. There were no differences between the fasted levels of serum insulin, C peptide, blood glucose, or lactate and there were no differences within or between trials in these measures prior to the OGTT. Following the OGTT, all of these parameters increased (P < or = 0.05) for the duration of the OGTT. Caffeine ingestion resulted in an increase (P < or = 0.05) in serum fatty acids, glycerol, and plasma epinephrine prior to the OGTT. During the OGTT, these parameters decreased to match those of the placebo trial. In the caffeine trial the serum insulin and C peptide concentrations were significantly greater (P < or = 0.001) than for placebo for the last 90 min of the OGTT and the area under the curve (AUC) for both measures were 60 and 37% greater (P < or = 0.001), respectively. This prolonged, increased elevation in insulin did not result in a lower blood glucose level; in fact, the AUC for blood glucose was 24% greater (P = 0.20) in the caffeine treatment group. The data support our hypothesis that caffeine ingestion results in a greater increase in insulin concentration during an OGTT. This, together with a trend towards a greater rather than a more modest response in blood glucose, suggests that caffeine ingestion may have resulted in insulin resistance.  相似文献   

6.
Objective: The aim of this study was to investigate the effects of an acute exercise bout in the morning in the post‐absorptive or postprandial state on the glycemic and insulinemic response to three standardized meals throughout the day. It is hypothesized that post‐absorptive exercise enhances fat oxidation rate during exercise and thereafter attenuates the glucose and insulin response to subsequent meals. Research Methods and Procedures: Seven sedentary males with metabolic syndrome (age, 45 ± 11 years; BMI, 34 ± 3 kg/m2) were studied in a crossover design comparing three conditions: no exercise, postprandial and post‐absorptive exercise (at ~60% of the individual V?O2max for 45 minutes). Substrate use was evaluated by indirect calorimetry during exercise. Venous blood samples were taken at regular (30‐ to 60‐minute) intervals throughout the day, and glucose, insulin, and triglyceride concentrations were determined. Results: During exercise, a higher fat oxidation rate was observed in the post‐absorptive than the postprandial state. The glycemic response to a standardized high‐carbohydrate breakfast was lower when exercising after breakfast than when exercising before breakfast. There was no effect of either exercise mode on glucose and insulin response to lunch and supper. Discussion: Post‐absorptive exercise has the advantage of promoting fat use, whereas postprandial exercise can attenuate the glycemic response to breakfast. Neither exercise mode acutely induces improved glucoregulation later during the day. The impact of meal timing on the effects of regular exercise training on glycemic control in this population remains to be studied.  相似文献   

7.
To determine the effect of glucose availability on glutamine metabolism, glutamine kinetics were assessed under conditions of hyperglycemia resulting from 1) intravenous infusion of 7.5% dextrose in healthy adults and 2) insulin deficiency in young adults with insulin-dependent diabetes mellitus (IDDM). Eight healthy adults and five young adults with IDDM were studied in the postabsorptive state by use of a primed continuous infusion of D-[U-(14)C]glucose, L-[5,5,5-(2)H(3)]leucine, and L-[3, 4-(13)C]glutamine. Whether resulting from insulin deficiency or dextrose infusion, the rise in plasma glucose was associated with increased glucose turnover (23.5 +/- 0.7 vs. 12.9 +/- 0.3 micromol. kg(-1). min(-1), P < 0.01 and 20.9 +/- 2.5 vs. 12.8 +/- 0.4 micromol. kg(-1). min(-1), P = 0.03, in health and IDDM, respectively). In both cases, high blood glucose failed to alter glutamine appearance rate (R(a)) into plasma [298 +/- 9 vs. 312 +/- 14 micromol. kg(-1). h(-1), not significant (NS) and 309 +/- 23 vs 296 +/- 26 micromol. kg(-1). h(-1), NS, in health and IDDM, respectively] and the estimated fraction of glutamine R(a) arising from de novo synthesis (210 +/- 7 vs. 217 +/- 10 micromol. kg(-1). h(-1), NS and 210 +/- 16 vs. 207 +/- 21 micromol. kg(-1). h(-1), NS, in health and IDDM, respectively). When compared with the euglycemic day, the apparent contribution of glucose to glutamine carbon skeleton increased when high plasma glucose resulted from intravenous dextrose infusion in healthy volunteers (10 +/- 0.8 vs. 4.8 +/- 0.3%, P < 0.01) but failed to do so when hyperglycemia resulted from insulin deficiency in IDDM. We conclude that 1) the contribution of glucose to the estimated rate of glutamine de novo synthesis does not increase when elevation of plasma glucose results from insulin deficiency, and 2) the transfer of carbon from glucose to glutamine may depend on insulin availability.  相似文献   

8.
We examined the effect of soluble corn bran hemicellulose (CBH, 10g/day) on glucose control and serum insulin in three groups: patients with impaired glucose tolerance (IGT) with (20 subjects) or without (8 subjects) obesity and with healthy non-obese controls (10 subjects). Long-term supplementation (6 months) with CBH decreased the post oGTT curve for patients with impaired mild Type II diabetes, but not that for the controls. Hemoglobin A1c decreased significantly during CBH supplementation in the obese patients, while the fasting glucose level decreased in all three groups, although not significantly. A decreased serum insulin response by oGTT was found in those patients with IGT.

The improved oGTT result was associated with improved insulin release and perhaps with peripheral insulin sensitivity. These findings suggest that CBH at a low dose might contribute to glycemic control and would play a useful role in treating Type II diabetes patients.  相似文献   

9.
The aim of the present experiments was to study the plasma glucose-insulin relationship in eu-, hypo- or hyperthyroid broiler chickens. None of the thyroid states modified the fasting plasma glucose and insulin levels. Hypothyroid chickens exhibited a normal glucose tolerance and a normal glucose-induced insulin release after oral glucose (2 g/kg body weight) administration compared to euthyroid chickens. In contrast, hyperthyroid chickens exhibited an improved glucose tolerance accompanied by a lower insulin release. Insulin injections at a concentration of 0.1 U/kg body weight was only hypoglycemic in hyperthyroid chickens, which confirms the observation that these chickens are more sensitive to insulin. From this study it can be suggested that alterations in body composition according to thyroid status are at least partly mediated by changes in the control of carbohydrate metabolism by pancreatic hormones.  相似文献   

10.
The purpose of the study was to compare glucose tolerance and insulin sensitivity between trained (TR) and competition (CP) states, in relation to cortisol and testosterone levels. Sixteen highly trained volleyball players voluntarily participated in this study. The first testing session (TR state) occurred 1 week before the start of national level volleyball CP, and the second testing session (CP state) occurred next morning after the 1-week CP. Fasted serum sample was used for measuring cortisol and testosterone. Subjects were then orally challenged with 75 g of glucose solution for determinations of oral glucose tolerance test (OGTT) and insulin response. Under both fasted and glucose challenged conditions, glucose levels of CP were not different from TR state, whereas insulin levels of CP were significantly elevated above TR (50 min: from 78.8 +/- 8.7 to 96.6 +/- 8.1 microU/ml, P < 0.05; 80 min: from 62.8 +/- 7.0 to 82.0 +/- 7.3; P < 0.05). Muscle creatine kinase (CK) level in blood was significantly increased above TR, suggesting greater muscle damage by CP. Serum leptin level, percent fat mass, and body weight were not different between two states. CP significantly increased serum cortisol level without significantly change in testosterone level. The new finding of the study was that volleyball CP reduced the whole-body insulin sensitivity significantly compared to TR state. The greater level of insulin concentration under CP state appears to be associated with elevated serum cortisol level. Despites the benefit of increased physical activity on metabolic function is widely recognized, physiological stress associated with CP can result in attenuation of systemic insulin sensitivity compared TR state.  相似文献   

11.
To study the effect of hydroxychloroquine (HCQ) on glucose and insulin homeostasis, healthy rats were dosed with 160 mg x kg (-1) x day(-1) of HCQ orally, and streptozocin-induced diabetic rats received 80, 120, and 160 mg x kg(-1) x day(-1) of HCQ, while controls received normal saline. Ten days after treatment with HCQ, healthy animals were challenged intravenously with insulin or glucose, while diabetic rats were given only an i.v. injection of insulin. In healthy rats, the areas within and under the glucose concentration - time curve following insulin and glucose challenge were estimated. In diabetic animals, the areas under the curve for both the percent change in serum glucose from baseline (AUG) and the percent change in serum insulin from baseline (AUI) were used as pharmacodynamic end points. In healthy rats, HCQ did not influence fasting serum glucose concentrations or glycemic profiles following i.v. administration of glucose or insulin. In diabetic rats, AUG and AUI were increased dependent on blood HCQ concentrations. The normal homeostatic mechanisms responsible for insulin-glucose regulation may compensate for possible HCQ-induced reduction of insulin metabolism in healthy rats. The HCQ dose- or concentration-effect relationships for glucose and insulin were linear over the range of HCQ concentrations tested. It is concluded that HCQ significantly elevated insulin blood concentration resulting in reduced glucose levels in a concentration-dependent fashion in diabetic rats. HCQ may have therapeutic potential in the treatment of type I and type II diabetes.  相似文献   

12.
Nine non-diabetic, non-obese, normocholesterolemic normal male subjects with varied triglycerides levels were subjected to a simultaneous infusion test with a synthetic somatostatin analogue [des(Ala1, Gly2)-D-Trp8, D-Asn3, 14-somatostatin], insulin and glucose under ambulatory conditions. The levels of C-peptide reactivity, immunoreactive glucagon and growth hormone were reduced, and the level of immunoreactive insulin remained constant during the infusion. The blood glucose reached a constant value at 110-120 minutes (steady state blood glucose, SSBG) after the commencement of the infusion. The total cholesterol (TC) levels decreased slightly in the 30 minutes after the experiments were begun, and the triglycerides (TG) levels decreased gradually throughout the infusion period, due mainly to the reduction of very low density lipoprotein (VLDL). The most striking finding was the highly significant positive correlation (p less than 0.005, r = 0.868) between SSBG and the serum TG level prior to the infusion. These results indicate an important relationship between insulin sensitivity and serum TG level. High TG level may be regarded as one of the indices of insulin resistance.  相似文献   

13.
In addition to suppressing appetite, leptin may also modulate insulin secretion and action. Leptin was administered here to insulin-resistant rats to determine its effects on secretagogue-stimulated insulin release, whole body glucose disposal, and insulin-stimulated skeletal muscle glucose uptake and transport. Male Wistar rats were fed either a normal (Con) or a high-fat (HF) diet for 3 or 6 mo. HF rats were then treated with either vehicle (HF), leptin (HF-Lep, 10 mg. kg(-1). day(-1) sc), or food restriction (HF-FR) for 12-15 days. Glucose tolerance and skeletal muscle glucose uptake and transport were significantly impaired in HF compared with Con. Whole body glucose tolerance and rates of insulin-stimulated skeletal muscle glucose uptake and transport in HF-Lep were similar to those of Con and greater than those of HF and HF-FR. The insulin secretory response to either glucose or tolbutamide (a pancreatic beta-cell secretagogue) was not significantly diminished in HF-Lep. Total and plasma membrane skeletal muscle GLUT-4 protein concentrations were similar in Con and HF-Lep and greater than those in HF and HF-FR. The findings suggest that chronic leptin administration reversed a high-fat diet-induced insulin-resistant state, without compromising insulin secretion.  相似文献   

14.
The 150-kDa oxygen-regulated protein (ORP150) is a member of glucose-regulated proteins (GRPs), which are induced by stressful conditions such as oxygen or glucose deprivation. Here we investigated the highly abundant expression of ORP150 in mouse pancreas and its relationship with insulin secretion. Immunohistochemical analysis revealed that ORP150 expression was restricted to islets, especially to beta cells. The beta cell-specific expression was also observed in a mouse insulinoma cell line, MIN6, which secretes insulin in response to increased glucose concentration. Furthermore, ORP150 in islets dramatically diminished by fasting, concomitant with reduction of the serum insulin level. These results strongly suggest the role for ORP150 in insulin secretion.  相似文献   

15.
To characterize the "portal signal" in a nonsteady hyperglycemic state, the kinetic relationship between net hepatic glucose balance (NHGB) and either hepatic glucose load (HGL) or plasma insulin level was determined during glucose infusion using a catheter technique in 36 conscious dogs. Glucose was infused intraportally (Po group) and peripherally (Pe group) at 39, 56, and 83 micromol x kg(-1) x min(-1) over 2 h. There was a linear relationship between mean NHGB and either mean HGL or plasma insulin levels at each rate in either delivery (HGL: Po r = 0.99, Pe r = 0.95; insulin: Po r = 99, Pe r = 0.79). The threshold levels for net hepatic glucose uptake were 3.8 and 11.7 mmol/l for plasma glucose and 65 and 392 pmol/l for plasma insulin, respectively. The slope of the regression line against the abscissa was four times larger in portal than in peripheral delivery (HGL: Po 0.20 vs. Pe 0.05, P < 0.05; insulin: Po 0.19 vs. Pe 0.04, P < 0.05). These results suggest that the portal signal overrules the threshold of glucose for hepatic uptake by increasing hepatic extraction rate in a nonsteady hyperglycemic state.  相似文献   

16.
The present study was undertaken to investigate the effectiveness of adrenergic antagonists carvedilol and propranolol on L-thyroxin-induced cardiovascular and metabolic disturbances in rats. Treatment with L-thyroxin sodium (75 mg/kg body mass, s.c., every alternate day for 3 weeks), produced a significant increase in food and water intake, body temperature, heart rate, systolic blood pressure, along with an increase in serum T3, T4, and triglyceride levels. Besides a significant reduction in body mass, serum levels of TSH and cholesterol were also reduced following L-thyroxin treatment. Carvedilol (10 mg/kg body mass, orally) and propranolol (10 mg/kg body mass, i.p.) administered daily in the third week to 2 separate groups of L-thyroxin-treated animals reversed thyroxin-induced loss in body mass and rise in body temperature, blood pressure, and heart rate. Propranolol treatment increased TSH levels and decreased T3 and T4 levels in hyperthyroid animals, whereas carvedilol did not produce any effect on thyroid hormones. Carvedilol treatment reversed thyroxin induced hypertriglyceridemia, whereas propranolol treatment had no effect. Both carvedilol and propranolol prevented decrease in cholesterol levels induced by thyroxine. Compared with normal animals, L-thyroxin-treated animals showed a state of hyperglycemia, hyperinsulinaemia, impaired glucose tolerance, and insulin resistance, as inferred from elevated fasting serum glucose and insulin levels, higher area under the curve over 120 min for glucose, and decreased insulin sensitivity index (KITT). Propranolol and carvedilol treatment significantly decreased fasting serum glucose levels. Treatment with propranolol did not alter serum insulin levels, area-under-the-curve glucose, or KITT values. However, treatment with carvedilol significantly reduced area-under-the-curve glucose, decreased fasting serum insulin levels and significantly increased KITT values. In conclusion, carvedilol appears to produce favorable effects on insulin sensitivity and glycemic control and can therefore be considered as more efficacious adjunctive treatment than propranolol in hyperthyroidism.  相似文献   

17.
Previous studies of the effect of E series prostaglandins /PGs/ on insulin secretion gave conflicting results in animals and little information in man. This study was designed to determine the effect of methylated PGE2 analogue /15/S/- 15-methyl PGE2 methyl ester/, given orally, intraduodenally or intravenously, on insulin secretion, both under basal conditions and in response to intraduodenal or intravenous administration of glucose in 22 male volunteers. Methylated PGE2 kept basal serum insulin level unchanged, but significantly reduced insulin response by 15 +/- 6 microunits/ml to intravenous glucose pulse injection /0.1 g/kg/ or by 45 +/- 11 microunits/ml to intraduodenal glucose infusion /0.5 g/kg-hr/. Blood glucose level was unaffected in tests with intraduodenal methylated PGE2, but in tests with intravenous administration it was significantly reduced. These studies demonstrate that methylated PGE2 analogue given orally, intraduodenally or intravenously results in a potent suppression of insulin response to glucose challenge.  相似文献   

18.
Normal and hypophysectomized (hypox) rats, fed ad libitum, received intraperitoneal injections of tolbutamide (75 mg/kg/day) or of saline for 6 weeks. 24 h after the last injection, blood samples were taken for glucose, insulin and glucagon determinations. In normal rats, tolbutamide treatment did not alter serum glucose, insulin and glucagon, although it suppressed the secretion of insulin and glucagon by the pancreatic islets. In hypox rats, tolbutamide decreased serum glucose and insulin, elevated serum glucagon and stimulated the secretion of glucagon, but not that of insulin by the pancreatic islets. In addition, tolbutamide treatment increased the glucagon response to arginine in normal, but not in hypox rats. The serum glucose response to arginine was decreased by tolbutamide treatment and by hypophysectomy and, thus, appeared independent of the glucagon rise or preexisting glucagon level. We conclude that tolbutamide treatment decreased the secretion of glucagon and insulin in normal rats and stimulated that of glucagon in hypox rats, perhaps because of the low levels of insulin in the serum and in the pancreas of the latter. Our results are compatible with the hypothesis that the pancreatic action of tolbutamide is influenced by the pituitary.  相似文献   

19.
Plasma glucose and insulin have been studied during lethargy and spontaneous arousal of hibernating edible dormouse. During lethargy blood glucose was low while plasma insulin remained at the same level as in other seasons. Plasma glucose and insulin did not fluctuate along the phase of lethargy. During spontaneous arousal plasma insulin rose strongly from the 17 degrees C stage, reaching the higher values at 26 degrees C while blood glucose was only 85 mg/100 ml, then decreased at 37 degrees C. The effect of glucose and temperature on insulin secretion was studied using perfused pancreas preparation from hibernating edible dormice. During the rewarming of the edible dormouse pancreas the insulin release did not occur in response to the absolute extracellular glucose level but occurred in response to a B cell membrane phenomenon which was dependent on the changing rate of glucose level. The effect of glucose and temperature on insulin secretion from perfused pancreas was compared between edible dormouse and homeotherm permanent, the rat. The B cell response to glucose of the dormouse pancreas increased up to 15 degrees C whereas that of the rat only from 25 degrees C. The dormouse insulin secretion reached a peak value at the 30 degrees C of temperature, whereas that of the rat progressively increased until 37 degrees C. These results showed that some biochemical adjustment or process of acclimatization took place in the B cells of the hibernators.  相似文献   

20.
We investigated the ergogenic effect in mice of administering highly branched cyclic dextrin (HBCD), a new type of glucose polymer, on the swimming endurance in an adjustable-current swimming pool. Male Std ddY mice were administered a HBCD, a glucose solution or water via a stomach sonde 10 min before, 10 min after or 30 min after beginning swimming exercise, and were then obliged to swim in the pool. The total swimming period until exhaustion, an index of the swimming endurance, was measured. An ergogenic effect of HBCD was observed at a dose of 500 mg/kg of body weight, whereas it had no effect at a dose of 166 mg/kg of body wt (p < 0.05). The mice administered with the HBCD solution 10 min after starting the exercise were able to swim significantly longer (p < 0.05) than the mice who had ingested water or the glucose solution. The rise in mean blood glucose level in the mice administered with HBCD, which was measured 20 min after starting swimming, was significantly lower (p < 0.05) than that in the mice administered with glucose, although it was significantly higher (p < 0.05) than that in the mice administered with water. The mean blood insulin rise in the mice given HBCD was significantly lower (p < 0.05) than that in the mice given glucose. The mice administered with HBCD 30 min after starting the exercise swam significantly longer (p < 0.05) than the mice who had ingested water, although the enhancement of swimming time was similar to that of the glucose-ingesting mice. The gastric emptying rate of the HBCD solution was significantly faster (p < 0.05) than that of the glucose solution. However, this glucose polymer must have spent more time being absorbed because it has to be hydrolyzed before absorption, reflecting a lower and possibly longer-lasting blood glucose level. We conclude that the prolongation of swimming endurance in mice administered with HBCD depended on its rapid and longer-lasting ability for supplying glucose with a lower postprandial blood insulin response, leading to a delayed onset of fatigue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号