首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A taxonomic review of the Korean Lymantria Hübner, 1819 was conducted. A total of nine species of five subgenera with two unrecorded species are listed: Lymantria (Porthetria) dispar Linnaeus 1758, L. (P.) xylina Swinhoe 1903, L. (Lymantria) monacha (Linnaeus 1758), L. (L.) minomonis Matsumura 1933 (new to Korea), L. (L.) similis monachoides Schintlimeister 2004 (new to Korea), L. (L.) lucescens (Butler 1881), L. (Nyctria) mathura Moore 1865, L. (Collentria) fumida Butler 1877, and L. (Spinotria) bantaizana Matsumura 1933. Lymantria (Lymantria) minomonis and L. (L.) similis monachoides are newly added to the Korean fauna. Lymantria (L.) minomonis was found only on Bogildo Island of Jeollanam‐do in the southern part of Korea, and L. (L.) similis monachoides was collected in central Korea. Lymantria (Porthetria) xylina and L. (Collentria) fumida were not examined in this study, and it is considered that the previous records were due to misidentification or they are only distributed in the northern part of the Korean Peninsula. We provide diagnoses of two unrecorded species and adult habitus and genitalia photos of the Korean Lymantria species.  相似文献   

3.
Recently, two Bacillus thuringiensis strains were reported to synthesize parasporal inclusion bodies made not of the expected crystal (Cry) proteins but rather of the surface layer proteins (SLP) Sap (encoded by sap) and EA1 (encoded by eag), respectively. Whether the presence of the sap and eag genes is restricted to these two B. thuringiensis strains or ubiquitous in B. thuringiensis is unknown. We report here the distribution of the sap and eag genes in B. thuringiensis. Strains in the Bacillus cereus group were added for comparison purposes. We show that sap and eag are either present in tandem in 35% of the B. thuringiensis strains analysed and absent in 65% of the strains. When absent, a different tandem, the lytB/lytA cell wall hydrolase genes, is present. The distribution of the sap and eag S-layer and the lytB/lytA cell wall hydrolase genes is not species-specific in B. thuringiensis, B. cereus and Bacillus weihenstephanensis. Bacillus anthracis and Bacillus mycoides harbor sap and eag but not lytB/lytA. The sap, eag and lytB/lytA genes were absent in Bacillus pseudomycoides. Clearly, the distribution of the sap and eag S-layer and the lytB/lytA cell wall hydrolase genes in B. thuringiensis and in the Bacillus cereus group is mutually exclusive. We also showed that two genes involved in cell wall metabolism, csaA and csaB, are present not only upstream of the sap and eag S-layer genes, but also upstream of the lytB/lytA tandem in strains where sap and eag are absent. Bootstrapped neighbor-joining trees were inferred from the translated amino acid sequences of sap, eag and the tandem lytB/lytA, respectively.  相似文献   

4.
The S locus and its flanking regions in the genus Prunus (Rosaceae) contain four pollen-expressed F-box genes. These genes contain the S locus F-box genes with low allelic sequence polymorphism genes 1, 2, and 3 (SLFL1, SLFL2, and SLFL3) as well as the putative pollen S gene, named the S haplotype-specific F-box protein gene (SFB). As much less information is available on the function of SLFLs than that of SFB, we analyzed the SLFLs of six S haplotypes of sweet cherry (Prunus avium) in this study. Genomic DNA blot analysis and the isolation of SLFL1 showed that the SLFL1 gene in a functional self-incompatible S 3 haplotype is deleted and only a partial sequence resembling SLFL1 is left in the S 3 locus region, suggesting that SLFL1 by itself is not directly involved in either the GSI reaction or pollen-tube growth. Genomic DNA blot analysis showed that there was no substantial modification or mutation in SLFL2 and SLFL3. A phylogenic analysis of F-box genes in the rosaceous S locus and its border regions showed that Prunus SLFLs were more closely related to maloid S locus F-box brothers than to Prunus SFBs. The functions of SLFLs and the evolution of self-incompatibility in Prunus are discussed based on these results. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. The nucleotide sequence data reported appear in the DDBJ, EMBL, and GenBank Nucleotide Sequence Databases under the accession numbers, AB360339, AB360340, AB360341, and AB360342, for SLFL1-S 1 , SLFL1-S 2 , SLFL1-S 5 , and SLFL1-S 6 , respectively.  相似文献   

5.
6.
7.
Endosymbiotic Wolbachia bacteria are, to date, considered the most widespread symbionts in arthropods and are the cornerstone of major biological control strategies. Such a high prevalence is based on the ability of Wolbachia to manipulate their hosts' reproduction. One manipulation called cytoplasmic incompatibility (CI) is based on the death of the embryos generated by crosses between infected males and uninfected females or between individuals infected with incompatible Wolbachia strains. CI can be seen as a modification‐rescue system (or modresc) in which paternal Wolbachia produce mod factors, inducing embryonic defects, unless the maternal Wolbachia produce compatible resc factors. Transgenic experiments in Drosophila melanogaster and Saccharomyces cerevisiae converged towards a model where the cidB Wolbachia gene is involved in the mod function while cidA is involved in the resc function. However, as cidA expression in Drosophila males was required to observe CI, it has been proposed that cidA could be involved in both resc and mod functions. A recent correlative study in natural Culex pipiens mosquito populations has revealed an association between specific cidA and cidB variations and changes in mod phenotype, also suggesting a role for both these genes in mod diversity. Here, by studying cidA and cidB genomic repertoires of individuals from newly sampled natural C. pipiens populations harbouring wPipIV strains from North Italy, we reinforce the link between cidB variation and mod phenotype variation fostering the involvement of cidB in the mod phenotype diversity. However, no association between any cidA variants or combination of cidA variants and mod phenotype variation was observed. Taken together our results in natural C. pipiens populations do not support the involvement of cidA in mod phenotype variation.  相似文献   

8.
Five novel missense mutations, viz., C304 A, T370 G, G484 A, G667 A, and G808 A, in the Lewis gene (FUT3) were detected in African (Xhosa) and Caucasian individuals in South Africa. These single base substitutions may result in changes in amino acid residues from Gln102 to Lys in the 304 mutation, Ser124 to Ala in the 370 mutation, Asp162 to Asn in the 484 mutation, Gly223 to Arg in the 667 mutation, and Val270 to Met in the 808 mutation. Out of the five novel mutations identified in this investigation, four new alleles (le 484,667 , le 484,667,808 , Le 304 , and Le 370 ) were determined in the Xhosa population and two new alleles (le 202,314,484 and Le 304 ) in the Caucasian population. The determination of α(1,3/1,4)fucosyltransferase activity, after transfection of plasmids containing the new alleles into COS7 cells, suggested that alleles le 484,667 and le 484,667,808 encoded an inactive enzyme, and that alleles Le 304 and Le 370 encoded a functional enzyme. In addition, we also examined the incidence of five common alleles, Le 59 , le 59,508 , le 59,1067 , le 202,314 , and le 1067 in two populations by the polymerase chain reaction/restriction fragment length polymorphism method and compared differences in the allele frequencies of FUT3 among three ethnic groups (Orientals, Africans, and Caucasians). Received: 19 January 1998 / Accepted: 4 Febraury 1998  相似文献   

9.
 For the angiosperm dominants of northern California’s mixed evergreen forests, this study compares the display of photosynthetic tissue within leaves and along branches, and examines the correspondence between these morphological attributes and the known environmental tolerances of these species. Measurements were made on both sun and shade saplings of six species: Arbutus m e n z i e s i i (Ericaceae), C h r y s o l e p i s c h r y s o p h y l l a (Fagaceae), L i t h o c a r p u s d e n s i f l o r u s (Fagaceae), Quercus c h r y s o l e p i s (Fagaceae), Quercus w i s l i z e n i i (Fagaceae), and Umbellularia c a l i f o r n i c a (Lauraceae). All species had sclerophyllous leaves with thick epidermal walls, but species differed in leaf specific weight, thickness of mesophyll tissues and in the presence of a hypodermis, crystals, secretory idioblasts, epicuticular deposits, and trichomes. The leaves of Arbutus were 2 – 5 times larger than those of C h r y s o l e p i s, L i t h o c a r p u s and Umbellularia and 4 – 10 times larger than those of both Quercus species. Together with differences in branch architecture, these leaf traits divide the species into groups corresponding to environmental tolerances. Shade-tolerant C h r y s o l e p i s, L i t h o c a r p u s, and Umbellularia had longer leaf lifespans and less palisade tissue, leaf area, and crown mass per volume than the intermediate to intolerant Arbutus and Quercus. Having smaller leaves, Quercus branches had more branch mass per leaf area and per palisade volume than other species, whereas Arbutus had less than other species. These differences in display of photosynthetic tissue should contribute to greater growth for Quercus relative to the other species under high light and limited water, for Arbutus under high light and water availability, and for C h r y s o l e p i s, L i t h o c a r p u s, and Umbellularia under limiting light levels. Accepted: 22 March 1996  相似文献   

10.
Higher‐level relationships within Aedini, the largest tribe of Culicidae, are explored using morphological characters of eggs, fourth‐instar larvae, pupae, and adult females and males. In total, 172 characters were examined for 119 exemplar species representing the existing 12 genera and 56 subgenera recognized within the tribe. The data for immature and adult stages were analysed separately and in combination using equal (EW) and implied weighting (IW). Since the classification of Aedini is based mainly on adult morphology, we first tested whether adult data alone would support the existing classification. Overall, the results of these analyses did not reflect the generic classification of the tribe. The tribe as a whole was portrayed as a polyphyletic assemblage of Aedes and Ochlerotatus within which eight (EW) or seven (IW) other genera were embedded. Strict consensus trees (SCTs) derived from analyses of the immature stages data were almost completely unresolved. Combining the adult and immature stages data resulted in fewer most parsimonious cladograms (MPCs) and a more resolved SCT than was found when either of the two data subsets was analysed separately. However, the recovered relationships were still unsatisfactory. Except for the additional recovery of Armigeres as a monophyletic genus, the groups recovered in the EW analysis of the combined data were those found in the EW analysis of adult data. The IW analysis of the total data yielded eight MPCs consisting of three sets of two mutually exclusive topologies that occurred in all possible combinations. We carefully studied the different hypotheses of character transformation responsible for each of the alternative patterns of relationship but were unable to select one of the eight MPCs as a preferred cladogram. Overall, the relationships within the SCT of the eight MPCs were a significant improvement over those found by equal weighting. Aedini and all existing genera except Ochlerotatus and Aedes were recovered as monophyletic. Ochlerotatus formed a polyphyletic assemblage basal to Aedes. This group included Haemagogus and Psorophora, and also Opifex in a sister‐group relationship with Oc. (Not.) chathamicus. Aedes was polyphyletic relative to seven other genera, Armigeres, Ayurakitia, Eretmapodites, Heizmannia, Udaya, Verrallina and Zeugnomyia. With the exception of Ae. (Aedimorphus), Oc. (Finlaya), Oc. (Ochlerotatus) and Oc. (Protomacleaya), all subgenera with two or more species included in the analysis were recovered as monophyletic. Rather than leave the generic classification of Aedini in its current chaotic state, we decided a reasonable and conservative compromise classification would be to recognize as genera those groups that are ‘weighting independent’, i.e. those that are common to the results of both the EW and IW analyses of the total data. The SCT of these combined analyses resulted in a topology of 29 clades, each comprising between two and nine taxa, and 30 taxa (including Mansonia) in an unresolved basal polytomy. In addition to ten genera (Armigeres, Ayurakitia, Eretmapodites, Haemagogus, Heizmannia, Opifex, Psorophora, Udaya, Verrallina and Zeugnomyia), generic status is proposed for the following: (i) 32 existing subgenera of Aedes and Ochlerotatus, including nine monobasic subgenera within the basal polytomy, i.e. Ae. (Belkinius), Ae. (Fredwardsius), Ae. (Indusius), Ae. (Isoaedes), Ae. (Leptosomatomyia), Oc. (Abraedes), Oc. (Aztecaedes), Oc. (Gymnometopa) and Oc. (Kompia); (ii) three small subgenera within the basal polytomy that are undoubtedly monophyletic, i.e. Ae. (Huaedes), Ae. (Skusea) and Oc. (Levua), and (iii) another 20 subgenera that fall within the resolved part of the SCT, i.e. Ae. (Aedes), Ae. (Alanstonea), Ae. (Albuginosus), Ae. (Bothaella), Ae. (Christophersiomyia), Ae. (Diceromyia), Ae. (Edwardsaedes), Ae. (Lorrainea), Ae. (Neomelaniconion), Ae. (Paraedes), Ae. (Pseudarmigeres), Ae. (Scutomyia), Ae. (Stegomyia), Oc. (Geoskusea), Oc. (Halaedes), Oc. (Howardina), Oc. (Kenknightia), Oc. (Mucidus), Oc. (Rhinoskusea) and Oc. (Zavortinkius). A clade consisting of Oc. (Fin.) kochi, Oc. (Fin.) poicilius and relatives is raised to generic rank as Finlaya, and Downsiomyia Vargas is reinstated from synonymy with Finlaya as the generic name for the clade comprising Oc. (Fin.) leonis, Oc. (Fin.) niveus and their relatives. Three other species of Finlaya?Oc. (Fin.) chrysolineatus, Oc. (Fin.) geniculatus and Oc. (Fin.) macfarlanei? fall within the basal polytomy and are treated as Oc. (Finlaya) incertae sedis. Ochlerotatus (Ochlerotatus) is divided into three lineages, two of which, Oc. (Och.) atropalpus and Oc. (Och.) muelleri, are part of the basal polytomy. The remaining seven taxa of Oc. (Ochlerotatus) analysed, including the type species, form a reasonably well‐supported group that is regarded as Ochlerotatus s.s. Ochlerotatus (Rusticoidus) is retained as a subgenus within Ochlerotatus s.s. Ochlerotatus (Nothoskusea) is recognized as a subgenus of Opifex based on two unique features that support their sister‐group relationship. A new genus, Tanakaius gen. nov. , is proposed for Oc. (Fin.) togoi and the related species Oc. (Fin.) savoryi. The taxonomic status and generic placement of all currently valid species of Aedini are listed in an appendix. © 2004 The Linnean Society of London, Zoological Journal of the Linnean Society, 2004, 142 , 289?368.  相似文献   

11.
Functions of α‐ and β‐branch carotenoids in whole‐plant acclimation to photo‐oxidative stress were studied in Arabidopsis thaliana wild‐type (wt) and carotenoid mutants, lut ein deficient (lut2, lut5), n on‐p hotochemical q uenching1 (npq1) and s uppressor of z eaxanthin‐l ess1 (szl1) npq1 double mutant. Photo‐oxidative stress was applied by exposing plants to sunflecks. The sunflecks caused reduction of chlorophyll content in all plants, but more severely in those having high α‐ to β‐branch carotenoid composition (α/β‐ratio) (lut5, szl1npq1). While this did not alter carotenoid composition in wt or lut2, which accumulates only β‐branch carotenoids, increased xanthophyll levels were found in the mutants with high α/β‐ratios (lut5, szl1npq1) or without xanthophyll‐cycle operation (npq1, szl1npq1). The PsbS protein content increased in all sunfleck plants but lut2. These changes were accompanied by no change (npq1, szl1npq1) or enhanced capacity (wt, lut5) of NPQ. Leaf mass per area increased in lut2, but decreased in wt and lut5 that showed increased NPQ. The sunflecks decelerated primary root growth in wt and npq1 having normal α/β‐ratios, but suppressed lateral root formation in lut5 and szl1npq1 having high α/β‐ratios. The results highlight the importance of proper regulation of the α‐ and β‐branch carotenoid pathways for whole‐plant acclimation, not only leaf photoprotection, under photo‐oxidative stress.  相似文献   

12.
该研究利用RACE ( Rapid amplification of cDNA ends)技术从小蓬中成功分离编码金属硫蛋白( Metal-lothionein,MT)的cDNA序列,命名为NeMT2,在GenBank中登录号为KT835290。该基因全长590 bp,开放阅读框为237 bp,编码78个氨基酸,编码的氨基酸序列中含有14个半胱氨酸残基( Cys,C),呈C-C,C-X-C,C-X-X-C排列,集中分布在肽链的N端和C端,基因编码蛋白的分子量为7.6036 kD,等电点为4.71。系统发育分析表明,小蓬金属硫蛋白NeMT2与藜科的海蓬子( AEF01492)和盐穗木( AHI62953)同源性最高,其次是甜菜( XP 010667708.1)。生物信息学分析表明,金属硫蛋白NeMT2无信号肽结构,属于非跨膜亲水性蛋白;疏水性分析表明,NeMT2蛋白的35~45个氨基酸之间有较强的疏水性,其中第41位Asp具最强的疏水性(1.444);结构预测分析该蛋白质二级结构的主要元件是无规则卷曲。通过RT-PCR对NeMT2基因的表达分析发现, NeMT2基因在铜矿区和非铜矿区的小蓬叶片中均有表达,但该基因在铜矿区小蓬叶片的表达量明显高于非铜矿区。将小蓬NeMT2基因定向克隆到植物表达载体pCAMBIA1300的35S 启动子下游,构建该基因的植物超表达载体pCAMBIA1300+NeMT2。该研究结果为进一步研究该基因的功能和小蓬响应重金属胁迫的分子机制提供了一定基础。  相似文献   

13.
This study demonstrates that self-compatible (SC) peach has mutant versions of S haplotypes that are present in self-incompatible (SI) Prunus species. All three peach S haplotypes, S 1 , S 2 , and S 2m , found in this study encode mutated pollen determinants, SFB, while only S 2m has a mutation that affects the function of the pistil determinant S-RNase. A cysteine residue in the C5 domain of the S 2m -RNase is substituted by a tyrosine residue, thereby reducing RNase stability. The peach SFB mutations are similar to the SFB mutations found in SC haplotypes of sweet cherry (P. avium) and Japanese apricot (P. mume). SFB 1 of the S 1 haplotype, a mutant version of almond (P. dulcis) S k haplotype, encodes truncated SFB due to a 155 bp insertion. SFB 2 of the S 2 and S 2m haplotypes, both of which are mutant versions of the S a haplotype in Japanese plum (P. salicina), encodes a truncated SFB due to a 5 bp insertion. Thus, regardless of the functionality of the pistil determinant, all three peach S haplotypes are SC haplotypes. Our finding that peach has mutant versions of S haplotypes that function in almond and Japanese plum, which are phylogenetically close and remote species, respectively, to peach in the subfamily Prunoideae of the Roasaceae, provides insight into the SC/SI evolution in Prunus. We discuss the significance of SC pollen part mutation in peach with special reference to possible differences in the SI mechanisms between Prunus and Solanaceae.  相似文献   

14.
15.
Lignin-modifying enzymes (LMEs), which include laccases (Lacs), manganese peroxidases (MnPs), versatile peroxidases (VPs), and lignin peroxidases (LiPs), have been considered key factors in lignin degradation by white-rot fungi because they oxidize lignin model compounds and depolymerize synthetic lignin in vitro. However, it remains unclear whether these enzymes are essential/important in the actual degradation of natural lignin in plant cell walls. To address this long-standing issue, we examined the lignin-degrading abilities of multiple mnp/vp/lac mutants of Pleurotus ostreatus. One vp2/vp3/mnp3/mnp6 quadruple-gene mutant was generated from a monokaryotic wild-type strain PC9 using plasmid-based CRISPR/Cas9. Also, two vp2/vp3/mnp2/mnp3/mnp6, two vp2/vp3/mnp3/mnp6/lac2 quintuple-gene mutants, and two vp2/vp3/mnp2/mnp3/mnp6/lac2 sextuple-gene mutants were generated. The lignin-degrading abilities of the sextuple and vp2/vp3/mnp2/mnp3/mnp6 quintuple-gene mutants on the Beech wood sawdust medium reduced drastically, but not so much for those of the vp2/vp3/mnp3/mnp6/lac2 mutants and the quadruple mutant strain. The sextuple-gene mutants also barely degraded lignin in Japanese Cedar wood sawdust and milled rice straw. Thus, this study presented evidence that the LMEs, especially MnPs and VPs, play a crucial role in the degradation of natural lignin by P. ostreatus for the first time.  相似文献   

16.
17.
Six clades are inferred from a phylogenetic analysis including 42 species belonging to the Empis (Coptophlebia) hyalea‐group. These clades are named as follows: E. (C.) acris, E. (C.) aspina, E. (C.) atratata, E. (C.) hyalea, E. (C.) jacobsoni and E. (C.) nahaeoensis. The presence of two dorsal more or less developed epandrial projections is considered autapomorphic for the E. (C.) hyalea‐group in addition to two characters previously found to support the monophyly of this group (presence of an unsclerotized zone in the middle of labella and epandrium unpaired). Amongst the cladistically analysed species, 24 are newly described [ E. ( C. ) acris , E. ( C. ) aspina , E. ( C. ) cameronensis , E. ( C. ) duplex , E. ( C. ) incurva , E. ( C. ) inferiseta , E. ( C. ) kuaensis , E. ( C. ) lachaisei , E. ( C. ) lamellalta , E. ( C. ) lata , E. ( C. ) loici , E. ( C. ) longiseta , E. ( C. ) mengyangensis , E. ( C. ) menglunensis , E. ( C. ) missai , E. ( C. ) nimbaensis , E. ( C. ) padangensis , E. ( C. ) parvula , E. ( C. ) projecta , E. ( C. ) pseudonahaeoensis , E. ( C. ) submetallica , E. ( C. ) urumae , E. ( C. ) vitisalutatoris and E. ( C. ) woitapensis ], five are reviewed [E. (C.) hyalea Melander, E. (C.) jacobsoni De Meijere, E. (C.) ostentator Melander, E. (C.) sinensis Melander and E. (C.) thiasotes Melander] and 13 were recently described in two previous papers. Two additional species, E. (C.) abbrevinervis De Meijere and E. (C.) multipennata Melander, are also reviewed but not included in the cladistic analysis since they are only known from the female. A lectotype is designated for E. (C.) jacobsoni. A key is provided to the six clades of the E. (C.) hyalea‐group as well as to species of each clade. A catalogue of the E. (C.) hyalea‐group, including 72 species, is given. The taxonomic status of 25 additional species mainly described by Bezzi and Brunetti, from the Oriental and Australasian regions, is discussed. The E. (C.) hyalea‐group is firstly recorded from the Palaearctic Region and Australia. Finally, the distribution and the habitats of the species compared with their phylogeny suggest a possible relationship between the diversification of the group and forest fragmentations during the Quaternary. © 2005 The Linnean Society of London, Zoological Journal of the Linnean Society, 2005, 145 , 339–391.  相似文献   

18.
Gas-residence time distribution (RTD) response curves measured in a 23 m high pilot plant airlift tower loop reactor, which consisted of a riser, a special downcomer construction and at the top of the riser a large head. The measurements were evaluated by means of a deterministic dispersion model, which yielded the following particular parameters for the riser, downcomer and the head: Gas-Bo numbers, gas-mean residence times, gas holdups, liquid velocities, gas and liquid circulation times as well as a fraction of the large and small bubbles in a model medium (water) and during cultivation of baker's yeast.List of Symbols A cross section - Bo Bodenstein number - Bo d (= l d w G,d /D d ) - Bo h (= l h w G,h /D h ) - Bo r (= l r w G,r /D r ) - D longitudinal dispersion coefficient - E gas holdup - E(t) RTD-density function - L, l length parameter - q fraction of the gas throughput which is not recirculated (approximately equal to fraction of the large bubbles) - r fraction of the throughput which is recirculated (approximately equal to the fraction of the small bubbles) - t c circulation time - t cL liquid circulation time - t c,L * liquid circulation time calculated from the measured w Ld in the downcomer - V h hydrodynamical calculated gas-liquid volume - V d h (=V d+0.75/2 V k ) - V k h =(0.25V k ) - V r h = (V r+0.75/2 V k ) - V L liquid volume - V G dispersed gas volume - V G * gas throughput at the gas distributor (given in m3/h) under standard conditions, 1 bar and 25°C) - V G,d * gas throughput in downcomer (=V G * ) - V G,h * gas throughput in head (=V G * ) - V G,r * gas throughput in riser (V G * (1+) - w g gas velocity - w G,rel relative gas velocity with respect to the liquid velocity w L - w G,d gas velocity in the downcomer (=w G,rel –w Ld ) - w G,h gas velocity in the head (=w G,rel ) (since wLh = o) - w G,r gas velocity in the riser (=w G,rel +w Lr ) - w L liquid velocity - w L,d liquid velocity in the downcomer measured with mass flow meter - w sg ·w SL superficial gas and liquid velocities - first moment of the response curve - mean residence time Indices d downcomer - G gas phase - h head - L liquid phase - r riser - h hydrodynamic (upper position) Dedicated to the 65th birthday of Proffessor Fritz Wagner.The authors gratefully acknowledge the financial support by the Krupp Industrietechnik, Grevenbroich and the support of Pleser Co, Darmstadt. H. M. Rüffer thanks the Verband der Chemischen Industrie for a Fond der Chemie scholarship, and W. Liwei thanks the government of Lower Saxony for a graduate scholarship.  相似文献   

19.
Pyrus displays gametophytic self-incompatibility controlled by a single highly polymorphic gene complex termed S locus, which comprises a stylar-expressed gene (S-RNase) tighlty linked with a pollen expressed gene, that determines the specificity of the self-incompatibility locus. Deduced amino acid sequence of ‘Meigetsu’ S 8 -RNase in Pyrus pyrifolia and ‘Kuerlexiangli’ S 28 -RNase in P. sinkiangensis showed 100% identity. S 3 -RNase in Malus spectabilis was also found to be similar to S 8 -RNase in P. pyrifolia with 96.9% identity in the deduced amino acid sequence. The intron, which is generally highly polymorphic between alleles, was also remarkably well conserved within these allele pairs. The intron of PpS 8 -RNase showed 95.3 and 91.9% identity with PsS 28 -RNase and MsS 3 -RNase, respectively. Pollen tube growth in styles, pollen tube length in artificial media containing different S-RNases and segregation of S haplotypes in F1 plants revealed commonality of the recognition specificity between PpS 8 -RNase and PsS 28 -RNase and between PpS 8 -RNase and MsS 3 -RNase. Results suggested that PpS 8 -RNase, PsS 28 -RNase and MsS 3 -RNase have maintained the same recognition specificity after the divergence of the two species and that amino acid substitutions found between PpS 8 -RNase and MsS 3 -RNase do not alter the recognition specificity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号