首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Gynoecium diversity and systematics of the Laurales   总被引:4,自引:0,他引:4  
Carpel and ovule structure was comparatively studied in representatives of all eight families of the Laurales: Amborellaceae, Calycanthaceae, Chloranthaceae, Gomortegaceae, Hernandiaceae, Lauraceae, Monimiaceae, and Trimeniaceae. In all representatives the carpels are closed at anthesis. As in Magnoliales/winteroids, closure takes place in three different modes: (1) by postgenital fusion of the stylar (and ovarial) ventral slit (Calycanthaceae, Gomortegaceae, Lauraceae, Hernandiaceae); (2) by occlusion of the inner space by secretion (Amborellaceae, Chloranthaceae, Trimeniaceae, Mollinedioideae of Monimiaceae), all having extremely ascidiate carpels; (3) by a combination of (1) and (2), whereby the ventral slit in the style is postgenitally fused but a central canal remains open, which is filled by secretion (Monimiaceae except Mollinedioideae). The carpels have a single ovule in ventral median placentation; only Calycanthaceae have two lateral ovules, although the upper ovule degenerates. In contrast to Magnoliales/winteroids, several representatives have orthotropous or almost orthotropous ovules (Amborellaceae, Chloranthaceae, Gomortegaceae). Mature ovules vary in length between 425 μm (some Monimiaceae) and 1500 urn (some Calycanthaceae, Trimeniaceae). Although all ovules are crassinucellar, nucellus breadth varies between 60 μm (Chimonanthus, Calycanthaceae) and 500 μm (Hemandia, Hernandiaceae). In almost all representatives the single ovule (two in Calycanthaceae) tightly fills out the ovarial cavity. The micropyle is mostly formed by the inner integument. In a few cases there is no micropyle and the nucellar apex makes direct contact with the inner ovary surface or the funicle (Lauraceae p.p., Calycanthaceae p.p., Hernandiaceae p.p., Monimiaceae p.p.). The ovule is pachychalazal (or perichalazal) in Lauraceae, some Hernandiaceae, and Gomortegaceae. Both integuments are variously lobed or unlobed. The outer integument is semiannular or annular, and this may vary within a family (Calycanthaceae, Hernandiaceae, Monimiaceae); it is also exceedingly diverse in thickness (2–23 cell layers). Gynoecial traits support the association of Chloranthaceae, Trimeniaceae, and Amborellaceae, and also separately Gomortegaceae, Hernandiaceae, and Lauraceae. In addition, affinities of the first group with Schisandraceae, Illiciaceae and Austrobaileyaceae may also be supported.  相似文献   

3.
Embryological characters of Siparunaceae, which are poorly understood, were studied on the basis of two constituent genera, an African Glossocalyx and a South American Siparuna, to better understand their evolution within Laurales. These two genera have many embryological characteristics in common with the other lauralean families. Noticeably, they share the multi-celled ovule archesporium (uncertain in Glossocalyx) as a synapomorphy with all the other lauralean families except Lauraceae, the anthers dehisced by valves as a synspomorphy with all the other lauralean families except Calycanthaceae and Monimiaceae, and the bisporangiate anther as a synapomorphy with Gomortegaceae and Atherospermataceae. Siparunaceae are, however, distinct from all other laularean families in having unitegmic ovules that were derived from bitegmic ovules, probably due to an elimination of the outer integument. Likewise, the lack of the testa (i.e., developed outer integument), the "endotegmic" seed coat, and the perichalazal seed at maturity are also characteristics of Siparunaceae. Within the family, Siparuna differs from Glossocalyx in having plural tetrads of megaspores and plural, starchy-rich, one-nucleate, tubular embryo sacs (autapomorphies). On the other hand, Glossocalyx is characterized by having bilaterally flattened seeds (autapomorphy). Although functional aspects of those autapomorphies are uncertain, both Glossocalyx and Siparuna show evolution in different embryological characters.  相似文献   

4.
The embryological characteristics of Gomortegaceae, which are poorly understood, were investigated on the basis of Gomortega nitida, the only species of the family, to understand better the evolution of this group within Laurales. Comparisons with other Laurales and Magnoliales (a sister group of Laurales) show that Gomortega has many embryological features in common with the other lauralean families. Notably, Gomortega shares a testa without or with at best only a poorly developed mesotesta as a synapomorphy with all other Laurales. The genus further shares anthers dehisced by valves as a synapomorphy with the other Laurales (except for Calycanthaceae and Monimiaceae), and a non-multiplicative testa and bisporangiate anther as synapomorphies with Atherospermataceae and Siparunaceae (although the non-multiplicative testa occurs as a homoplasy in Monimiaceae, and the bisporangiate anther in Monimiaceae pro parte, Lauraceae pro parte and Hernandiaceae, respectively). Gomortega shows simultaneous cytokinesis to form pollen grains, a one-celled ovule archesporium and non-specialized chalaza, all or part of which may be synapomorphies shared with Atherospermataceae. Gomortega appears to have no embryological autapomorphies, but further comparison with Atherospermataceae is required.Kweon Heo and Yukitoshi Kimoto contributed equally to this work.  相似文献   

5.
We present a summary of currently available chromosome information for all seven families in the order Laurales on the basis of original and previously published data and discuss the evolution of chromosomes in this order. Based on a total of 53 genera for which chromosome data were available, basic chromosome numbers appear consistent within families: x = 11 (Calycanthaceae); x = 22 (Atherospermataceae and Siparunaceae); x = 19 (Monimiaceae); and x = 12 and 15 (Lauraceae). The Hernandiaceae have diverse numbers: x = 15 (Gyrocarpoideae) and x = 18 and 20 (Hernandioideae). Karyotype analyses showed that Hennecartia, Kibaropsis, and Matthaea (all Monimiaceae) contained two or three sets of four distinct chromosomes in 38 somatic chromosomes, suggesting that 2n = 38 was derived by aneuploid reduction from 2n = 40, a tetraploid of x = 10. In light of the overall framework of phylogenetic relationships in the Laurales, we show that x = 11 is an archaic base number in the order and is retained in the Calycanthaceae, which are sister to the remainder of the order. Polyploidization appears to have occurred from x = 11 to x = 22 in a common clade of the Siparunaceae, Atherospermataceae, and Gomortegaceae (although 2n = 42 in the Gomortegaceae), and aneuploid reduction from x = 11 to x = 10 occurred in a common clade of the Hernandiaceae, Lauraceae, and Monimiaceae. To understand chromosome evolution in the Lauraceae, however, more studies are needed of genera and species of Cryptocaryeae.  相似文献   

6.
F. Bruce Sampson 《Grana》2013,52(3):135-145
The pollen morphology and ultrastructure of Austromatthaea elegans, Hedycarya angustifolia, H. loxocarya, Kibara rigidifolia, Leviera acuminata, Steganthera macooraia and Tetrasynandra laxiflora, are described. All are Australian members of the Monimiaceae sensu stricto of the order Laurales, subclass Magnoliidae. Except for Hedycarya angustifolia, which has pollen grains in permanent tetrads, all species have small, globose, apolar, inaperturate pollen. They can be identified under SEM by their surface ornamentation: Austromatthaea has fossulate sculpturing; Hedycarya angustifolia has tetrads with a warty configuration; H. loxocarya has echinate pollen; Kibara has spherical gemmae with nipple‐like projections; Leviera has stellate sculpturing; Steganthera has a verrucose surface with small spherical projections on each verruca, and Tetrasynandra is gemmate with one to several spiny projections on each gemma. The pollen grains of all genera of Australian Monimiaceae sensu stricto, some the results of previous studies, are summarized in tabular form. The exine has no columellae, foot layer or endexine, in contrast to the family Atherospermataceae (syn. subfamily Atherospermatoideae of the Monimiaceae, sensu lato). The most elaborate type of wall structure consists of radial elements ("radial processes") with white line‐centered regions extending from beyond the intine to the tectal region and a two‐layered intine with an outer channelled part (onciform zone). Trends of evolution from this type are discussed and comparisons are made with other Monimiaceae, Lauraceae, Amborellaceae and Trimeniaceae.  相似文献   

7.
Aim The biogeography of the tropical plant family Monimiaceae has long been thought to reflect the break‐up of West and East Gondwana, followed by limited transoceanic dispersal. Location Southern Hemisphere, with fossils in East and West Gondwana. Methods We use phylogenetic analysis of DNA sequences from 67 of the c. 200 species, representing 26 of the 28 genera of Monimiaceae, and a Bayesian relaxed clock model with fossil prior constraints to estimate species relationships and divergence times. Likelihood optimization is used to infer switches between biogeographical regions on the highest likelihood tree. Results Peumus from Chile, Monimia from the Mascarenes and Palmeria from eastern Australia/New Guinea form a clade that is sister to all other Monimiaceae. The next‐deepest split is between the Sri Lankan Hortonia and the remaining genera. The African Monimiaceae, Xymalos monospora, then forms the sister clade to a polytomy of five clades: (I) Mollinedia and allies from South America; (II) Tambourissa and allies from Madagascar and the Mascarenes; (III) Hedycarya, Kibariopsis and Leviera from New Zealand, New Caledonia and Australia; (IV) Wilkiea, Kibara, Kairoa; and (V) Steganthera and allies, all from tropical Australasia. Main conclusions Tree topology, fossils, inferred divergence times and ances‐tral area reconstruction fit with the break‐up of East Gondwana having left a still discernible signature consisting of sister clades in Chile and Australia. There is no support for previous hypotheses that the break‐up of West Gondwana (Africa/South America) explains disjunctions in the Monimiaceae. The South American Mollinedia clade is only 28–16 Myr old, and appears to have arrived via trans‐Pacific dispersal from Australasia. The clade apparently spread in southern South America prior to the Andean orogeny, fitting with its first‐diverging lineage (Hennecartia) having a southern‐temperate range. The crown ages of the other major clades (II–V) range from 20 to 29 Ma, implying over‐water dispersal between Australia, New Caledonia, New Zealand, and across the Indian Ocean to Madagascar and the Mascarenes. The endemic genus Monimia on the Mascarenes provides an interesting example of an island lineage being much older than the islands on which it presently occurs.  相似文献   

8.
CLADISTICS OF THE MAGNOLIIDAE   总被引:8,自引:0,他引:8  
Abstract A cladistic resolution is presented for the origin of the angiosperms based on a parsimony analysis of 49 taxa of Magnoliidae. Hamamelidae and Alismatidae, with gymnospermous outgroup comparisons for the polarization of 104 characters. The Magnoliidae is recognized as a paraphyletic assemblage of nine orders: Calycanthales, Magnoliales, Laurales, Illiciales, Lactoridales. Ranunculales, Aristolochiales, Piperales and Nymphaeales. The Calycanthaceae and Idiospermaceae are segregated as the new order Calycanthales, which is hypothesized to be the archetype for angiosperms. Excluding Winteraceae and Lactoridaceae, the Magnoliales is monophyletic. The Austrobaileyaceae is a first branch of Magnoliales, rather than lauralean. Excluding Amborellaceae and Calycanthales, the Laurales is monophyletic. The Chloranthaceae is a first branch of Laurales, rather than piperalean. The Amborellaceae and Winteraceae are early branches of Illiciales. The Lactoridaceae is isolated as the Lactoridales. Including Papaveraceae, the Ranunculales is monophyletic, with Lardizabalaceae as a first branch. The Ranunculales is more closely related to the Hamamelidae, forming the clade Tricolpates. The Aristolochiales, Piperales and Nymphaeales are successively more closely related to the Alismatidae, forming the clade Paleoherbs. The Nelumbonaceae are nymphaealean Paleoherbs, rather than Tricolpates. The Lactoridaceae is not a Paleoherb. These results support many aspects of the strobilar-flower hypothesis for the origin of the angiosperms, as well as the plesiomorphic character states of woody shrubs with simple, pinnatelyveined leaves.  相似文献   

9.
A phylogenetic analysis of a combined data set for 560 angiosperms and seven outgroups based on three genes, 18S rDNA (1855 bp), rbcL (1428 bp), and atpB (1450 bp) representing a total of 4733 bp is presented. Parsimony analysis was expedited by use of a new computer program, the RATCHET. Parsimony jackknifing was performed to assess the support of clades. The combination of three data sets for numerous species has resulted in the most highly resolved and strongly supported topology yet obtained for angiosperms. In contrast to previous analyses based on single genes, much of the spine of the tree and most of the larger clades receive jackknife support 250%. Some of the noneudicots form a grade followed by a strongly supported eudicot clade. The early‐branching angiosperms are Amborellaceae, Nymphaeaceae, and a clade of Austrobaileyaceae, Illiciaceae, and Schi‐sandraceae. The remaining noneudicots, except Ceratophyllaceae, form a weakly supported core eumagnoliid clade comprising six well‐supported subclades: Chloranthaceae, monocots, WinteraceaeICanellaceae, Piperales, Laurales, and Magnoliales. Ceratophyllaceae are sister to the eudicots. Within the well‐supported eudicot clade, the early‐diverging eudicots (e.g. Proteales, Ranunculales, Trochodendraceae, Sabiaceae) form a grade, followed by the core eudicots, the monophyly of which is also strongly supported. The core eudicots comprise six well‐supported subclades: (1) Berberidopsidaceae/Aextoxicaceae; (2) Myrothamnaceae/ Gunneraceae; (3) Saxifragales, which are the sister to Vitaceae (including Leea) plus a strongly supported eurosid clade; (4) Santalales; (5) Caryophyllales, to which Dilleniaceae are sister; and (6) an asterid clade. The relationships among these six subclades of core eudicots do not receive strong support. This large data set has also helped place a number of enigmatic angiosperm families, including Podostemaceae, Aphloiaceae, and Ixerbaceae. This analysis further illustrates the tractability of large data sets and supports a recent, phylogenetically based, ordinal‐level reclassification of the angiosperms based largely, but not exclusively, on molecular (DNA sequence) data.  相似文献   

10.
We investigated the embryology of the ‘lower’ monimioids, i.e. Monimioideae (Monimia, Palmeria and Peumus) and Hortonioideae (Hortonia), which are poorly described embryologically. Our results show that, contrary to what has been reported in the literature, ‘lower’ monimioids show very little variation in their embryological characters. Comparisons with Mollinedioideae (a large derived subfamily in Monimiaceae) and other families in Laurales show that the ‘lower’ monimioids are relatively consistent in sharing predominantly isobilateral tetrads of microspores and megaspores, a non‐specialized chalaza, and a mesotestal–endotestal seed coat (with tracheoidal cells of the meso‐ and endotesta). It is likely that, while the shared successive cytokinesis during meiosis of microspore mother cells supports the Monimiaceae–Hernandiaceae–Lauraceae clade obtained by molecular evidence, no synapomorphies exist to support a sister‐group relationship of Monimiaceae with Hernandiaceae or Lauraceae. Instead, the lack of hypostase in ovules and/or young seeds, the lack of endosperm in mature seeds and the amoeboid tapetum in the anther are likely synapomorphies of Hernandiaceae and Lauraceae. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 228–241.  相似文献   

11.
Aim To investigate the historical biogeography of the pantropical flowering plant family Hernandiaceae (Laurales), which today comprises 62 species in five genera. Location Hernandiaceae occur in Africa (9 species), Madagascar (4), the Neotropics (25), Australia (3), southern China, Indochina, Malesia, and on numerous Pacific Islands (32). These numbers include two widespread species, Hernandia nymphaeifolia, which ranges from East Africa to the Ogasawara Islands and New Caledonia, and Gyrocarpus americanus, thought to have a pantropical range. Methods We sampled 37 species from all genera, the widespread ones with multiple accessions, for a chloroplast DNA matrix of 2210 aligned nucleotides, and used maximum likelihood to infer species relationships. Divergence time estimation relied on an uncorrelated‐rates relaxed molecular clock calibrated with outgroup fossils of Lauraceae and Monimiaceae. Results The deepest split in the family is between a predominantly African–Madagascan–Malesian lineage comprising Hazomalania, Hernandia and Illigera, and an African–Neotropical lineage comprising Gyrocarpus and Sparattanthelium; this split may be 122 (110–134) Myr old. The stem lineages of the five genera date back at least to the Palaeocene, but six splits associated with transoceanic range disjunctions date only to the Oligocene and Miocene, implying long‐distance dispersal. It is inferred that Hernandia beninensis reached the West African islands of São Tomé and Bioko from the West Indies or the Guianas; Hernandia dispersed across the Pacific; and Illigera madagascariensis reached Madagascar from across the Indian Ocean. Main conclusions The disjunct ranges and divergence times of sister clades in the Hernandiaceae are partly congruent with the break‐up of West Gondwana, but mostly with later transoceanic dispersal. An exceptional ability to establish following prolonged oceanic dispersal may be largely responsible for the evolutionary persistence of this small clade.  相似文献   

12.
Urtica L. (Urticaceae) is generally reported as a genus of monoecious and dioecious taxa. However, the gender information found in the literature does not at all reflect the actual diversity of gender patterns in Urtica. Dioecy appears to be truly absent from Urtica, but otherwise there has been a major diversification in the geometry of gender and no comparable patterns exist in other plant groups. Thus, we here define technical terms for all unique architectural types of monoecy found in Urtica and closely related genera and reconstruct the ancestral gender states in a Bayesian framework. Our studies are based on a near‐comprehensive sampling, including 61 of the 63 Urtica species recognized. We report polygamy, two types of gynodioecy and five different architectural types of monoecy. A total of 15 switches appear to have taken place within the genus. Although gender characteristics have diversified strongly, they are relatively conserved within clades. Monoecy is the predominant sexual system within Urtica and specifically basiandrous monoecy (i.e. basal inflorescence branches of each individual male only, apical branches female) is the most widespread type, reported for 11 different clades. In particular, it characterizes the basally branching pilulifera‐clade and the sister genus Zhengyia, and may thus represent the plesiomorphic condition for Urtica. Gender distribution and gross morphology appear to evolve largely independently from each other and gender distribution is largely independent of growth habit. However, polygamous taxa are most common amongst rhizomatous perennials (one‐third of the taxa).  相似文献   

13.
Embryology and relationships of Lauraceae (Laurales)   总被引:2,自引:0,他引:2  
Embryology of Lauraceae, hitherto poorly known, was investigated on the basis of 35 species from 23 genera to contribute to a better understanding of familial and generic relationships. Data from the genera investigated and from the literature show that the genera of Lauraceae are very similar embryologically, but that differences do exist in a few characters among the genera. Based on comparisons with other families of Laurales, Lauraceae consistendy had a pachychalazal ovule or seed with a ramified raphal vascular bundle at chalaza (an apomorphy) in common with Hernandiaceae. However, since several core lauralean families such as Amborellaceae, Monimiaceae, and Gomortegaceae are little known embryologically, these must be studied for critical comparison. Wimin Lauraceae, Cassytha is clearly distinct from the rest of the family in having an ab initio cellular type endosperm (a plesiomorphy, also reported in Umbellularia ) instead of a nuclear type endosperm (an apomorphy) as in the rest of the family, in lacking the nucellar cap and in having the micropyle formed by bom the inner and outer integument, facts supporting the traditional taxonomic placement of Cassytha in its own subfamily and the remainder of the family in the other subfamily. Widiin the rest of the family, the amoeboid tapetum (an apomorphy) distinguishes 15 genera ( Actinodaphne, Cinnamomum, Laurus , etc.) from the six genera with the glandular tapetum. In addition, a mature embryo sac protruding from the nucellus (an apomorphy) distinguishes five genera ( Beibchmiedia, Caryodaphnopsis, Cryptocarya, Endiandra, Potamria) and one species of Ocotea (O. rubra ) from the rest of the family. These results can properly be incorporated in a future suprageneric classification. The distinctness of Ocotea rubra wimin the genus is also discussed.  相似文献   

14.
Comparative morphological studies of woody Ranales have established the primitive status of the group and hence their key place in angiosperm phylogeny. Significant advances in our knowledge of some ranalian families have been made in recent years. An attempt is made in the present review to bring together a range of morphological data (vegetative and floral anatomy, palynology and embryology) on the Ranales (sensu lato), with particular reference to research work published after the publication of Eames's (1961) book, and to discuss the relationships of the families. Recent ontogenetic studies have shown that the carpel of Drimys is ascidial and not conduplicate as earlier suggested. The inclusion of Degeneria in the Winteraceae is not supported by morphological data. Melville's gonophyll theory has been shown to be inapplicable to the magnoliaceous flower. The pollen of Schisandra is interpreted as derived and specialized rather than primitive as previously supposed. The removal of Schisandra from Magnoliaceae is upheld by morphological evidence. Recent morphological studies do not support a close relationship between Schisandraceae and Illiciaceae suggested by earlier authors. The Canellaceae shows similarities to Winteraceae, Magnoliaceae, Illiciaceae, Eupteleaceae and Myristicaceae. Transitional types of division of pollen mother cells found in Winteraceae, Schisandraceae and Annonaceae and their probable phylogenetic significance have been discussed. The Annonaceae, Winteraceae, Degeneriaceae, Magnoliaceae, Schisandraceae and Cercidiphyllaceae share several embryological features in addition to similarities in floral structure. Ruminate endosperm is regarded either as an archaic feature retained in some taxa or as a later and parallel development in others. Thus its value in assessing relationships seems to be doubtful. Myristicaceae has been shown to be closely related neither to the the Annonaceae nor to the Lauraceae. The suggested relationship of Eupomatiaceae to Annonaceae is not supported by palynology. Floral cortical vascular systems in Magnoliaceae, Annonaceae, Calycanthaceae and Myristicaceae have been compared and it is concluded that they may be vestigial structures. A great deal of similarity has been found between Lauraceae and Calycanthaceae in wood, node, flower structure and embryology. Further floral anatomical evidence has been adduced to support the removal of Scyphostegia from Monimiaceae. The Hernandiaceae show similarities to some members of Monimiaceae while the Gyrocarpaceae resemble the Lauraceae, Gomortegaceae and certain other genera of Monimiaceae. Available evidence from wood and floral anatomy and embryology indicates close relationships among Lauraceae, Monimiaceae and Hernandiaceae. Vegetative and floral anatomical and embryological data seem to indicate a place for the Chloranthaceae in the ranalian complex. Recent anatomical studies in the Nymphaeaceae show that the floral structure is of a primitive type with similarities to the woody Ranales. Available morphological evidence is considered inadequate to express an opinion on the splitting of the family. Ceratophyllaceae is regarded as a highly reduced ranalian family derived most probably from a nymphaeaceous stock. The gynoecium in Berberidaceae is interpreted as monocarpellate. No evidence has been found to support the tricarpellate view. Berberidaceae, Lardizabalaceae and Menispermaceae share several embryological features, while at the same time showing evidence of specialization, each in its own way. Thus they might have arisen from a common stock and early diverged along different lines. The occurrence of several types of embryo sac in Ranunculaceae may well be an indication of specialization, but their probable taxonomic value, if any, is not yet clear. The occurrence of numerous primitive features in Paeonia has been suggested as an argument for its retention in the Ranales. No evidence has been found to preclude the inclusion of Dilleniaceae in the Ranales. On the other hand, as opposed to similarities in wood and pollen characters between Dilleniaceae and Theaceae, floral anatomical and embryological features offer a sharp contrast between the two. The Ranales are believed to be polyphyletic. It has been tentatively suggested that two major phyletic lines may be recognized in each of the woody and herbaceous series: the magnolialian and lauralian lines in the former and the nymphaealian and berberidalian lines in the latter.  相似文献   

15.
In this analysis, we attempt to understand how monoecy and dioecy drive spatial genetic structure (SGS) in plant populations. For this purpose, plants of the genus Ficus were used as a comparative model due to their particular characteristics, including high species diversity, variation in life histories, and sexual systems. One of the main issues we assessed is whether dioecious fig tree populations are more spatially genetically structured than monoecious populations. Using the Sp statistic, which allows for quantitative comparisons among different studies, we compared the extent of SGS between monoecious and dioecious Ficus species. To broaden our conclusions we used published data on an additional 27 monoecious and dioecious plant species. Furthermore, genetic diversity analyses were performed for two monoecious Ficus species using 12 microsatellite markers in order to strengthen our conclusions about SGS. Our results show that dioecy, more than monoecy, significantly contributes to SGS in plant populations. On average, the estimate of Sp was six times higher for dioecious Ficus species than monoecious Ficus species and it was two times higher in dioecious than monoecious plant species. Considering these results, we emphasize that the long‐distance pollen dispersal mechanism in monoecious Ficus species seems to be the dominant factor in determining weak spatial genetic structure, high levels of genetic diversity, and lack of inbreeding. Although Ficus constitute a model species to study SGS, a more general comparison encompassing a wider range of plants is required in order to better understand how sexual systems affect genetic structure.  相似文献   

16.

Background and Aims

About 6 % of an estimated total of 240 000 species of angiosperms are dioecious. The main precursors of this sexual system are thought to be monoecy and gynodioecy. A previous angiosperm-wide study revealed that many dioecious species have evolved through the monoecy pathway; some case studies and a large body of theoretical research also provide evidence in support of the gynodioecy pathway. If plants have evolved through the gynodioecy pathway, gynodioecious and dioecious species should co-occur in the same genera. However, to date, no large-scale analysis has been conducted to determine the prevalence of the gynodioecy pathway in angiosperms. In this study, this gap in knowledge was addressed by performing an angiosperm-wide survey in order to test for co-occurrence as evidence of the gynodioecy pathway.

Methods

Data from different sources were compiled to obtain (to our knowledge) the largest dataset on gynodioecy available, with 275 genera that include at least one gynodioecious species. This dataset was combined with a dioecy dataset from the literature, and a study was made of how often dioecious and gynodioecious species could be found in the same genera using a contingency table framework.

Key Results

It was found that, overall, angiosperm genera with both gynodioecious and dioecious species occur more frequently than expected, in agreement with the gynodioecy pathway. Importantly, this trend holds when studying different classes separately (or sub-classes, orders and families), suggesting that the gynodioecy pathway is not restricted to a few taxa but may instead be widespread in angiosperms.

Conclusions

This work complements that previously carried out on the monoecy pathway and suggests that gynodioecy is also a common pathway in angiosperms. The results also identify angiosperm families where some (or all) dioecious species may have evolved from gynodioecious precursors. These families could be the targets of future small-scale studies on transitions to dioecy taking phylogeny explicitly into account.  相似文献   

17.
Strutzenberger, P., Brehm, G., Bodner, F. & Fiedler K. (2010). Molecular phylogeny of Eois (Lepidoptera, Geometridae): evolution of wing patterns and host plant use in a species‐rich group of Neotropical moths. —Zoologica Scripta, 39, 603–620. Eois is a pantropical genus of Geometridae moths with currently 250 valid described species, the majority of which occur in the Neotropics. Eois is a prominent component of Andean moth communities locally accounting for up to ~10% of geometrid individuals. We address the evolution of wing patterns and host plant use in Neotropical Eois and provide a preliminary assessment on the monophyly and biogeographic history of the entire genus as well as affinities within the subfamily Larentiinae. We applied Bayesian, maximum likelihood and maximum parsimony methods of phylogenetic reconstruction to a 142 taxon dataset of partial COI (1220 bp) and Ef1α (1066 bp) sequences resulting in the largest taxon set of geometrid moths analyzed in a molecular phylogenetic study so far. Monophyly of Eois was always strongly supported. Ten monophyletic clades were found with good support, seven of which have characteristic wing pattern phenotypes. Only one wing pattern type occurs in two clades. Trophic associations with representatives of the family Piperaceae occur in all 8 (of 9) Neotropical clades for which host information is available. Apart from feeding on Piper, at least two Eois species in Ecuador feed on Peperomia, and one on Manekia (all Piperaceae); two further species live on Hedyosmum (Chloranthaceae). Species feeding on Peperomia, Manekia and Hedyosmum are usually nested in Piper‐associated clades. Single records of associations with Gesneriaceae and Monimiaceae are scattered in otherwise Piperaceae‐associated clades. These patterns suggest multiple parallel host shifts away from Piper as ancestral food plant. Old World Eois were recovered as monophylum and sister to Neotropical Eois. Within the subfamily Larentiinae the genus Eois has previously been placed close to the tribe Eupitheciini, but this was not supported in our phylogenetic analyses.  相似文献   

18.
Fruit structure (anatomy) was studied in 27 species of 15 genera of Monimiaceae s.s. Almost all have apocarpous gynoecia, with the carpels more or less surrounded by a floral cup. The fruitlets are presented on the opened floral cup, which, depending on its pre‐ and post‐floral development, differentially contributes to the attractive part of the mature fruit. Morphologically similar fruits may differ conspicuously in anatomical structure. Based on anatomical characters two different fruit forms were found: drupe(let)s (with compact sclerenchymatic endocarp forming a stone: putamen) and berry(let)s (with parenchymatic endocarp, and mesocarp parenchyma containing isolated sclereid nests). Four types of drupelets differing by the endocarp structure were tentatively distinguished: (1) the Monimia‐type has a many‐cell‐layered putamen of large isodiametric sclereids, interrupted on the ventral side by few radial rows of small sclereids; (2) the Hortonia‐type has a few‐cell‐layered putamen of isodiametric, especially thick‐walled sclereids – it may be composed of two lateral halves, i.e. with the sclerenchyma partially interrupted on the ventral and dorsal sides (but without rows of small sclereids); (3) the Mollinedia‐type has a few‐cell‐layered putamen, with more or less radially elongate sclereids with wavy cell walls; and (4) the Hedycarya‐type has a one‐cell‐layered putamen of pronouncedly radially elongate sclereids with wavy cell walls. Drupelets of some taxa with a single‐cell‐layered endocarp with only weakly thickened cell walls may represent a transition from drupelets to berrylets. The fruit structure supports three major clades recognized earlier by morphological studies and by molecular phylogenetic analyses: (1) Monimioideae (Monimia‐type drupelets), (2) Hortonieae of Mollinedioideae (Hortonia‐type drupelets), and (3) the remainder of Mollinedioideae (Hedycarya‐ and Mollinedia‐types) and berrylets. Fruit structure also supports the close relationship of Monimiaceae and Lauraceae. © 2007 The Linnean Society of London, Botanical Journal of the Linnean Society, 2007, 153 , 265–285.  相似文献   

19.
Molecular phylogenetic studies were carried out based on ITS-5.8S rDNA, the D1–D2 region of the large subunit rRNA gene, RPB2, and combined data of D1–D2 and RPB2 as well as these three genes on 36 species among 7 genera for Lachnum and allied genera in the family Hyaloscyphaceae. In the combined data of all three regions, seven strongly supported clades were obtained. The same clades were also recognized in most of the trees based on each gene, and the combined data of D1–D2 and RPB2, although some of them were not strongly supported. Four clades represented Albotricha, Brunnipila, Incrucipulum, and Lachnellula, respectively, whereas Lachnum was distributed to the remaining three clades. The molecular phylogenies strongly supported a group of species with granulate hairs, and we suggest the concept of Lachnaceae should be restricted to these species. Based on the molecular phylogenetic analysis, three new combinations—Incrucipulum longispineum, I. radiatum, and Lachnellula pulverulentum from Lachnum—are proposed.  相似文献   

20.
Considerable effort has been spent documenting correlations between dioecy and various ecological and morphological traits for the purpose of testing hypotheses about conditions that favor dioecy. The data analyzed in these studies, with few exceptions, come from local floras, within which it was possible to contrast the subsets of dioecious and nondioecious taxa with regard to the traits in question. However, if there is a strong phylogenetic component to the presence or absence of dioecy, regional sampling may result in spurious associations. Here, we report results of a categorical multivariate analysis of the strengths of various associations of dioecy with other traits over all flowering plants. Families were scored for presence of absence of monoecy or dioecy, systematic position, numbers of species and genera, growth forms, modes of pollination and dispersal, geographic distribution, and trophic status. Seven percent of angiosperm genera (959 of 13,500) contain at least some dioecious species, and ≈6% of angiosperm species (14,620 of 240,000) are dioecious. The most consistent associations in the data set relate the presence of dioecy to monoecy, wind or water pollination, and climbing growth. At both the family and the genus level, insect pollination is underrepresented among dioecious plants. At the family level, a positive correlation between dioecy and woody growth results primarily from the association between dioecy and climbing growth (whether woody or herbaceous) because neither the tree nor the shrub growth forms alone are consistently correlated with a family's tendency to include dioecious members. Dioecy appears to have evolved most frequently via monoecy, perhaps through divergent adjustments of floral sex ratios between individual plants. Monoecy itself is related to abiotic pollination and climbing growth as revealed by multivariate analysis. Dioecy and monoecy are concentrated in the less advanced superorders of Thorne (1992) and subclasses of Cronquist (1988). The frequency of dioecy found in a local flora therefore reflects the level of dioecy in its particular pool of families as much as, or more than, local selective factors. The positive associations of dioecy with abiotic pollination and monoecy are related to floral developmental and morphological attributes, as is the negative association with bird and bat pollination; the positive association of dioecy with climbing growth is tentatively explained in terms of differential selection for optimal resource allocation to sexual function. If rapid upward growth is at a premium in climbers and if fruit set at least temporarily inhibits growth or requires the production of thicker, more slowly growing stems to support heavy fruits, it might be advantageous to postpone femaleness. If the effect is strong, this may favor male plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号