首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Affibody molecules, 58-amino acid three-helix bundle proteins directed to different targets by combinatorial engineering of staphylococcal protein A, were used as capture ligands on protein microarrays. An evaluation of slide types and immobilization strategies was performed to find suitable conditions for microarray production. Two affibody molecules, Z(Taq) and Z(IgA), binding Taq DNA polymerase and human IgA, respectively, were synthesized by solid phase peptide synthesis using an orthogonal protection scheme, allowing incorporation of selective immobilization handles. The resulting affibody variants were used for random surface immobilization (through amino groups) or oriented surface immobilization (through cysteine or biotin coupled to the side chain of Lys58). Evaluation of the immobilization techniques was carried out using both a real-time surface plasmon resonance biosensor system and a microarray system using fluorescent detection of Cy3-labeled target protein. The results from the biosensor analyses showed that directed immobilization strategies significantly improved the specific binding activity of affibody molecules. However, in the microarray system, random immobilization onto carboxymethyl dextran slides and oriented immobilization onto thiol dextran slides resulted in equally good signal intensities, whereas biotin-mediated immobilization onto streptavidin-coated slides produced slides with lower signal intensities and higher background staining. For the best slides, the limit of detection was 3 pM for IgA and 30 pM for Taq DNA polymerase.  相似文献   

2.
Affibody molecules constitute a class of engineered binding proteins based on the 58-residue three-helix bundle Z domain derived from staphylococcal protein A (SPA). Affibody proteins are selected as binders to target proteins by phage display of combinatorial libraries in which typically 13 side-chains on the surface of helices 1 and 2 in the Z domain have been randomized. The Z(Taq):anti-Z(Taq) affibody-affibody complex, consisting of Z(Taq), originally selected as a binder to Taq DNA polymerase, and anti-Z(Taq), selected as binder to Z(Taq), is formed with a dissociation constant K(d) approximately 100 nM. We have determined high-precision solution structures of free Z(Taq) and anti-Z(Taq), and the Z(Taq):anti-Z(Taq) complex under identical experimental conditions (25 degrees C in 50 mM NaCl with 20 mM potassium phosphate buffer at pH 6.4). The complex is formed with helices 1 and 2 of anti-Z(Taq) in perpendicular contact with helices 1 and 2 of Z(Taq). The interaction surface is large ( approximately 1670 A(2)) and unusually non-polar (70 %) compared to other protein-protein complexes. It involves all varied residues on anti-Z(Taq), most corresponding (Taq DNA polymerase binding) side-chains on Z(Taq), and several additional side-chain and backbone contacts. Other notable features include a substantial rearrangement (induced fit) of aromatic side-chains in Z(Taq) upon binding, a close contact between glycine residues in the two subunits that might involve aliphatic glycine Halpha to backbone carbonyl hydrogen bonds, and four hydrogen bonds made by the two guanidinium N(eta)H(2) groups of an arginine side-chain. Comparisons of the present structure with other data for affibody proteins and the Z domain suggest that intrinsic binding properties of the originating SPA surface might be inherited by the affibody binders. A thermodynamic characterization of Z(Taq) and anti-Z(Taq) is presented in an accompanying paper.  相似文献   

3.
Affibody binding proteins are selected from phage-displayed libraries of variants of the 58 residue Z domain. Z(Taq) is an affibody originally selected as a binder to Taq DNA polymerase. The anti-Z(Taq) affibody was selected as a binder to Z(Taq) and the Z(Taq):anti-Z(Taq) complex is formed with a dissociation constant K(d)=0.1 microM. We have determined the structure of the Z(Taq):anti-Z(Taq) complex as well as the free state structures of Z(Taq) and anti-Z(Taq) using NMR. Here we complement the structural data with thermodynamic studies of Z(Taq) and anti-Z(Taq) folding and complex formation. Both affibody proteins show cooperative two-state thermal denaturation at melting temperatures T(M) approximately 56 degrees C. Z(Taq):anti-Z(Taq) complex formation at 25 degrees C in 50 mM NaCl and 20 mM phosphate buffer (pH 6.4) is enthalpy driven with DeltaH degrees (bind) = -9.0 (+/-0.1) kcal mol(-1)(.) The heat capacity change DeltaC(P) degrees (,bind)=-0.43 (+/-0.01) kcal mol(-1) K(-1) is in accordance with the predominantly non-polar character of the binding surface, as judged from calculations based on changes in accessible surface areas. A further dissection of the small binding entropy at 25 degrees C (-TDeltaS degrees (bind) = -0.6 (+/-0.1) kcal mol(-1)) suggests that a favourable desolvation of non-polar surface is almost completely balanced by unfavourable conformational entropy changes and loss of rotational and translational entropy. Such effects can therefore be limiting for strong binding also when interacting protein components are stable and homogeneously folded. The combined structure and thermodynamics data suggest that protein properties are not likely to be a serious limitation for the development of engineered binding proteins based on the Z domain.  相似文献   

4.
Eklund M  Axelsson L  Uhlén M  Nygren PA 《Proteins》2002,48(3):454-462
Three pairs of small protein domains showing binding behavior in analogy with anti-idiotypic antibodies have been selected using phage display technology. From an affibody protein library constructed by combinatorial variegation of the Fc binding surface of the 58 residue staphylococcal protein A (SPA)-derived domain Z, affibody variants have been selected to the parental SPA scaffold and to two earlier identified SPA-derived affibodies. One selected affibody (Z(SPA-1)) was shown to recognize each of the five domains of wild-type SPA with dissociation constants (K(D)) in the micromolar range. The binding of the Z(SPA-1) affibody to its parental structure was shown to involve the Fc binding site of SPA, while the Fab-binding site was not involved. Similarly, affibodies showing anti-idiotypic binding characteristics were also obtained when affibodies previously selected for binding to Taq DNA polymerase and human IgA, respectively, were used as targets for selections. The potential applications for these types of affinity pairs were exemplified by one-step protein recovery using affinity chromatography employing the specific interactions between the respective protein pair members. These experiments included the purification of the Z(SPA-1) affibody from a total Escherichia coli cell lysate using protein A-Sepharose, suggesting that this protein A/antiprotein A affinity pair could provide a basis for novel affinity gene fusion systems. The use of this type of small, robust, and easily expressed anti-idiotypic affibody pair for affinity technology applications, including self-assembled protein networks, is discussed.  相似文献   

5.
The possibility of increasing the affinity of a Taq DNA polymerase specific binding protein (affibody) was investigated by an alpha-helix shuffling strategy. The primary affibody was from a naive combinatorial library of the three-helix bundle Z domain derived from staphylococcal protein A. A hierarchical library was constructed through selective re-randomization of six amino acid positions in one of the two alpha-helices of the domain, making up the Taq DNA polymerase binding surface. After selections using monovalent phage display technology, second generation variants were identified having affinities (K(D)) for Taq DNA polymerase in the range of 30-50 nM as determined by biosensor technology. Analysis of binding data indicated that the increases in affinity were predominantly due to decreased dissociation rate kinetics. Interestingly, the affinities observed for the second generation Taq DNA polymerase specific affibodies are of similar strength as the affinity between the original protein A domain and the Fc domain of human immunoglobulin G. Further, the possibilities of increasing the apparent affinity through multimerization of affibodies was demonstrated for a dimeric version of one of the second generation affibodies, constructed by head-to-tail gene fusion. As compared with its monomeric counterpart, the binding to sensor chip immobilized Taq DNA polymerase was characterized by a threefold higher apparent affinity, due to slower off-rate kinetics. The results show that the binding specificity of the protein A domain can be re-directed to an entirely different target, without loss of binding strength.  相似文献   

6.
The Förster resonance energy transfer (FRET) technique is widely used for studying protein interactions within live cells. The effectiveness and sensitivity of determining FRET, however, can be reduced by photobleaching, cross talk, autofluorescence, and unlabeled, endogenous proteins. We present a FRET imaging method using an optical switch probe, Nitrobenzospiropyran (NitroBIPS), which substantially improves the sensitivity of detection to <1% FRET efficiency. Through orthogonal optical control of the colorful merocyanine and colorless spiro states of the NitroBIPS acceptor, donor fluorescence can be measured both in the absence and presence of FRET in the same FRET pair in the same cell. A SNAP-tag approach is used to generate a green fluorescent protein-alkylguaninetransferase fusion protein (GFP-AGT) that is labeled with benzylguanine-NitroBIPS. In vivo imaging studies on this green fluorescent protein-alkylguaninetransferase (GFP-AGT) (NitroBIPS) complex, employing optical lock-in detection of FRET, allow unambiguous resolution of FRET efficiencies below 1%, equivalent to a few percent of donor-tagged proteins in complexes with acceptor-tagged proteins.  相似文献   

7.
The thermostable properties of the DNA polymerase activity from Thermus aquaticus (Taq) have contributed greatly to the yield, specificity, automation, and utility of the polymerase chain reaction method for amplifying DNA. We report the cloning and expression of Taq DNA polymerase in Escherichia coli. From a lambda gt11:Taq library we identified a Taq DNA fragment encoding an epitope of Taq DNA polymerase via antibody probing. The fusion protein from the lambda gt11:Taq candidate selected an antibody from an anti-Taq polymerase polyclonal antiserum which reacted with Taq polymerase on Western blots. We used the lambda gt11 clone to identify Taq polymerase clones from a lambda Ch35:Taq library. The complete Taq DNA polymerase gene has 2499 base pairs. From the predicted 832-amino acid sequence of the Taq DNA polymerase gene, Taq DNA polymerase has significant similarity to E. coli DNA polymerase I. We subcloned and expressed appropriate portions of the insert from a lambda Ch35 library candidate to yield thermostable, active, truncated, or full-length forms of the protein in E. coli under control of the lac promoter.  相似文献   

8.
The development of a dual receptor detection method for enhanced biosensor monitoring was investigated by analyzing potential fluorescent resonance energy transfer (FRET) pairs. The dual receptor scheme requires the integration of a chemical transducer system with two unique protein receptors that bind to a single biological agent. The two receptors are tagged with special molecular groups (donors and acceptors fluorophores) while the chemical transduction system relies on the well-known mechanisms of FRET. During the binding event, the two FRET labeled receptors dock at the binding sites on the surface of the biological agent. The resulting close proximity of the two fluorophores upon binding will initiate the energy transfer resulting in fluorescence. The paper focuses on the analysis and optimization of the chemical transduction system. A variety of FRET fluorophore pairs were tested in a spectrofluorimeter and promising FRET pairs were then tagged to the protein, avidin and its ligand, biotin. Due to their affinities, the FRET-tagged biomolecules combine in solution, resulting in a stable, fluorescent signal from the acceptor FRET dye with a simultaneous decrease in fluorescent signal from the donor FRET dye. The results indicate that the selected FRET pairs can be utilized in the development of dual receptor sensors.  相似文献   

9.
We sought to develop a novel competitive fluorescence resonance energy transfer (FRET)-aptamer-based strategy for detection of foot-and-mouth (FMD) disease within minutes. A 14-amino-acid peptide from the VP1 structural protein, which is conserved among 16 strains of O-serotype FMD virus, was synthesized and labeled with Black Hole Quencher-2 (BHQ-2) dye. Polyclonal FMD DNA aptamers were labeled with Alexa Fluor 546-14-dUTP by polymerase chain reaction and allowed to bind the BHQ-2-peptide conjugate. Following purification of the FRET–aptamer–peptide complex, a “lights off” response was observed within 10 minutes and was sensitive to a level of 25–250 ng/mL of FMD peptide. Ten candidate aptamers were sequenced from the polyclonal family. The aptamer candidates were screened in an enzyme-based plate assay. A high- and low-affinity aptamer candidate were each labeled with Alexa Fluor 546-14-dUTP by asymmetric polymerase chain reaction and used in the competitive FRET assay, but neither matched the sensitivity of the polyclonal FRET response, indicating the need for further screening of the aptamer library.  相似文献   

10.
Fluorescence resonance energy transfer (FRET) using fluorescent protein variants are used for studying the associations and biomolecular motions of macromolecules inside the cell. Intramolecular FRET utilizing fluorescent chemical labels has been applied in nucleic acid chemistry for detection of specific sequence. However, the biotechnological applications of intramolecular FRET in fluorescent proteins have not been exploited. This study demonstrates the intramolecular FRET between fluorescent protein and conjugated chemical label whereby FRET occurs from inside to outside and vice versa for fluorescent protein. The fluorescent protein is modified for the attachment of chemical fluorophores and the novel FRET pairs created by conjugation are MDCC (435/475)-Citrine (516/529) and Citrine-Alexa fluor (568/603). These protein-label pairs exhibited strong intramolecular FRET and the energy transfer efficiency was determined based on the time evolution of the ratio of emission intensities of labeled and unlabeled proteins. The efficiency was found to be 0.79 and 0.89 for MDCC-Citrine and 0.24 and 0.65 for Citrine-Alexa Fluor pairs when the label is conjugated at different sites in the protein. Fo?rster distance and the average distance between the fluorophores were also determined. The bidirectional approach described here can provide new insights into designing FRET-based sensors.  相似文献   

11.
Fluorescence resonance energy transfer (FRET) detects the proximity of fluorescently labeled molecules over distances >100 A. When performed in a fluorescence microscope, FRET can be used to map protein-protein interactions in vivo. We here describe a FRET microscopy method that can be used to determine whether proteins that are colocalized at the level of light microscopy interact with one another. This method can be implemented using digital microscopy systems such as a confocal microscope or a wide-field fluorescence microscope coupled to a charge-coupled device (CCD) camera. It is readily applied to samples prepared with standard immunofluorescence techniques using antibodies labeled with fluorescent dyes that act as a donor and acceptor pair for FRET. Energy transfer efficiencies are quantified based on the release of quenching of donor fluorescence due to FRET, measured by comparing the intensity of donor fluorescence before and after complete photobleaching of the acceptor. As described, this method uses Cy3 and Cy5 as the donor and acceptor fluorophores, but can be adapted for other FRET pairs including cyan fluorescent protein and yellow fluorescent protein.  相似文献   

12.
13.
Genetically encoded fluorescence resonance energy transfer (FRET) indicators are powerful tools for real-time detection of second messenger molecules and activation of signal proteins. However, these fluorescent protein-based sensors typically display marginal FRET efficiency. To improve their FRET efficiency for optical imaging and screening, we developed a number of fluorescent protein mutants based on cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP). To improve FRET ratios, which were initially within a narrow dynamic range, we used DNA shuffling to develop a new FRET pair called 3xCFP/Venus. The optimized 3xCFP/Venus pair exhibited higher FRET ratios than CyPet/YPet, which has one of the greatest dynamic ranges of protein-based FRET pairs. We converted this FRET pair to a Ca(2+) FRET indicators using circular permutation Venus (cpVenus) linked with 3xCFP to form 3xCFP/cpVenus, which displayed an ~11-fold change in dynamic range in response to Ca(2+) binding. The enhanced dynamic range for Ca(2+) concentration detection using 3xCFP/cpVenus was confirmed in PC12 cells using previously established indicators (TN-XXL, ECFP/cpCitrine). To our knowledge, this FRET pair displays the largest dynamic range so far among genetically-encoded sensors, and can be used for sensitive FRET detection.  相似文献   

14.
A homogeneous detection mechanism based on fluorescence resonance energy transfer (FRET) has been developed for two DNA diagnostic tests. In the template-directed dye-terminator incorporation (TDI) assay, a donor dye-labeled primer is extended by DNA polymerase using allele-specific, acceptor dye-labeled ddNTPs. In the dye-labeled oligonucleotide ligation (DOL) assay, a donor dye-labeled common probe is joined to an allele-specific, acceptor dye-labeled probe by DNA ligase. Once the donor and acceptor dyes become part of a new molecule, intramolecular FRET is observed over background intermolecular FRET. The rise in FRET, therefore, can be used as an index for allele-specific ddNTP incorporation or probe ligation. Real time monitoring of FRET greatly increases the sensitivity and reliability of these assays. Change in FRET can also be measured by end-point reading when appropriate controls are included in the experiment. FRET detection proves to be a robust method in homogeneous DNA diagnostic assays.  相似文献   

15.
B C Ye  K Ikebukuro    I Karube 《Nucleic acids research》1998,26(15):3614-3615
The method based on the combination of polymerase chain reaction (PCR) and fluorescence polarization is presented. A targeted DNA was amplified with a 5'-fluorescein labeled primer, using a 256 bp DNA fragment of stx2 gene in Escherichia coli O157:H7 (188-443 bp) as a template. The fluorescence anisotropy of the 5'-fluorescein labeled primer increased upon the polymerization through Taq polymerase. The conversion of primer to PCR product was quantitatively monitored by anisotropy ratio and relative hydrodynamic volume. This system was also applied to the determination of E.coli O157:H7.  相似文献   

16.
Genetically encoded fluorescence resonance energy transfer (FRET) indicators are powerful tools for real-time detection of second messenger molecules and activation of signal proteins. However, these fluorescent protein-based sensors typically display marginal FRET efficiency. To improve their FRET efficiency for optical imaging and screening, we developed a number of fluorescent protein mutants based on cyan fluorescent protein (CFP) and yellow fluorescent protein (YFP). To improve FRET ratios, which were initially within a narrow dynamic range, we used DNA shuffling to develop a new FRET pair called 3xCFP/Venus. The optimized 3xCFP/Venus pair exhibited higher FRET ratios than CyPet/YPet, which has one of the greatest dynamic ranges of protein-based FRET pairs. We converted this FRET pair to a Ca2+ FRET indicators using circular permutation Venus (cpVenus) linked with 3xCFP to form 3xCFP/cpVenus, which displayed an ∼11-fold change in dynamic range in response to Ca2+ binding. The enhanced dynamic range for Ca2+ concentration detection using 3xCFP/cpVenus was confirmed in PC12 cells using previously established indicators (TN-XXL, ECFP/cpCitrine). To our knowledge, this FRET pair displays the largest dynamic range so far among genetically-encoded sensors, and can be used for sensitive FRET detection.  相似文献   

17.
DNA polymerases discriminate between correct and incorrect nucleotide substrates during a "nonchemical" step that precedes phosphodiester bond formation in the enzymatic cycle of nucleotide incorporation. Despite the importance of this process in polymerase fidelity, the precise nature of the molecular events involved remains unknown. Here we report a fluorescence resonance energy transfer (FRET) system that monitors conformational changes of a polymerase-DNA complex during selection and binding of nucleotide substrates. This system utilizes the fluorescent base analogue 1,3-diaza-2-oxophenothiazine (tC) as the FRET donor and Alexa-555 (A555) as the acceptor. The tC donor was incorporated within a model DNA primer/template in place of a normal base, adjacent to the primer 3' terminus, while the A555 acceptor was attached to an engineered cysteine residue (C751) located in the fingers subdomain of the Klenow fragment (KF) polymerase. The FRET efficiency increased significantly following binding of a correct nucleotide substrate to the KF-DNA complex, showing that the fingers had closed over the active site. Fluorescence anisotropy titrations utilizing tC as a reporter indicated that the DNA was more tightly bound by the polymerase under these conditions, consistent with the formation of a closed ternary complex. The rate of the nucleotide-induced conformational transition, measured in stopped-flow FRET experiments, closely matched the rate of correct nucleotide incorporation, measured in rapid quench-flow experiments, indicating that the conformational change was the rate-limiting step in the overall cycle of nucleotide incorporation for the labeled KF-DNA system. Taken together, these results indicate that the FRET system can be used to probe enzyme conformational changes that are linked to the biochemical function of DNA polymerase.  相似文献   

18.
一种高特异性的改良降落PCR   总被引:3,自引:0,他引:3  
为提高基因组DNA中的基因PCR检出的特异性,设计了一种改良的降落PCR程序,并分别用TaqDNA聚合酶及高保真PfuDNA聚合酶进行实验。自盐藻Dunaliella bardawil中提取基因组DNA作为PCR模板,使用TaqDNA聚合酶及PfuDNA聚合酶,运用普通PCR和降落PCR程序,扩增胡萝眩素生物合成相关基因(cbr)上游启动子序列,并电泳比较PCR扩增产物的特异性。结果显示,使用普通Taq酶PCR,普通PCR程序产生200bp,500bp和1272bp长的三条带,而TD-PCR程序仅克隆出1272bp的特异带;利用高保真的PfuDNA聚合酶作PCR,在TD-PCR泳道中仅有1272bp一条带,而普通PCR除了1272bp的特异带外,还出现一条500bp的非特异带。无论使用普通Taq酶或高保真酶Pfu,改良的降落PCR程序均明显提高PCR的特异性,类似的降落PCR程序可望用于克隆用普通PCR难以克隆的基因片段,或在假阳性难以去除的情况下提高PCR的特异性。  相似文献   

19.
A detection technique with a DNA probe was developed for the bloom‐forming alga Alexandrium affine harvested in Japan. The design of this probe was based on the sequence polymorphism within the 28S ribosomal DNA (rDNA) of this strain using the BIAcore? 2000 biosensor, which determines surface plasmon resonance. The specific DNA sequence in 28S rDNA for A. affine was determined by sequence data analysis, and a probe was designed for the detection of A. affine. A fragment of the 28S rDNA from A. affine was amplified by polymerase chain reaction and applied to the BIAcore? sensor system, and the target DNA was selectively recognized by species‐specific hybridization using two DNA probes: a fluorescein isothiocyanate (FITC)‐labeled probe and a biotin‐labeled DNA probe. Using FITC‐labeled anti‐immunogloblin G antibody, enhancement of the response for the target DNA can be detected directly as a resonant unit change. In this detection method, a difference within only 20 base pairs of the target could be detected, and specific detection of A. affine was achieved intraspecifically.  相似文献   

20.
Detection of Forster resonance energy transfer (FRET) between fluorescent protein labeled targets is a valuable strategy for measurement of protein-protein interactions and other intracellular processes. Despite the utility of FRET, widespread application of this technique to biological problems and high-throughput screening has been limited by low-contrast measurement strategies that rely on the detection of sensitized emission or photodestruction of the sample. Here we report a FRET detection strategy based on detecting depolarized sensitized emission. In the absence of FRET, we show that fluorescence emission from a donor fluorescent protein is highly polarized. Depolarization of fluorescence emission is observed only in the presence of energy transfer. A simple detection strategy was adapted for fluorescence microscopy using both laser scanning and wide-field approaches. This approach is able to distinguish FRET between linked and unlinked Cerulean and Venus fluorescent proteins in living cells with a larger dynamic range than other approaches.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号