首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
LMW kininogen was isolated from whole human plasma by gel filtration on Sephadex G-200 (Kav 0.34) followed by DEAE-chromatography according to earlier established methods. Further purification was performed with specific Sepharose-antibody columns to remove protein contaminants, avoiding procedures which may denature kininogen. The microheterogeneity was investigated by isoelectric focusing in column in the pH-gradients 3.5-10, 4-6 and 3.5-5. Kininogen components were determined by single radial immunodiffusion against monospecific anti-human kininogen serum, in comparison with focusing of whole plasma. 40% of isolated as well as whole plasma kininogen focused at pI 4.5; the respective focusing ranges were pI 4.4-4.7 (60--80%) and pI 4.3-4.6 (92%). The results were verified by crossed immunoelectrophoresis. The pI 4.5 component is apparently the main native form of human kininogen as shown by focusing of whole human blood bank plasma. Earlier described difficulty of separating kininogen and alpha2HS-glycoprotein was verified by crossed immunoelectrophoresis which showed approximately seven kininogen components after focusing in polyacrylamide gel electrophoresis at pI 4.5-5.0 and four alpha 2HS components at pI 4.2-4.6.  相似文献   

2.
The authors have studied the crossing immunoreactivity of various antigens in the radioimmunoassay of Low Molecular Weight Kininogen: serum and plasma proteins, human albumin, Bradykinin, High Molecular Weight Kininogen and the products of enzymatic degradation of Low Molecular Weight Kininogen.  相似文献   

3.
T Kininogen and High Molecular Weight Kininogen were characterized in the cell culture medium of Fao cells, a highly differentiated cell line derived from the Reuber H35 rat hepatoma. Immunoreactive T Kininogen and High Molecular Weight Kininogen identified by direct and specific RIAs were indistinguishable from standard kininogens. Immunoreactive T Kininogen was further identified by HPLC analysis of T kinin released after trypsin hydrolysis of the cell culture medium. The basal release rate of T kininogen was ten-fold higher than that of High Molecular Weight Kininogen. T Kininogen was not stored within the cells contrary to High Molecular Weight Kininogen. The production of the two kininogens in the cell medium was stimulated by dexamethasone up to five times in a dose-dependent manner. The specific antiglucocorticoid compound RU 38486 did not alter the basal rate of kininogen release by Fao cells, but abolished the stimulation by dexamethasone, indicating that dexamethasone exerts a true glucocorticoid type effect.  相似文献   

4.
Highly purified kininogen preparation with the activity of 16-18 int. units per mg was isolated from rabbit blood serum. Its molecular weight was estimated to be 54 000 by gel filtration through Sephadex G-200. Leucine was identified as N-terminal amino acid by the dansylation method. Rabbit kininogen consists of 394 amino acid residues (except tryptophane). Amino acid composition of kininogen is characterized by a high content of dicarbonic amino acids, proline and by a low content of methionine. Kininogen molecule does not contain SH-groups. 13.1-13.5 SH-groups were found in kininogen after the reduction of S-S bonds with beta-mercaptoethanol in the presence of 8 M urea, thus indicating the presence of 6-7 S-S bonds in kininogen molecule. Kininogen group does not occupy C-terminal position in the molecule, because the treatment of the protein with carboxypeptidase B does not change the content of bradykinine in it. Purified kininogen preparation is a substrate for kallikrein from rabbit blood plasma, human saliva and trypsin. Unlike trypsin, kallikreines from human blood plasma and saliva release kinines from kininogen with reduced S-S bonds. Under spontaneous reoxidation of reduced S-S bonds up to 90%, substate properties of kininogen for tripsin recover only by 50%. Rabbit kininogen is similar to beef kininogen II in its molecular weight, amino acid composition and the number of S-S bonds.  相似文献   

5.
Variations of the levels of human HMW and LMW kininogens have been studied in serum and in plasma incubated in vitro during 30 hours, at three different temperatures: 4 degrees, 22 degrees and 37 degrees C. There is a small difference between the level of LMW kininogen in plasma and in serum, but the serum and plasma level of LMW kininogen are almost stable during the time of incubation at the three temperatures. However, HMW kininogen is reduced in serum to about fifty percent of its plasma level. It decreases in plasma and in serum during incubation, overall at 4 degrees C. A strict parallelism stays between the radioimmunoassay and the bioassay.  相似文献   

6.
Exercise is known to induce the oxidation of blood low-molecular-weight (LMW) thiols such as reduced glutathione (GSH). We previously reported that full-marathon running induced a decrease in human plasma levels of protein-bound sulfhydryl groups (p-SHs). Moderate exercise, a 30-min running at the intensity of the individual ventilatory threshold, performed by untrained healthy females caused a significant decrease in erythrocyte levels of p-SHs (mostly hemoglobin cysteine residues) and LMW thiols, but their levels returned to each baseline by 2 h. No significant change in plasma LMW thiols was observed. However, plasma levels of p-SHs significantly decreased after running and remained unchanged after 24 h. These results suggest that moderate exercise causes the oxidation of blood thiols, especially protein-bound thiols.  相似文献   

7.
Monoclonal antibody to rat plasma kininogen, obtained after immunization of mice with the kininogen prepared by conventional methods, was purified from ascites fluid and coupled to CNBr-activated Sepharose-4B. Monoclonal-antibody affinity adsorbant thus prepared provided a rapid single-step method of purifying to homogeneity plasma kininogen. Purified rat plasma kininogen showed identical molecular weight and immunological cross-reactivity to rat plasma low molecular weight (LMW) kininogen purified by conventional procedures. Rat plasma kininogen differed from LMW kininogen from other species by virtue of its resistance to cleavage by either plasma or glandular kallikreins.  相似文献   

8.
This report describes a new method for desorption of low-molecular weight (LMW) peptides from abundant blood proteins for use in subsequent mass spectrometry analyses. Heating of diluted blood serum to 98°C for 15min resulted in dissociation of LMW peptides from the most abundant blood proteins. Application of blood plasma/serum fractionation using magnetic beads with a functionalized surface followed by heating of the resultant fractions significantly increases the number of LMW peptides detected by MALDI-TOF MS, enhances the general reproducibility of mass spectrometry profiles and considerably increases the number of identified blood serum peptides by LC-MS/MS using an Agilent 6520 Accurate-Mass Q-TOF.  相似文献   

9.
N-acetyl-l-cysteine (NAC) is a therapeutic drug widely used as mucolytic agent in the treatment of respiratory diseases. Recently it has been proposed that NAC administration may modify the plasma levels of low molecular weight thiols (LMW) like cysteine, homocysteine and glutathione, though it has been still debated if their plasma concentration increases or decreases during the therapy. Therefore research calls for methods able to analyze simultaneously NAC and the other plasma LMW thiols in order to evaluate if NAC is able to modify plasma thiols concentration and in particular to reduce homocysteine levels in hyperhomocysteinemia. In this paper we present a new capillary electrophoresis method that allows a baseline separation of plasma NAC from the physiological thiols. The proposed method has been utilized to measure the drug and the physiological LMW thiols in NAC administered chronic obstructive broncho-pneumopathy (COPB) disease patients.  相似文献   

10.
A relatively simple procedure for isolation and purification of human blood plasma kallikrein (HPK) by QAE-Sephadex A-50 SP-Sephadex C-50 and affinity chromatography on Sepharose 4B with immobilized soybean trypsin inhibitor with the activity yield of about 40% has been developed. The method allows for simultaneous isolation of low (LMW) and high molecular weight (HMW) kininogens from the same HPK sample. HPK preparations are homogeneous upon 7.5% polyacrylamide gel electrophoresis in the presence of 0.1% SDS; its Mr is 90,000. After treatment with beta-mercaptoethanol, HPK dissociates into two fragments with Mr of 43,000 and 37,000. HPK preparations have high specific activities of esterase (31 microM/min), amidase (78 microM/min), and kininogenase (420 micrograms equiv. bradikinin/min). The high degree of protein purification was demonstrated by titration of active centers with 4-methylumbelliferylguanidine benzoate. The values of equilibrium dissociation constants for the HPK complex with aprotinin (Ki) equal to 1 X 10(-8) M (ethyl ester of N-alpha-benzoyl-L-arginine) and 1,5 X 10(-9) M (HMW) were determined. The kinetics of HPK-induced liberation of bradikinin from purified preparations of HMW and LMW was studied. The kinetic parameters (Km, kcat and kcat/Km) of this reaction suggest a high affinity of HPK for HMW, but not for LMW. LMW does not compete with HMW for the enzyme active center. It is assumed that LMW is not a physiological substrate for HPK.  相似文献   

11.
Abstract

Monoclonal antibody to rat plasma kininoqen, obtained after immunization of mice with the kininogen prepared by conventional methods, was purified from ascites fluid and coupled to CNBr-activated Sepharose-4B. Monoclonal-antibody affinity adsorbant thus prepared provided a rapid singe-step method of purifying to homogeneity plasma kininogen. Purified rat plasma kininogen showed identical molecular weight and immunological cross-reactivity to rat plasma low molecular weight (LMW) kininogen purified by conventional procedures. Rat plasma kininogen differed from LMW kininogen from other species by virtue of its resistance to cleavage by either plasma or glandular kallikreins.  相似文献   

12.
A lambda gt11 cDNA library containing DNA inserts prepared from human liver mRNA has been screened with an antibody to human alpha 2-thiol proteinase inhibitor that was isolated from fresh plasma. Eighteen positive clones were isolated from one million phage, and each was plaque purified. The cDNA insert of one of these phage was sequenced and shown to code for alpha 2-thiol proteinase inhibitor as identified by a partial amino acid sequence of the light chain of alpha 2-thiol proteinase inhibitor. This cDNA insert contained 1529 base pairs coding for the complete alpha 2-thiol proteinase inhibitor. It included 45 base pairs of 5' noncoding sequence, 1281 base pairs that code for pre alpha 2-thiol proteinase inhibitor, a stop codon, 160 base pairs of 3' noncoding sequence, and 40 base pairs of poly(A) tail. The noncoding sequence on the 3' end contained a potential recognition site (AATAAA) for processing and polyadenylation of precursor messenger RNA. The amino acid sequence of alpha 2-thiol proteinase inhibitor deduced from the cDNA showed a striking similarity (overall homology at 74%) to that of bovine low molecular weight (LMW) kininogen, including two internally repeated sequences and a nonapeptide sequence of bradykinin. These data clearly indicated that alpha 2-thiol proteinase inhibitor and LMW kininogen are identical. This was further supported by immunological cross-reactivity between alpha 2-thiol proteinase inhibitor and LMW kininogen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
  • 1.1. A low molecular weight (LMW) glycoprotein was isolated in the pig from urine produced after the induction of proximal tubular damage and uremia by maleic acid.
  • 2.2. The purification steps included ultrafiltration, gel chromatography on Sephadex and anion exchange chromatography.
  • 3.3. The molecular weight, determined by SDS-polyacrylamide electrophoresis was 12,500. The protein appeared heterogeneous in agarose gel electrophoresis. Immunoelectrophoresis and crossed immuno-electrophoresis demonstrated 2 major zones in the α-region, a minor in the early α1- and one in the β-region.
  • 4.4. Like the human LMW proteins it appeared in trace amounts in normal plasma and urine but its characteristics were unlike any of the known human plasma LMW proteins.
  相似文献   

14.
Low molecular weight (LMW) kininogen was isolated from pooled rat plasma by chromatography on DEAE-Sephadex A-50, CM-Sephadex C-50, Blue-Sepharose CL-6B, and Sephadex G-100. It was shown to be homogeneous by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoelectrophoresis. The molecular weight of rat LMW kininogen was determined to be 72,000 by SDS-PAGE. The LMW kininogen contained 83.5% protein, 4.0% hexose, 5.5% hexosamine, and 2.7% sialic acid. Kinin liberated from LMW kininogen by trypsin treatment was identified as an Ile-Ser-bradykinin(T-kinin) by analysis involving ion exchange column chromatography on CM-Sephadex C-25 and high performance liquid chromatography on a reverse-phase column (ODS-120T). LMW kininogen formed kinin with rat submaxillary gland kallikrein, but the kinin liberated was only 14% of the total kinin content, that is, that released by trypsin. In order to determine the immunochemical properties of LMW kininogen, specific antiserum was prepared in rabbits. The antiserum cross-reacted with high molecular weight (HMW) kininogen, but spur formation was observed between the LMW and HMW kininogens. The kininogen level in rat plasma was estimated to be 433 microgram/ml by a quantitative single radial immunodiffusion test.  相似文献   

15.
We have investigated in detail the cleavage of human high molecular weight (HMW) kininogen by human plasma kallikrein and revealed the formation of a nicked kininogen and a novel kinin-free protein (KFP) as intermediate cleavage products. The cleavage of a single chain HMW kininogen (Mr=120,000) by plasma kallikrein was a three-step reaction. The first cleavage yielded a nicked kininogen composed of two disulfide-linked 62,000 and 56,000 daltons chains. The second cleavage yielded kinin and an intermediate kinin-free protein, KFP-I, which was apparently of equal size to the nicked kininogen. The third cleavage yielded a stable kinin-free protein, KFP-II, composed of two disulfide-linked 62,000 and 45,000 daltons chains. The liberation of an 8,000 daltons fragment was identified when the 56,000 daltons chain isolated by SP-Sephadex C-50 chromatography of reduced and alkylated KFP-I was cleaved by plasma kallikrein into the 45,000 daltons chain. Although the antiserum against HMW kininogen cross-reacted with low molecular weight (LMW) kininogen, the antiserum against the 45,000 daltons chain was specific for HMW kininogen. These results suggest that the antigenic determinant groups common to HMW and LMW kininogens are located in the 62,000 daltons heavy chain, while those specific for HMW kininogen are located in the 45,000 daltons light chain, which is known to retain blood coagulation activity.  相似文献   

16.
The effect of <5 KDa (low molecular weight, LMW) and >5 KDa (high molecular weight, HMW) humic fractions on transport activities of isolated plasma membrane vesicles was studied. The K+-stimulated component of the ATP-hydrolyzing activity was considerably increased by LMW humic substances at concentrations ranging from 0.075 mg org CL-1 to 1 mg org CL-1. The stimulation was still evident when the detergent Brij-35 was added in the assay mixture, indicating a direct effect of LMW humic substances on plasma membrane ATPase activity. The LMW humic fraction stimulated ATP-dependent intravesicular H+-accumulation with a pattern similar to that recorded for ATP hydrolysis. LMW humic substances induced also an increase in passive membrane permeability to protons, as revealed by following the dissipation of an artificially imposed pH gradient. Membrane permeability to anions, as measured by the anion-dependent active proton accumulation was affected by LMW humic substances. In the presence of NO3 - these molecules clearly enhanced proton transport, while Cl--dependent activity was almost unaffected, thus suggesting a specific action of LMW humic fraction on transmembrane NO3 - fluxes. On the other hand, HMW humic substances decreased the passive permeability to protons and reduced the anion-dependent intravesicular H+-accumulation. The results suggest that the stimulatory effect of soil humic substances on plant nutrition and growth might be, at least in part, explained on the basis of both direct action of LMW humic molecules on plasma membrane H+-ATPase and specific modification of cell membrane permeability.  相似文献   

17.
Mass spectrometric analysis of the low-molecular weight (LMW) range of the serum/plasma proteome is revealing the existence of large numbers of previously unknown peptides and protein fragments predicted to be derived from low-abundance proteins. This raises the question of why such low abundance molecules would be retained at detectable levels in the circulation, instead of being rapidly cleared and excreted. Theoretical models of biomarker production and association with serum carrier proteins have been developed to elucidate the mechanisms governing biomarker half-life in the bloodstream. These models predict that the vast majority of LMW biomarkers exist in association with circulating high molecular mass carrier proteins. Moreover, the total serum/plasma concentration of the biomarker is largely determined by the clearance rate of the carrier protein, not the free-phase biomarker clearance itself. These predictions have been verified experimentally using molecular mass fractionation of human serum before mass spectrometry sequence analysis. These principles have profound implications for biomarker discovery and measurement.  相似文献   

18.
Serum potentially carries an archive of important histological information whose determination could serve to improve early disease detection. The analysis of serum, however, is analytically challenging due to the high dynamic concentration range of constituent protein/peptide species, necessitating extensive fractionation prior to mass spectrometric analyses. The low molecular weight (LMW) serum proteome is that protein/peptide fraction from which high molecular weight proteins, such as albumin, immunoglobulins, transferrin, and lipoproteins, have been removed. This LMW fraction is made up of several classes of physiologically important proteins such as cytokines, chemokines, peptide hormones, as well as proteolytic fragments of larger proteins. Centrifugal ultrafiltration of serum was used to remove the large constituent proteins resulting in the enrichment of the LMW proteins/peptides. Because albumin is known to bind and transport small molecules and peptides within the circulatory system, the centrifugal ultrafiltration was conducted under solvent conditions effecting the disruption of protein-protein interactions. The LMW serum proteome sample was digested with trypsin, fractionated by strong cation exchange chromatography, and analyzed by microcapillary reversed-phase liquid chromatography coupled on-line with electrospray ionization tandem mass spectrometry. Analysis of the tandem mass spectra resulted in the identification of over 340 human serum proteins; however, not a single peptide from serum albumin was observed. The large number of proteins identified demonstrates the efficacy of this method for the removal of large abundant proteins and the enrichment of the LMW serum proteome.  相似文献   

19.
A low molecular weight (LMW) kininogen was isolated from pooled human serum by chromatography on DEAE-Sephadex A-50, CM-Sephadex C-50, Sephadex G-150, and Sephadex G-100. It was shown to be homogeneous by ultracentrifugation, polyacrylamide gel electrophoresis, and immunoelectrophoresis. The sedimentation coefficient, S020,W, of purified LMW kininogen was 3.85 s, and its molecular weight was determined to be 78,000 by Sephadex G-100 gel-filtration. The LMW kininogen contained 79.3% protein, 8.0% hexose, 3.9% hexosamine, and 4.9% sialic acid. In order to determine the immunochemical properties of LMW kininogen, specific antiserum was prepared in rabbits. The antigenic determinant of LMW kininogen was not related to the sialic acid and kinin moieties in the kininogen molecule, but could not be distinguished from that of high molecular weight (HMW) kininogen. In the quantitative single radial immunodiffusion test, a sialic acid-free LMW kininogen reacted to a greater extent with the antiserum than the native LMW kininogen. The kininogen level in human serum was estimated by single radial immunodiffusion. The antiserum cross-reacted with monkey serum, but not with sera from dogs, rats, and mice, horses, pigs, guinea pigs, oxen, and rabbits.  相似文献   

20.
Low molecular weight RNA (LMW RNA) is generally obtained either from the total RNA or from total nucleic acids solution. Many steps and chemical reagents are involved in traditional methods for LMW RNA isolation where degradation of LMW RNA often occurs, especially for plant materials with high levels of secondary catabolites. In this study, an efficient method was developed to directly isolate pure LMW RNA from pear peel, a material rich in polyphenolics that is covered with a layer of wax. The method was based on polyethylene glycol (PEG) precipitation combining CTAB buffer which is often used to isolate RNA from polysaccharide-rich and polyphenolics-rich materials. The entire procedure could be completed within 6 h and many samples could be processed at the same time. Few and common chemicals are used with this method. Hence, it could be used as an ordinary method in the laboratory. The developed method was further tested by isolating LMW RNA from Arabidopsis. Using the isolated LMW RNA samples, microRNAs were successfully detected and characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号