首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
本文报道了用Fmoe固相法合成3种胰岛素A链小环(A8-10)被不同碱性氨基酸取代的A链类似物,并分别与天然胰岛素B链重组成相应胰岛素类似物;经受体结合,整体活性及抗体结合实验,均表现出相应的活性。从中可以推测出:A链小环区域不是胰岛素表现生物活性的重要部位,而是胰岛素与其抗体结合较重要的区域。  相似文献   

2.
用(+)ABA及其两种RCA系列类似物(RCA.7a,RCA.7b)处理主米黄化芽提取的离体线粒体,三者均能促进线粒体上异柠檬酸脱氢酶(ICDH)的活性,另外,(+)ABA、RCA.7A及RCA.7b分子都有一个环己烯酮环(cyclohexenone ring),差别仅在侧链的不同,这提示,此环己烯酮环是ABA表现此种促进作用所必需的。(+)ABA处理离体线粒体之前,先经抗ABA结合蛋白的抗体(a  相似文献   

3.
本文报道了胰岛素分子中B1~3序列(Phe-Val-Asn)为Ala-Ala-Lys取代的胰岛素类似物制备及其生物性质。[B1Ala,B2Ala,B3Lys]-胰岛素仍保留天然胰岛素的全部体内活性和受体结合能力,但体外促脂肪生成活性和免疫活性分别只为胰岛素的70%和0.88%。本文还就胰岛素B链N端肽段对其结构和功能的影响进行了讨论。  相似文献   

4.
本文报道了胰岛素分子中B1 ̄3序列(Phe-Val-Asn)为Ala-Ala-Lys取代的胰岛素类似物制备及其生物性质。[B1Ala,B2Ala,B3Lys]-胰岛素仍保留天然胰岛素的全部体内活性和受体结合能力,但体外促脂肪生成活性和免疫活性分别只为胰岛素的70%和0.88%。本文还就胰岛素B链N端肽段对其结构和功能的影响进行了讨论。  相似文献   

5.
本文研究了B链N端和C端缩短的若干胰岛素类似物与胰岛素抗体的结合能力。结果表明:去B链C端五肽胰岛素(DPI)分子中B_1-Phe去除后其与胰岛素抗体结合力明显下降,这与去B_1-Phe胰岛素与胰岛素抗体结合力下降的趋势相似;去B链C端六肽胰岛素(DHI)与胰岛素抗体结合力与DPI非常接近,都为胰岛素的70%左右。而去B链C端七肽胰岛素(DHPI)与胰岛素抗体结合力与去B链C端六肽胰岛素(DHI)相比,其结合力下降了一个数量级。说明胰岛素B_1-和B_(24)-Phe残基对组成和维持胰岛素分子的抗原决定簇起着重要作用。去B链九肽胰岛素(DNI)与胰岛素抗体的结合力与去B链C端八肽胰岛索(DOI)及DHPI相似。本文对上述结果进行了讨论。  相似文献   

6.
通过化学半合成从天然猪胰岛素得到[B1-Ala,B2-Ala]胰岛素。这一胰岛素类似物经聚丙烯酰胺凝胶电泳和HPLC鉴定证明是均一的,氨基酸组成与理论值相符生物活性测定结果表明:[B1-Ala,B2-Ala]-胰岛素的体内活力与天然猪胰岛素相同,而与人胎盘细胞膜胰岛素受体的结合能力为天然猪胰岛素的132%。这一结果进一步说明胰岛素B链N端肽段参子与受体相互作用。此外,[B1-Ala,B2-Ala]-胰岛素的免疫活性很低,远小于天然猪胰岛素的4%。  相似文献   

7.
为了寻找能够模拟胰岛素生物活性的小肽,以胰岛素多克隆抗体为靶标,筛选噬菌体展示随机C7C环肽库.3轮筛选后,通过ELISA方法挑取与靶分子特异性结合的15个阳性克隆,测序获得两条序列,分析所得序列并合成相应短肽.通过细胞生物学活性检测,小肽CPTSQANSC(ZJ1)能够竞争性的抑制胰岛素与其受体的结合,并对正常小鼠和四氧嘧啶诱导的糖尿病小鼠,都有明显的降血糖作用.上述结果表明,小肽CPTSQANSC具有胰岛素样生物学活性.而小肽CVQPSHSSC(ZJ2)表现出胰岛素拮抗活性,能引起正常小鼠血糖升高.这表明筛选到了能够模拟胰岛素表位的短肽CPTSQANSC,可能为治疗胰岛素依赖性糖尿病提供了新线索.  相似文献   

8.
用(+)ABA及其两种RCA系列类似物(RCA.7a,RCA.7b)处理从玉米黄化芽提取的离体线粒体,三者均能促进线粒体上异柠檬酸脱氢酶(ICDH)的活性,另外,(+)ABA、RCA.7A及RCA.7b分子都有一个环己烯酮环(cyclohexenonering),差别仅在侧链的不同,这提示,此环己烯酮环是ABA表现此种促进作用所必需的。(+)ABA处理离体线粒体之前,先经抗ABA结合蛋白的抗体(anti-ABBPPAbs)处理,则(+)ABA促进ICDH活性的效应被显著抑制。暗示,线粒体上可能存在具有受体功能的ABA结合位点。  相似文献   

9.
本文研究了若干胰岛素片段及去B链C端八肽胰岛素(DOI)、A链、B链与胰岛素抗体的结合能力。结果表明N 端区域片段保留部分胰岛素的免疫活力,而C 端片段除“工”字肽的免疫活力比A 链略高外,其他片段(B_(26~30),B_(22~26))均和A 链类似,没有胰岛素的免疫活力。以上结果进一步说明在免疫活力方面,胰岛素分子的N 端区域比C 端重要。同样,B 链可能比A 链重要。  相似文献   

10.
本文研究了若干胰岛素片段及去B链C端八肽胰岛素(DOI)、A链、B链与胰岛素抗体的结合能力。结果表明N端区域片段保留部分胰岛素的免疫活力,而C端片段除“工”字肽的免疫活力比A链略高外,其他片段(B_(26~30),B_(22~26))均和A链类似,没有胰岛素的免疫活力。以上结果进一步说明在免疫活力方面,胰岛素分子的N端区域比C端重要。同样,B链可能比A链重要。  相似文献   

11.
Hydrogen bonding involving peptide bonds of the backbone of the insulin molecule may play an important role in insulin-receptor interaction. Our previous work suggested that the A2-A8 helical segment of the hormone molecule participates in this interaction. To investigate the possible involvement of peptide bonds of this segment in insulin-receptor interaction the [2-N-methylisoleucine-A]insulin and [3-N-methylvaline-A]insulin ([MeIle2-A]- and [MeVal3-A]insulins) were synthesized. The circular dichroic spectra of the analogues were obtained and their properties were examined in several biological assays. The circular dichroic spectra suggested that the analogues remained monomeric at concentrations at which insulin is predominantly dimeric, and that their A2-A8 helical segments are distorted. The in vitro biological activity and the receptor binding affinity of these analogues were compared with that of natural insulin. Both analogues are weak full agonists. [MeIle2-A]insulin displayed a potency of 5.4 +/- 0.3% in stimulating lipogenesis and 4.6 +/- 2.3% in receptor binding affinity in rat fat cells and rat liver plasma membranes respectively. [MeVal3-A]insulin displayed a potency of 2.1 +/- 0.2% in lipogenesis and 1.0 +/- 0.3% in receptor binding assays. In radioimmunoassays [MeIle2-A]- and [MeVal3-A]insulins exhibited potencies of 13% and 11% respectively relative to the natural hormone. The substantially decreased biological activity and receptor binding affinity of these analogues may be attributed partly to the change of conformation and partly to the loss of hydrogen bonding capacity of the A2-A8 segment brought about by N-methylation of the A1-A2 or A2-A3 peptide bonds.  相似文献   

12.
Insulin-degrading enzyme (IDE) hydrolyzes insulin at a limited number of sites. Although the positions of these cleavages are known, the residues of insulin important in its binding to IDE have not been defined. To this end, we have studied the binding of a variety of insulin analogues to the protease in a solid-phase binding assay using immunoimmobilized IDE. Since IDE binds insulin with 600-fold greater affinity than it does insulin-like growth factor I (25 nM and approximately 16,000 nM, respectively), the first set of analogues studied were hybrid molecules of insulin and IGF I. IGF I mutants [insB1-17,17-70]IGF I, [Tyr55,Gln56]IGF I, and [Phe23,Phe24,Tyr25]IGF I have been synthesized and share the property of having insulin-like amino acids at positions corresponding to primary sites of cleavage of insulin by IDE. Whereas the first two exhibit affinities for IDE similar to that of wild type IGF I, the [Phe23,Phe24,Tyr25]IGF I analogue has a 32-fold greater affinity for the immobilized enzyme. Replacement of Phe-23 by Ser eliminates this increase. Removal of the eight amino acid D-chain region of IGF I (which has been predicted to interfere with binding to the 23-25 region) results in a 25-fold increase in affinity for IDE, confirming the importance of residues 23-25 in the high-affinity recognition of IDE. A similar role for the corresponding (B24-26) residues of insulin is supported by the use of site-directed mutant and semisynthetic insulin analogues. Insulin mutants [B25-Asp]insulin and [B25-His]insulin display 16- and 20-fold decreases in IDE affinity versus wild-type insulin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.

Background

The insulin receptor (IR) exists in two isoforms, A and B, and the isoform expression pattern is tissue-specific. The C-terminus of the insulin B chain is important for receptor binding and has been shown to contact the IR just adjacent to the region where the A and B isoforms differ. The aim of this study was to investigate the importance of the C-terminus of the B chain in IR isoform binding in order to explore the possibility of engineering tissue-specific/liver-specific insulin analogues.

Methodology/Principal Findings

Insulin analogue libraries were constructed by total amino acid scanning mutagenesis. The relative binding affinities for the A and B isoform of the IR were determined by competition assays using scintillation proximity assay technology. Structural information was obtained by X-ray crystallography. Introduction of B25A or B25N mutations resulted in analogues with a 2-fold preference for the B compared to the A isoform, whereas the opposite was observed with a B25Y substitution. An acidic amino acid residue at position B27 caused an additional 2-fold selective increase in affinity for the receptor B isoform for analogues bearing a B25N mutation. Furthermore, the combination of B25H with either B27D or B27E also resulted in B isoform-preferential analogues (2-fold preference) even though the corresponding single mutation analogues displayed no differences in relative isoform binding affinity.

Conclusions/Significance

We have discovered a new class of IR isoform-selective insulin analogues with 2–4-fold differences in relative binding affinities for either the A or the B isoform of the IR compared to human insulin. Our results demonstrate that a mutation at position B25 alone or in combination with a mutation at position B27 in the insulin molecule confers IR isoform selectivity. Isoform-preferential analogues may provide new opportunities for developing insulin analogues with improved clinical benefits.  相似文献   

14.
In adult animals, the major effect of insulin on protein turnover is inhibition of protein degradation. Cellular protein degradation is under the control of multiple systems, including lysosomes, proteasomes, calpains, and giant protease. Insulin has been shown to alter proteasome activity in vitro and in vivo. We examined the inhibition of protein degradation by insulin and insulin analogues (Lys(B28),Pro(B29)-insulin (LysPro), Asp(B10)-insulin (B10), and Glu(B4),Gln(B16),Phe(B17)-insulin (EQF)) in H4, HepG2, and L6 cells. These effects were compared with receptor binding. Protein degradation was examined by release of trichloroacetic acid-soluble radioactivity from cells previously labeled with [(3)H]leucine. Short- and intermediate-lived proteins were examined. H4 cells bound insulin with an EC(50) of 4.6 x 10(-9) m. LysPro was similar. The affinity of B10 was increased 2-fold; that of EQF decreased 15-fold. Protein degradation inhibition in H4 cells was highly sensitive to insulin (EC(50) = 4.2 x 10(-11) and 1.6 x 10(-10) m, short- and intermediate-lived protein degradation, respectively) and analogues. Despite similar binding, LysPro was 11- to 18-fold more potent than insulin at inhibiting protein degradation. Conversely, although EQF showed lower binding to H4 cells than insulin, its action was similar. The relative binding potencies of analogues in HepG2 cells were similar to those in H4 cells. Examination of protein degradation showed insulin, LysPro, and B10 were equivalent while EQF was less potent. L6 cells showed no difference in the binding of the analogues compared with insulin, but their effect on protein degradation was similar to that seen in HepG2 cells except B10 inhibited intermediate-lived protein degradation better than insulin. These studies illustrate the complexities of cellular protein degradation and the effects of insulin. The effect of insulin and analogues on protein degradation vary significantly in different cell types and with different experimental conditions. The differences seen in the action of the analogues cannot be attributed to binding differences. Post-receptor mechanisms, including intracellular processing and degradation, must be considered.  相似文献   

15.
Experiments compared a series of phenethylamine hallucinogens with their phenylisopropylamine analogues for binding affinity and ability to stimulate serotonin 5-HT 2A receptor-mediated hydrolysis of phosphatidyl inositol in cells expressing cloned rat and human 5-HT 2A receptors. The (+/-)phenylisopropylamine analogues had significantly higher intrinsic activities for 5-HT 2A receptor-mediated hydrolysis of phosphatidyl inositol compared to their phenethylamine analogues. With respect to the effects of the stereochemistry of the phenylisopropylamines, those with the (R) absolute configuration at the alpha carbon had higher intrinsic activities for hydrolysis of phosphatidyl inositol in a cell line expressing the human 5-HT 2A receptor compared to those with the (S) absolute configuration. In virtual docking studies comparing the (R)- and (S)-phenylisopropylamines with their phenethylamine analogues, there were distinct differences in the orientations of key ligand binding domain residues that have been identified as important by previous mutagenesis studies. In conclusion, our data support the hypothesis that phenylisopropylamines have higher hallucinogenic potency than their phenethylamine analogues primarily because they have higher intrinsic activities at 5-HT 2A receptors. Although virtual ligand binding led to significant perturbations of certain key residues, our results emphasize the conclusion reached by others that overall three-dimensional structural microdomains within the receptor must be considered.  相似文献   

16.
The present study investigated whether specific [3H]oxytocin binding sites previously demonstrated in estrogen-dominated rabbit uterus have properties expected of physiologic receptors coupled to uterine contraction. Microsomal membranes from estrogen-dominated rabbit uterus were found to contain high-affinity specific oxytocin binding sites with Kd = 2-3 nM. These sites were predominantly myometrial in locus. Specific oxytocin binding exhibited a pH optimum between 7.5 and 8.0. Mg2+ or Mn2+ was necessary for maximal specific [3H]oxytocin binding; in contrast, Ca2+ at submillimolar concentrations inhibited specific binding. Oxytocin binding sites were not detectable in microsomal membranes isolated from progesterone-dominated rabbit uterus. Relative binding and uterotonic activities of 10 synthetic neurohypophyseal hormone analogues were determined in estrogen-dominated rabbit uterus. A qualitative correlation was observed between binding and uterotonic responses. Angiotensin II and insulin did not compete with [3H]oxytocin for uterine binding sites. It is concluded that the specific high affinity [3H]oxytocin binding sites demonstrated in estrogen-dominated rabbit uterus have the selectivity for neurohypophyseal hormone analogues expected for physiologic receptors coupled to uterine contraction.  相似文献   

17.
Human [LeuB-24]- and [LeuB-25]-insulins were semi-synthesized from porcine insulin by an enzyme-assisted coupling method. The receptor-binding ability of [LeuB-24]- and [LeuB-25]-insulins was 30--48% and 2--5% respectively of that of human insulin. There was no significant difference in degradation between human insulin and these analogues on incubation with isolated adipocytes. The decreased affinity of these analogues was due to an increased dissociation rate rather than a change in the association rate of their binding to human cultured lymphocytes. The negative co-operative effect of [LeuB-24]- and [LeuB-25]-insulin was decreased to 50 and 1% respectively of that of human insulin at a concentration of 100 ng/ml. The ability of [LeuB-24]- and [LeuB-25]-insulin to stimulate 2-deoxyglucose uptake in isolated rat adipocytes was 35 and 4% respectively of that of human insulin. These analogues did not have an antagonistic effect on the biological activity of human insulin. The immunoreactivity of [LeuB-25]insulin was similar to that of porcine or human insulin, whereas [LeuB-24]insulin demonstrated decreased binding to anti-(porcine insulin) antibodies. These findings suggest that B-chain phenylalanine-25 residue is more crucial for receptor binding and negative co-operativity, whereas the B-chain phenylalanine-24 residue may play a more important role in binding to anti-insulin antibody.  相似文献   

18.
A modified insulin, in which the A chain moiety has been extended at the C-terminus with the “D region” of the insulin-like growth factor II, has been synthesized essentially by the procedures employed in this laboratory for the synthesis of insulin and analogues. This hybrid molecule displayed reduced insulin-like activities, 34.5% receptor binding, and 40.4% stimulation of lipogenesis relative to natural insulin. These findings suggest that the extension sequence (“D region”) attached at the C-terminus of the A chain may partially cover the putative receptor binding region of insulin, in support of speculations based on computer-generated models. These same models indicate that the extension peptide may interfere with one of the two regions implicated in insulin antibody recognition. In this regard, radioimmunoassay of the hybrid revealed potency even more reduced than biological activity: 18% relative to insulin. Growth factor assays of the hybrid (this laboratory, unpublished data) suggest that the “D region” of insulin-like growth factor II is not in itself the determinant of growth-promoting activity.  相似文献   

19.
As part of our aim to investigate the contribution of the tyrosine residue found in the 14 position of the A-chain to the biological activity of insulin, we have synthesized six insulin analogues in which the A14 Tyr has been substituted by a variety of amino acid residues. We have selected three hydrophilic and charged residues—glutamic acid, histidine, and lysine—as well as three hydrophobic residues—cycloleucine, cyclohexylalanine, and naphthyl-(1)-alanine—to replace the A14 Tyr. All six analogues exhibit full agonist activity, reaching the same maximum stimulation of lipogenesis as is achieved with procine insulin. The potency for five of the six analogues, [A14 Glu]-, [A14 His]-, [A14 Lys]-, [A14 cycloleucine]-, and [A14 naphthyl-(1)-alanine]-insulins in receptor binding assays ranges from 40–71% and in stimulation of lipogenesis ranges from 35-120% relative to porcine insulin. In contrast, the potency of the sixth analogue, [A14 cyclohexylalanine]insulin, in both types of assays is less than 1% of the natural hormone. The retention time on reversed-phase high-performance liquid chromatography for the first five analogues is similar to that of bovine insulin, whereas for the sixth analogue, [A14 cyclohexylalanine]insulin, it is approximately 11 min longer than that of the natural hormone. This suggests a profound change in conformation of the latter analogue. Apparently, the A14 position of insulin can tolerate a wide latitude of structural alterations without substantial decrease in potency. This suggests that the A14 position does not participate directly in insulin receptor interaction. Only when a substitution which has the potential to disrupt the conformation of the molecule is made at this position, is the affinity for the receptor, and hence the biological potency, greatly reduced.  相似文献   

20.
S H Nakagawa  H S Tager 《Biochemistry》1992,31(12):3204-3214
In order to evaluate the cause of the greatly decreased receptor-binding potency of the naturally occurring mutant human insulin Insulin Wakayama ([LeuA3]insulin, 0.2% relative potency), we examined (by the semisynthesis of insulin analogues based on N alpha-PheB1,N epsilon-LysB29-bisacetyl-insulin) the importance of aliphatic side chain structure at positions A2 and A3 (Ile and Val, respectively) in directing the interaction of insulin with its receptor. Analogues bearing glycine, alanine, alpha-amino-n-butyric acid, norvaline, norleucine, valine, isoleucine, allo-isoleucine, threonine, tert-leucine, or leucine at positions A2 or A3 were assayed for their potencies in competing for the binding of 125I-labeled insulin to isolated canine hepatocytes, as were analogues bearing deletions from the A-chain amino terminus or the B-chain carboxyl terminus. Selected analogues were also analyzed by far-UV CD and absorption spectroscopy of Co2+ complexes. Our results identify that (a) Ile and Val serve well at position A2, whereas residues with other side chains (including those with straight chains, alternatively configured beta-branches, or a gamma-branch) exhibit relative receptor-binding potencies in the range 1-5%; (b) greater flexibility is allowed side-chain structure at position A3, with Ile, allo-Ile, alpha-amino-n-butyric acid, and tert-Leu exhibiting relative receptor-binding potencies in the range 11-36%; and (c) simultaneous replacements at positions A2 and A3, and deletions of the COOH-terminal domain of the insulin B chain in related analogues, yield cumulative effects. These findings are discussed with respect to a model for insulin-receptor interactions that involves a structure-orienting role for residue A2, the direct interaction of residue A3 with receptor, and multiple separately defined elements of structure and of conformational adjustment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号